成都市2013届高中毕业班第一次诊断性测试理科数学试题

合集下载

中学生标准学术能力诊断性测试2025届高一数学第一学期期末质量跟踪监视模拟试题含解析

中学生标准学术能力诊断性测试2025届高一数学第一学期期末质量跟踪监视模拟试题含解析
为结论,写出一个正确的命题:___________.
13.已知函数
f
(x)
log2 (1 x) 1, 1
x
x 1 ,k
x
a,
x
k,
若存在实数
k
使得函数
f
(x)
的值域为0, 2
,则实数
a
的取值范围是
__________
14.全集U R ,集合 A x x 3 ,则 U A ______
最小值为 BE
a2
a2 4
2 a
a 2
1 2
14 ,从而得到 a 2 2 ,根据等体积转化得到内切球半径 r 3 , 3
再计算其体积即可.
【详解】设正四面体的棱长为 a ,将侧面 ABC 和△ACD 沿 AC 边展开成平面图形,如图所示:
则 BP PE 的最小值为 BE
a2
a2 4
2a
【解析】由 l1 / /l2 且 l1 l3 ,列出方程,求得 n 4 0 , m 6 0 ,解得 m, n 的值,即可求解
【详解】由题意,直线 l1 : x 2y 1 0 , l2 : 2x ny 5 0 , l3 : mx 3y 1 0 ,
因为 l1 / /l2 且 l1 l3 ,所以 n 4 0,且 m 6 0 , 解得 n 4 , m 6 ,所以 m n 4 6 2
A.2
B. 3
2
C.0
D. 3
2
10.如图,在平面直角坐标系 xOy 中,角 θ 的顶点与原点 O 重合,它的始边与 x 轴的非负半轴重合,终边 OP 交单位
圆 O 于点 P,则点 P 的坐标为 ( )
A. (sin θ , cosθ) B. (cos θ , sin θ) C. (sin θ , cosθ) D. (cosθ,sin θ)

2016届成都一诊理科数学答案及评分标准

2016届成都一诊理科数学答案及评分标准

成都市高2013级高中毕业班第一次诊断性检测数学(理工类)参考答案及评分意见第Ⅰ卷㊀(选择题㊀共50分)一㊁选择题:(本大题共10小题,每小题5分,共50分)1.B ;㊀2.C ;㊀3.C ;㊀4.B ;㊀5.D ;㊀6.A ;㊀7.A ;㊀8.B ;㊀9.D ;㊀10.A.第Ⅱ卷㊀(非选择题,共100分)二.填空题:(本大题共5小题,每小题5分,共25分)11.1+5i ;㊀㊀12.-280;㊀㊀13.25;㊀㊀㊀14.23;㊀㊀15.[2,1+3].三㊁解答题:(本大题共6小题,共75分)16.解:(Ⅰ)ȵ2(a n +a n +2)=5a n +1,㊀ʑ2(a n +a n q 2)=5a n q .由题意,得a n ʂ0,ʑ2q 2-5q +2=0.ʑq =2或12.ȵq >1,ʑq =2.㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀ 6分㊀(Ⅱ)ȵa 25=a 10,㊀ʑ(a 1q 4)2=a 1q 9.ʑa 1=2.ʑa n =a 1q n -1=2n .ʑa n 3n =(23)n .ʑS n =23[1-(23)n ]1-23=2-2n +13n .㊀㊀㊀㊀㊀㊀㊀㊀㊀ 12分17.解:(Ⅰ)由题意,X 的所有可能取值为15,20,25,30.ȵP (X =15)=C 34C 39=121,P (X =20)=C 24㊃C 15C 39=514,P (X =25)=C 14㊃C 25C 39=1021,P (X =30)=C 35C 39=542,ʑX 的分布列为:X15202530P 1215141021542㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀ 7分(Ⅱ)E (X )=15ˑ121+20ˑ514+25ˑ1021+30ˑ542=703.㊀㊀ 12分18.解:(Ⅰ)f (x )=c o s 2x +(32s i n x -12c o s x )2=c o s 2x +(34s i n 2x +14c o s 2x -32s i n x c o s x ))页4共(页1第案答)理(题试考 诊一 学数=12-(-34c o s 2x +34s i n 2x )=12-32s i n (2x -π3).㊀㊀㊀㊀㊀㊀㊀ 3分要使f (x )取得最大值,须满足s i n (2x -π3)取得最小值.ʑ2x -π3=2k π-π2,k ɪZ .ʑx =k π-π12,k ɪZ .㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀ 5分ʑ当f (x )取得最大值时,x 取值的集合为{x |x =k π-π12,k ɪZ }. 6分(Ⅱ)由题意,得s i n (2C -π3)=32.ȵC ɪ(0,π2),ʑ2C -π3ɪ(-π3,2π3).ʑC =π3.㊀㊀㊀㊀㊀㊀ 9分ȵB ɪ(0,π2),ʑs i n B =45.ʑs i n A =s i n (B +C )=s i n B c o s C +c o s B s i n C =45ˑ12+35ˑ32=4+3310.㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀ 12分19.解:(Ⅰ)如图,过点E 作E H ʅB C 于H ,连接HD .ʑE H =3.ȵ平面A B C D ʅ平面B C E ,E H ⊆平面B C E ,平面A B C D ɘ平面B C E =B C ,ʑE H ʅ平面A B C D .又ȵF D ʅ平面A B C D ,F D =3.ʑF D ʏE H .ʑ四边形E HD F 为平行四边形.ʑE F ʊHD .ȵE F ⊄平面A B C D ,HD ⊆平面A B C D ,ʑE F ʊ平面A B C D .㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀ 6分(Ⅱ)连接HA .由(Ⅰ),得H 为B C 中点,又øC B A =60ʎ,ΔA B C 为等边三角形,ʑHA ʅB C .分别以H B ,HA ,H E 所在直线为x ,y ,z 轴建立如图所示的空间直角坐标系H -x y z .则B (1,0,0),F (-2,3,3),E (0,03),A (0,3,0).B F ң=(-3,3,3),B A ң=(-1,3,0),B E ң=(-1,0,3).设平面的法向量为n 1=(x 1,y 1,z 1).由n 1㊃B F ң=0n 1㊃B E ң=0{,得-3x 1+3y 1+3z 1=0-x 1+3z 1=0{.令z 1=1,得n 1=(3,2,1).设平面A B F 的法向量为n 2=(x 2,y 2,z 2).由n 2㊃B F ң=0n 2㊃B A ң=0{,得-3x 2+3y 2+3z 2=0-x 2+3y 2=0{.)页4共(页2第案答)理(题试考 诊一 学数令y 2=1,得n 2=(3,1,2).ʑc o s <n 1,n 2>=n 1㊃n 2|n 1|㊃|n 2|=3+2+28=78.ȵ二面角A -F B -E 为钝角,故二面角A -F B -E 的余弦值是-78.㊀㊀㊀㊀㊀ 12分20.解:(Ⅰ)A (-3,0),B (3,0).设点P (x ,y )(y ʂ0).则有x 23+y 22=1,即y 2=2(1-x 23)=23(3-x 2).ʑk P A ㊃k P B =y x +3㊃y x -3=y 2x 2-3=23(3-x 2)x 2-3=-23.㊀ʑ直线P A 与P B 斜率乘积的值为-23.㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀ 4分(Ⅱ)令M (x 1,y 1),N (x 2,y 2).ȵM N 与x 轴不重合,ʑ设l M N :x =m y +t (m ɪR ).由x =m y +t 2x 2+3y 2-6=0{,得(2m 2+3)y 2+4m t y +2t 2-6=0.ʑΔ=16m 2t 2-4(2m 2+3)(2t 2-6)>0y 1+y 2=-4m t 2m 2+3y 1㊃y 2=2t 2-62m 2+3ìîí.㊀㊀㊀㊀㊀㊀ (∗)由题意,得AM ʅA N .即AM ң㊃A N ң=0.ȵx 1=m y 1+t ,x 2=m y 2+t ,ʑAM ң㊃A N ң=[m y 1+(t +3)][m y 2+(t +3)]+y 1y 2=0.ʑ(1+m 2)y 1y 2+m (t +3)(y 1+y 2)+(t +3)2=0.将(∗)式代入上式,得(1+m 2)2t 2-62m 2+3+m (t +3)-4m t 2m 2+3+(t +3)2=0.即2t 2-6+2m 2t 2-6m 2-4m 2t 2-43m 2t +(2m 2+3)(t 2+23t +3)=0.展开,得2t 2-6+2m 2t 2-6m 2-4m 2t 2-43m 2t +2m 2t 2+43m 2t +6m 2+3t 2+63t +9=0.整理,得5t 2+63t +3=0.解得t =-35或t =-3(舍去).经检验,t =-35能使Δ>0成立.故存在t =-35满足题意.㊀㊀㊀㊀㊀㊀㊀㊀ 13分21.解:(Ⅰ)f (x )的定义域为(0,+¥),f ᶄ(x )=-(a x -1)(x -1)x (a >0).①当a ɪ(0,1)时,1a >1.由f ᶄ(x )<0,得x >1a 或x <1.ʑ当x ɪ(0,1),x ɪ(1a ,+¥)时,f (x )单调递减.ʑf (x )的单调递减区间为(0,1),(1a ,+¥).)页4共(页3第案答)理(题试考 诊一 学数②当a =1时,恒有f ᶄ(x )ɤ0,ʑf (x )单调递减.ʑf (x )的单调递减区间为(0,+¥).③当a ɪ(1,+¥)时,1a <1.由f ᶄ(x )<0,得x >1或x <1a .ʑ当x ɪ(0,1a ),x ɪ(1,+¥)时,f (x )单调递减.ʑf (x )的单调递减区间为(0,1a ),(1,+¥).综上,当a ɪ(0,1)时,f (x )的单调递减区间为(0,1),(1a ,+¥);当a =1时,f (x )的单调递减区间为(0,+¥);当a ɪ(1,+¥)时,f (x )的单调递减区间为(0,1a ),(1,+¥).㊀㊀. 6分(Ⅱ)当a =0时,g (x )=x 2-x l n x ,x ɪ(0,+¥),g ᶄ(x )=2x -l n x -1,[g ᶄ(x )]ᶄ=2-1x .当x ɪ[12,+¥)时,[g ᶄ(x )]ᶄ=2-1x ⩾0,ʑg ᶄ(x )在[12,+¥)上单调递增.又g ᶄ(12)=l n 2>0,ʑg ᶄ(x )⩾g ᶄ(12)>0在[12,+¥)上恒成立.ʑg (x )在[12,+¥)上单调递增.由题意,得m 2-m l n m =k (m +2)-2n 2-n l n n =k (n +2)-2{.原问题转化为关于x 的方程x 2-x l n x =k (x +2)-2在[12,+¥)上有两个不相等的实数根.㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀ 9分即方程k =x 2-x l n x +2x +2在[12,+¥)上有两个不相等的实数根.令函数h (x )=x 2-x l n x +2x +2,x ɪ[12,+¥).则h ᶄ(x )=x 2+3x -2l n x -4(x +2)2.令函数p (x )=x 2+3x -2l n x -4,x ɪ[12,+¥).则p ᶄ(x )=(2x -1)(x +2)x 在[12,+¥)上有p ᶄ(x )⩾0.故p (x )在[12,+¥)上单调递增.ȵp (1)=0,ʑ当x ɪ[12,1)时,有p (x )<0即h ᶄ(x )<0.ʑh (x )单调递减;当x ɪ(1,+¥)时,有p (x )>0即h ᶄ(x )>0,ʑh (x )单调递增.ȵh (12)=910+l n 25,h (1)=1,h (10)=102-10l n 212>102-1012=233>h (12),ʑk 的取值范围为(1,910+l n 25].㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀ 14分)页4共(页4第案答)理(题试考 诊一 学数。

新课标全国统考区2013届最新高三名校理科数学试题精选分类汇编6:不等式

新课标全国统考区2013届最新高三名校理科数学试题精选分类汇编6:不等式

新课标全国统考区(吉林、河南、黑龙江、内蒙古、山西、云南)2013届最新高三名校理科数学试题精选分类汇编6:不等式一、选择题1 .(河南省六市2013届高三第二次联考数学(理)试题)当实数,x y 满足不等式⎪⎩⎪⎨⎧≤+≥≥2200y x y x 时,恒有3ax y +≤成立,则实数a 的取值范围是( )A .0a ≤B .0a ≥C .02a ≤≤D .3a ≤【答案】D2 .(河南省中原名校2013届高三下学期第二次联考数学(理)试题)若*1(),()(),2f n n g n n n n N nϕ==-=∈,则(),(),()f n g n n ϕ的大小关系 ( ) A .()()()f n g n n ϕ<< B .()()()f n n g n ϕ<< C .()()()g n n f n ϕ<<D .()()()g n f n n ϕ<<【答案】B3 .(云南省玉溪市2013年高中毕业班复习检测数学(理)试题)已知变量x ,y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则z =3x +y 的最大值为( )( )A .12B .11C .3D .-1【答案】B4 .(河南省豫东、豫北十所名校2013届高三阶段性测试(四) 数学(理)试题(word 版))已知实数⎪⎩⎪⎨⎧≤+-≤≥.,13,1,m y x x y y y x 满足如果目标函数y x z 45-=的最小值为—3,则实数m=( )A .3B .2C .4D .311 【答案】A5 .(河南省中原名校2013届高三下学期第二次联考数学(理)试题)若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩所示的平面区域,则当a 从-2连续变化到1时,动直线x +y=a 扫过A 中的那部分区域面积为 ( )A .2B .1C .34D .74【答案】D6 .(河南省商丘市2013届高三第三次模拟考试数学(理)试题)若0.5222,log 3,log sin5a b c ππ===,则,,a b c 之间的大小关系是( )A .c a b >>B .a b c >>C .b a c >>D .b c a >>【答案】B7 .(云南省2013年第二次高中毕业生复习统一检测数学理试题(word 版) )已知()f x 是定义域为实数集R的偶函数,10x ∀≥,20x ∀≥,若12x x ≠,则1212()()0f x f x x x -<-.如果13()34f =,184(log )3f x >,那么x 的取值范围为( )A .10,2⎛⎫ ⎪⎝⎭B .1,22⎛⎫⎪⎝⎭C .()1,12,2⎛⎤+∞⎥⎝⎦D .110,,282⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭【答案】B8 .(河南省开封市2013届高三第四次模拟数学(理)试题)若a>1,设函数4)(-+=x a x f x 的零点为m,g(x)4log -+=x x a 的零点为n,则nm 11+的取值范围是 ( )A .(3.5,+∞)B .(1,+∞)C .(4,+∞)D .(4.5,+∞)【答案】B9 .(吉林省吉林市2013届高三三模(期末)试题 数学理 )已知点(),P x y 在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-0220102y x y x 表示的平面区域上运动,则z x y =-的取值范围是 ( )A .[]2,1--B .[]2,1-C .[]1,2-D .[]1,2【答案】C10.(黑龙江省哈师大附中2013届第三次高考模拟考试 理科数学 Word 版含答案)设x 、y 满足约束条件2040220x y x y x y -+-≤⎧⎪+-≤⎨⎪-+≤⎩,则目标函数z = 2x + y 的最大值为 A .-4B .5C .6D .不存在【答案】C11.(山西省临汾一中、忻州一中、康杰中学、长治二中2013届高三第四次四校联考数学(理)试题)若实数x ,y 满足约束条件142x y x y y -≥-⎧⎪+≤⎨⎪≥⎩,则目标函数 24z x y =+的最大值为( )A .10B .12C .13D .14【答案】C12.(河南省三市(平顶山、许昌、新乡)2013届高三第三次调研(三模)考试数学(理)试题)设实数,x y 满足约束条件:360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为12,则2294a b +的最小值为( )A .12 B .1325C .1D .2【答案】A 13.(河北省石家庄市2013届高中毕业班第二次模拟考试数学理试题(word 版) )设y x ,满足约束条件⎪⎩⎪⎨⎧≤+≥≥,1434,,0y x x y x 则21++x y 的取值范围是 ( )A .]617,21[ B .]43,21[C .]617,43[ D .),21[+∞【答案】A 二、填空题14.(河南省郑州市2013届高三第三次测验预测数学(理)试题)已知⎪⎩⎪⎨⎧≥≤-+≤++101553,034x y x y x ,则z =______.【答案】812[,]15515.(吉林省实验中学2013届高三第二次模拟考试数学(理)试题)已知点P (x ,y )的坐标满足条件0,0,20,≥≥≤x y x y ⎧⎪⎨⎪+-⎩则z =2x -y 的最大值是_________. 【答案】416.(2013年红河州高中毕业生复习统一检测理科数学)设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≤--≥+-0,0048022y x y x y x ,若目标函数)0,0(>>+=b a y abx z 的最大值为8,则b a +的最小值为_______. 【答案】417.(山西省山大附中2013届高三4月月考数学(理)试题)设二次函数c x ax x f +-=4)(2的值域为[)+∞,0,_______18.(云南省玉溪市2013年高中毕业班复习检测数学(理)试题)若正实数a,b 满足:(a-1)(b-1)=4,则ab 的最小值是_____.【答案】919.(内蒙古包头市2013届高三第二次模拟考试数学(理)试题)设x,y 满足条件20360,(0,0)0,0x y x y z ax by a b x y -+≥⎧⎪--≤=+>>⎨⎪≥≥⎩若目标函数的最大值为12,则32a b +的最小值为________【答案】 420.(河北省衡水中学2013届高三第八次模拟考试数学(理)试题 )已知点P (x ,y )在不等式组1003x y x y x ⎧⎪⎨⎪⎩+-≥,-≥,≤表示的平面区域内运动,则34z x y =-的最小值为________ 【答案】解析:可行域是以11(,),(3,3),(3,2)22A B C -三点为顶点的三角形,当过点B 时,z 取最小值是3-.21.(河南省开封市2013届高三第四次模拟数学(理)试题)实数x,y 满足条件yx z y x y x y x -=⎪⎩⎪⎨⎧≥≥≥+-≤-+2,0,002204则的最小值为_________. 【答案】1-22.(山西省山大附中2013届高三4月月考数学(理)试题)在平面直角坐标系中,不等式⎪⎩⎪⎨⎧≤≥-≥+a x y x y x 00a (为常数)表示的平面区域的面积为8,则32+++x y x 的最小值为_________23.(2013年长春市高中毕业班第四次调研测试理科数学)设,x y 满足约束条件00+2y y xx y a ⎧⎪⎨⎪-⎩≥≤≤,若目标函数3x y +的最大值为6,则a =______.【答案】【命题意图】本小题通过线性规划问题考查学生的运算求解能力,是一道基本题.【试题解析】由题意可知,3z x y =+取最大值6时,直线 36y x =-+过点(2,0),则点(2,0)必在线性规划区域内,且可以使一条斜率为3-的直线经过该点时取最大值,因此点 (2,0)为区域最右侧的点,故直线0+2x y a -=必经过点(2,0), 因此2a =.24.(吉林省实验中学2013届高三第二次模拟考试数学(理)试题)已知P 是面积为1的△ABC 内的一点(不含边界),若△PBC ,△PCA 和△PAB 的面积分别为,,x y z ,则1x yx y z +++的最小值是_________. 【答案】325.(山西省太原市第五中学2013届高三4月月考数学(理)试题)设实数x ,y 满足约束条件2220,20,220,x y x y x y x y ⎧-≤⎪-≥⎨⎪+--≤⎩,则目标函数z x y =+的最大值为_________. 【答案】4。

四川省2017级高中毕业班诊断性测试理科数学试卷

四川省2017级高中毕业班诊断性测试理科数学试卷
17.(12 分) 在 ABC 中,内角 A, B,C 的对边分别是 a,b, c .已知 b tan A , c tan B ,b tan B 成等差数列.
(1)求 A 的大小; (2)设 a 2 ,求 ABC 面积的最大值.
第3页,共6页
初高中数学学习资料的店
初高中数学学习资料的店
18.(12 分) 如图所示,菱形 ABCD 与正方形 CDEF 所在平面相交于 CD .
人均 GDP x (万元/人)
3
6
9
12 15
人均垃圾清运量 y (吨/人) 0.13 0.23 0.31 0.41 0.52
f (x0 ) g(x0 )
1 2
A.①③
B.②③
C.①④
D.②④
12.已知三条射线 OA 、OB 、OC 两两所成的角都是 60 ,点 M 在 OA 上,点 N 在 BOC 内 运动,且 MN OM 6 3 ,则点 N 的轨迹长度为( )
A. 2
B. 3
C. 4
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
13.双曲线
x2 4
y2 12
1的一个焦点到它的一条渐近线的距离为_____.
D. 5
14.已知数列an 的前 n 项和 Sn 3an 2n(n N * ) .若an 成等比数列,则实数 __2 ax, x 0 2x3 ax2 1, x
0
,若
f
(x)
初高中数学学习资料的店
四川省 2017 级高中毕业班诊断性测试 理科数学
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。 如需改动,用橡皮擦擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡 上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。

2024届四川省宜宾市高三上学期第一次诊断性测试(一模)理综物理试题

2024届四川省宜宾市高三上学期第一次诊断性测试(一模)理综物理试题

2024届四川省宜宾市高三上学期第一次诊断性测试(一模)理综物理试题学校:_______ 班级:__________姓名:_______ 考号:__________(满分:100分时间:75分钟)总分栏题号一二三四五六七总分得分评卷人得分一、单项选择题(本题包含8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题“旋转纽扣”是一种传统游戏。

如图,先将纽扣绕几圈,使穿过纽扣的两股细绳拧在一起,然后用力反复拉绳的两端,纽扣正转和反转会交替出现。

拉动多次后,纽扣绕其中心的转速可达50r/s,此时纽扣上距离中心1cm处的点向心加速度大小约为( )A.10m/s2B.100m/s2C.1000m/s2D.10000m/s2第(2)题如图所示为远距离输电示意图,两变压器均为理想变压器,升压变压器的原、副线圈匝数比为。

降压变压器的原、副线圈匝数比为。

原线圈两端接入一电压的交流电源,用户电阻为(纯电阻),若用户消耗功率为,输电线的总电阻为,不考虑其他因素的影响,则输电线上损失的电功率和用户获得的电压分别为( )A.,B.,C.,D.,第(3)题如图所示,A、C为带异种电荷的带电小球,B、C为带同种电荷的带电小球。

A、B被固定在绝缘竖直杆上,时C球静止于粗糙的绝缘水平天花板上。

已知,下列说法正确的是( )A.C处的摩擦力不为零B.杆对B的弹力为零C.缓慢将C处点电荷向右移动,则其有可能保持静止D.缓慢将C处点电荷向左移动,则其一定会掉下来第(4)题2020年12月4日,新一代先进磁约束核聚变“人造太阳”装置——中国环流器二号M装置(,如图)在成都建成并实现首次放电,这是我国核聚变发展史上的重要里程碑。

已知氘核、氚核核聚变反应为,下列说法正确的是(  )A.该轻核聚变核反应方程中X为B.一张A4纸质就能挡住由X粒子构成的射线C.放射性元素的半衰期与该元素原子所处的化学状态、外部条件有直接关系D.结合能越大,原子核中核子结合的越牢固,原子核越稳定第(5)题如图,将光滑长平板的下端置于铁架台水平底座上的挡板P处,上部架在横杆上。

2022届四川省成都市高三上学期第一次诊断性检测理综物理试题

2022届四川省成都市高三上学期第一次诊断性检测理综物理试题

2022届四川省成都市高三上学期第一次诊断性检测理综物理试题一、单选题 (共6题)第(1)题如图所示,金属棒MN两端由等长的轻质细线水平悬挂,处于竖直向上的匀强磁场中,棒中通以由M向N的电流,平衡时两悬线与竖直方向夹角均为θ.如果仅改变下列某一个条件,θ角的相应变化情况是A.棒中的电流变大,θ角变大B.两悬线等长变短,θ角变小C.金属棒质量变大,θ角变大D.磁感应强度变大,θ角变小第(2)题纵波也可以发生干涉现象。

图甲是可以使轻质泡沫颗粒悬浮的声悬浮仪,上、下两圆柱体间的两列振幅相同的同频超声波相遇发生干涉现象。

泡沫颗粒能在振幅几乎为零的点附近保持悬浮状态。

以上、下两波源的连线为x轴,轴上两列超声波的叠加情况可简化为图乙所示,实线表示振动加强点的位置,虚线表示振动减弱点的位置。

已知这两列超声波传播的速度均为。

则下列说法正确的是( )A.振动加强点的质点,位移始终最大B.泡沫颗粒能悬浮在的M点附近C.该声悬浮仪发出的超声波频率为D.增大该声悬浮仪所发出的超声波频率,泡沫颗粒可悬浮的点的个数增加第(3)题蹦极是近些年来新兴的一项非常刺激的户外活动。

跳跃者站在桥梁、塔顶、高楼、吊车甚至热气球上,把一端固定的一根长长的橡皮条绑在踝关节处,然后两臂伸开,双腿并拢,头朝下跳下去。

如图是一位蹦极者从高处下落到速度为零的过程中的图像,当时,对应的速度值最大,则下面判断正确的是( )A.当下落距离小于15m时,蹦极者处于完全失重状态B.当下落距离小于15m时,蹦极者失重的数值(人自身重力与橡皮条拉力之差的绝对值)是个常量C.当下落距离大于15m时,蹦极者超重的数值(人自身重力与橡皮条拉力之差的绝对值)是个常量D.当下落距离大于15m时,蹦极者超重的数值(人自身重力与橡皮条拉力之差的绝对值)随距离的增大而增大第(4)题物理课上,老师演示了一个实验:如图所示,水平粗糙木板上放置两个物块,其间有一个处于拉伸状态的弹簧。

2017级成都市高三第一次诊断性检测数学试题(理科)

2017级成都市高三第一次诊断性检测数学试题(理科)

成都市2017级高中毕业班第一次诊断性检测数学(理科)本试卷分选择题和非选择题两部分。

第1卷(选择题)1至2页,第lI卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟。

注意事项:1. 答题前,务必将自己的姓名考籍号填写在答题卡规定的位置上。

2. 答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦千净后,再选涂其它答案标号。

答非选择题时,必须使用05毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4. 所有题目必须在答题卡上作答,在试题卷上答题无效。

5. 考试结束后,只将答题卡交回。

第1卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1若复数Z 1与Zz =-— (i 为虚数单位)在复平面内对应的点关于实轴对称,则Z1=CA)-—i (B)-3+ (C)+i (D)—!2.已知集合A={—1,0,m},B={l ,2}. 若A U B = {-1,0,1,2}, 则实数m的值为(A)-1或0(B)O或1CC)—1或23.若si n e =乔cos(2穴-0),则tan20=石乔瓦CA)——CB) -CC)—一 2 4.某校随机抽取100名同学进行“垃圾分类”的问卷测试,测试结果发现这100名同学的得分都在[50,100]内,按得分分成5组:[50,60), [60, 70), [70, 80),[80,90),[90,100], 得到如图所示的频率分布直方图则这100名同学的得分的中位数为CA )72. 50.040 0.030 数学(理科)”一诊“考试题第1页(共4页)CD)l或2CD)-污2 彗0.015 (B )75 0.0100.005 (C)77. 5(D)80。

工丑扫已。

100得分5设等差数列{a ,}的前n项和为S,,,且a ,,-::/:-0.若as =a 3, 则—=s 9 S s 9 5 5 (A)了(B)了(C)了6已知a,/3是空间中两个不同的平面,m,n是空间中两条不同的直线,则下列说法正确的是(A)若m II a ,n II /3, 且a II /3,则m II n (B)若m II a ,n II /3, 且a_l/3,则m II n (C)若m_la ,n II /3, 且a II /3, 则m _l n (D)若m _la,n ll /3,且a_l/3,则m _l n7.(x 2+2)(x ——)6的展开式的常数项为(A)25(B)-25 (C)5(D )—5 8.将函数y =si n (4x -王)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所6 得图象向左平移王个单位长度,得到函数f(x)的图象,则函数f(x)的解析式为6 (A) f(x) =si n (2x +互)6 CA) C —2,0) LJ (2, 十=)穴CB) f(x) =si n (2x —一) 亢(C) f(x) =si n (8x +岊)(D) f(x) =si n (8x —一)9已知抛物线沪=4x 的焦点为F,M,N是抛物线上两个不同的点.若I M Fl+INFl =5,则线段MN的中点到y轴的距离为CA)3 3_2) B ( CC)5 10.巳知a =沪,b=3了,c =l n -2 ,则(A) a> b > c (B) a> c > b (C) b >a> c (D) b > c > a 11已知定义在R上的函数f(x)满足f(2-x)= f(Z +x), 当x冬2时,f(x)= (x —l)e< :--1 若关于x的方程f(x)-kx +zk —e +l=O 有三个不相等的实数根,则实数K的取值范围是(B)(—2,0) LJ (0,2)CC)C —e,O) U (e, 十oo)CD)C —e ,O) U (0, e ) 12.如图,在边长为2的正方形AP 1贮凡中,线段BC的端点B,C分别在边P1P 2,P 2P 3 _t 滑动,且P 2B =P心=x.现将丛AP 1B ,6AP 3C分别沿AB,A C折起使点P1,凡重合,重合后记为点P ,得到三棱锥P-ABC 现有以下结论:(DAP上平面PBC;@当B,C分别为P1P2,P 2凡的中点时,三棱锥P —ABC的外接球的表面积为67(;®x 的取值范圉为(0,4—2迈); 1 @三棱锥P —ABC体积的最大值为—.则正确的结论的个数为P 1 5_2、丿D ( A 27CD)一5 (A)l (B)2CC )3(D )4数学(理科)”一诊“考试题第2页(共4页)。

【解析】四川省成都市2015届高中毕业班第一次诊断性检测数学理试题

【解析】四川省成都市2015届高中毕业班第一次诊断性检测数学理试题

四川省成都市2015届高中毕业班第一次诊断性检测数学试题(理科)【试卷综述】本试卷是高三理科试卷,以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:集合、不等式、向量、三视图、导数、简单的线性规划、直线与圆、数列、充要条件等;考查学生解决实际问题的综合能力,是份较好的试卷。

【题文】一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】1.设全集{|0}=≥U x x ,集合{1}=P ,则U P =ð (A )[0,1)(1,)+∞ (B )(,1)-∞(C )(,1)(1,)-∞+∞ (D )(1,)+∞【知识点】集合的补集 A1【答案】【解析】A 解析:因为{|0}=≥U x x ,{1}=P ,所以U P =ð[0,1)(1,)+∞,故选A.【思路点拨】由补集运算直接计算可得.【题文】2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A ) (B ) (C ) (D ) 【知识点】三视图 G2 【答案】【解析】C 解析:由题意可得,A 是正方体,B 是三棱柱,C 是半个圆柱,D 是圆柱,C 不能满足正视图和侧视图是两个全等的正方形,故选C. 【思路点拨】由三视图的基本概念即可判断.【题文】3.已知复数z 43i =--(i 是虚数单位),则下列说法正确的是(A )复数z 的虚部为3i - (B )复数z 的虚部为3(C )复数z 的共轭复数为z 43i =+ (D )复数z 的模为5 【知识点】复数运算 L4 【答案】【解析】D 解析:由复数概念可知虚部为-3,其共轭为43i -+,故选D. 【思路点拨】由复数概念直接可得.【题文】4.函数31,0()1(),03x x x f x x ⎧+<⎪=⎨≥⎪⎩的图象大致为(A ) (B ) (C ) (D ) 【知识点】函数的图像 B6 B8【答案】【解析】A 解析:当0x <时,将3y x =的图像向上平移一个单位即可;当0x ≥时,取1()3xy =的图像即可,故选A.【思路点拨】由基本函数3y x =和1()3xy =的图像即可求得分段函数的图像.【题文】5.已知命题p :“若22≥+x a b ,则2≥x ab ”,则下列说法正确的是( ) (A )命题p 的逆命题是“若22<+x a b ,则2<x ab ” (B )命题p 的逆命题是“若2<x ab ,则22<+x a b ” (C )命题p 的否命题是“若22<+x a b ,则2<x ab ” (D )命题p 的否命题是“若22x a b ≥+,则2<x ab ”【知识点】四种命题 A2 【答案】【解析】C 解析:“若p 则q ”的逆命题是“若q 则p ”,否命题是“若p ⌝则q ⌝”,故选C. 【思路点拨】将原命题的条件和结论互换位置即可得到逆命题,分别写出条件和结论的否定为否命题. 【题文】6.若关于x 的方程240+-=x ax 在区间[2,4]上有实数根,则实数a 的取值范围是( ) (A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3] 【知识点】二次函数 B5【答案】【解析】B 解析:因为240+-=x ax 在区间[2,4]上有实数根,令2(x)4f x ax =+-所以(2)(4)0f f ≤ ,即()21240a x +≤,30a ∴-≤≤ ,故选B.【思路点拨】二次函数在给定区间上根的分布问题,只需找准条件即可,不能丢解.【题文】7.已知F 是椭圆22221+=x y a b(0>>a b )的左焦点,A 为右顶点,P 是椭圆上一点,⊥PF x轴.若14=PF AF ,则该椭圆的离心率是( ) (A )14 (B )34 (C )12(D【知识点】椭圆的几何性质 H5【答案】【解析】B 解析:Rt PFA 中,222|PF ||FA ||PA |+=,||c FA a =+,2|PF |b a=, 又14=PF AF ,21(c)4b a a =+,得22430c ac a +-=,34c a ∴=,故选B.【思路点拨】Rt PFA 中, ||c FA a =+,2|PF |b a=,且14=PF AF ,得22430c ac a +-=,可求离心率.【题文】8.已知m ,n 是两条不同直线,α,β是两个不同的平面,且//m α,n ⊂β,则下列叙述正确的是(A )若//αβ,则//m n (B )若//m n ,则//αβ (C )若n α⊥,则m β⊥ (D )若m β⊥,则αβ⊥ 【知识点】线线关系,线面关系 G4 G5【答案】【解析】D 解析:A 中m ,n 可能异面;B 中α,β可能相交;C 中可能m β⊂或//m β,故选D.【思路点拨】熟悉空间中线线,线面关系的判断,逐一排除即可. 【题文】9.若552sin =α,1010)sin(=-αβ,且],4[ππα∈,]23,[ππβ∈,则αβ+的值是 (A )74π (B )94π (C )54π或74π (D )54π或94π【知识点】两角和与差的正弦、余弦 C7【答案】【解析】A 解析:()2αββαα+=-+,552sin =α,],4[ππα∈cos 2α∴=[,]42ππα∈,又1010)sin(=-αβ,[,]42ππα∈,]23,[ππβ∈,cos()βα∴-=sin()sin[()2]αββαα+=-+sin()cos 2cos()sin 2βααβαα=-+-((=+=, 又5[,2]4παβπ+∈,所以74παβ+=,故选A. 【思路点拨】利用角的变换()2αββαα+=-+,得sin()sin[()2]αββαα+=-+ sin()cos 2cos()sin 2βααβαα=-+-即可求解.【题文】10.如图,已知正方体1111ABCD A B C D -棱长为4,点H 在棱1AA 上,且11HA =.在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长.则当点P 运动时, 2HP 最小值是( )(A )21 (B )22 (C )23 (D )25 【知识点】点、线、面间的距离计算 G11【答案】【解析】B 解析:点P 到平面11CDD C 距离就是点P 到直线1CC 的距离,所以点P 到点F 的距离等于点P 到直线1CC 的距离,因此点P 的轨迹是以F 为焦点,以1CC 为准线的抛物线,在面11A ABB 中作1HK BB ⊥于K ,连接KP ,在Rt HKP 中,222|HK ||PK ||HP |+=,而|HK |4=,要想2|HP |最小,只要|K |P 最小即可,由题意易求得min 2|K |6P =,所以2|HP |最小值为22,故选B.【思路点拨】注意到点P 到点F 的距离等于点P 到直线1CC 的距离,即点P 的轨迹是以F 为焦点,以1CC 为准线的抛物线,在Rt HKP 中,222|HK ||PK ||HP |+=,而|HK |4=,要想2|HP |最小,只要|K |P 最小即可.【题文】二、填空题:本大题共5小题,每小题5分,共25分.【题文】11.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹角的大小为__________. 【知识点】向量的夹角 F3 【答案】【解析】090解析:a b a b +=-22||||a b a b ∴+=-,即0a b =,所以a b ⊥,a ,b 的夹角为090,故答案为090.【思路点拨】由a b a b +=-可得0a b =,所以夹角为090.【题文】12.二项式261()x x-的展开式中含3x 的项的系数是__________.(用数字作答) 【知识点】二项式定理 J3【答案】【解析】-20解析:2r6r6r 361661()()(1)r r r r T C x C x x---+=-=-,求展开式中含3x 的项的系数,此时3633r r -=∴=,因此系数为6r 366(1)120r C C --=-⨯=-,故答案为-20.【思路点拨】利用通项2r6r6r 361661()()(1)r r r r T C x C x x---+=-=-,可求r,即可求出系数.【题文】13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B ,则∆ABC 的面积=S __________.【知识点】余弦定理,正弦定理 C8【答案】2222cos b a c ac B =+-,得222116444a a a =+-⨯,2,4a c ∴==.面积11sin 2422S ac B ==⨯⨯=【思路点拨】【思路点拨】由余弦定理2222cos b a c ac B =+-可求24a =,再利用1sin 2S ac B =即可. 【题文】14.已知定义在R 上的奇函数()f x ,当0x ≥时,3()log (1)=+f x x .若关于x 的不等式2[(2)](22)f x a a f ax x ++≤+的解集为A ,函数()f x 在[8,8]-上的值域为B ,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________. 【知识点】充分、必要条件 A2【答案】【解析】[2,0]-解析:因为0x ≥时,奇函数3()log (1)=+f x x ,所以函数()f x 在R 上为增函数,2[(2)](22)f x a a f ax x ++≤+,2(2)22x a a ax x ∴++≤+,即()222(2)0x a x a a -+++≤,2a x a ∴≤≤+,{|2}A x a x a =≤≤+,{|22}B x x =-≤≤,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A B ⊄,即22022a a a ≥-⎧∴-≤≤⎨+≤⎩,故答案为[2,0]-. 【思路点拨】因为“x A ∈”是“x B ∈”的充分不必要条件,所以A B ⊄,然后根据题意分别求出集合,A B 即可.【题文】15.已知曲线C :22y x a =+在点n P (n (0,a n >∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且00=x y .给出以下结论: ①1a =;②当*n ∈N 时,n y 的最小值为54;③当*n ∈N 时,n k <;④当*n ∈N 时,记数列{}n k 的前n 项和为n S ,则1)n S . 其中,正确的结论有 (写出所有正确结论的序号) 【知识点】命题的真假判断A2【答案】【解析】①③④解析:因为曲线C :22y x a =+,所以()2'2'2y yy ==,即1'y k y === ,n k =,点n P ()n (0,a n >∈N )处的切线n l 为)y x n =-,,n n x n a y ∴=--= ,①00|x ||y |=,0,|||1n a a ∴=-=∴= ,正确;②1122n y ===12=112≥⨯=,所以n y 的最小值为1,错误;③012n <≤,∴> <亦即n k <,正确;④n k ==121n n n ++=+,22(2n 1)<+,<,<=,因为n k =,所以122(21321)n n S k k k n n =+++<-+-+++- 1), 故正确.【思路点拨】依题意,分别求出n k =, ,n n x n a y =--=,依次进行判断即可. 【题文】三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.【题文】16.(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球. (Ⅰ)求恰有一个黑球的概率; (Ⅱ)记取出红球的个数为随机变量X ,求X 的分布列和数学期望()E X . 【知识点】古典概型,分布列 K2 K6 【答案】【解析】(Ⅰ)15(Ⅱ)X 的分布列为:X 的数学期望1310121555=⨯+⨯+⨯=EX (Ⅰ)记“恰有一个黑球”为事件A ,则21243641()205⋅===C C P A C .……………………………………………………4分 (Ⅱ)X 的可能取值为0,1,2,则343641(0)205====C P X C ………………………………………………………2分122436123(1)205⋅====C C P X C …………………………………………………2分 1(2)()5===P X P A ……………………………………………………2分 ∴X 的分布列为∴X 的数学期望1310121555=⨯+⨯+⨯=EX .………………………………2分【思路点拨】)X 的可能取值为0,1,2,再分别求出(0)P X =,(1)P X =,(2)P X =即可.【题文】17.(本小题满分12分)如图,ABC ∆为正三角形,EC ⊥平面ABC ,//DB EC ,F 为EA 的中点,2EC AC ==,1BD =. (Ⅰ)求证:DF //平面ABC ;(Ⅱ)求平面DEA 与平面ABC 所成的锐二面角的余弦值.【知识点】线面平行,空间向量解决线面位置关系 G4 G10 【答案】【解析】 (Ⅰ)证明:作AC 的中点O ,连结BO .在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC . ∴//=FO BD ,∴四边形FOBD 为平行四边形. ∴//DF OB ,又⊄DF 平面ABC ,⊂OB 平面ABC .∴//DF 平面ABC .……………………………………4分 (Ⅱ)∵//FO EC ,∴⊥FO 平面ABC .在正∆ABC 中,⊥BO AC ,∴,,OA OB OF 三线两两垂直. 分别以,,OA OB OF 为,,z x y 轴,建系如图.则(1,0,0)A ,(1,0,2)-E,D . ∴(2,0,2)=-AE,(1=-AD . 设平面ADE 的一个法向量为1(,,z)=x y n ,则110⎧⋅=⎪⎨⋅=⎪⎩AE AD n n,即2200-+=⎧⎪⎨-++=⎪⎩x z x z ,令1=x ,则1,0==z y .∴平面ADE 的一个法向量为1(1,0,1)=n . 又平面ABC 的一个法向量为2(0,0,1)=n .∴121212,2⋅>===cos <n n n n n n . ∴平面DEA 与平面ABC.…………………………8分 【思路点拨】(Ⅰ)求证线面平行,可以利用线线平行,本题很容易找出//DF OB ; (Ⅱ)分别求平面DEA 与平面ABC 的法向量1(1,0,1)=n 2(0,0,1)=n ,∴121212,2⋅>===cos <n n n n n n ,即可求出余弦值. 【题文】18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T .【知识点】等差数列,等比数列【答案】【解析】(Ⅰ)2n n a =,21n b n =-(Ⅱ)1(23)24+=-+n n T n (Ⅰ)∵22n n S a =- ①当2≥n 时,1122--=-n n S a ②①-②得,122-=-n n n a a a ,即12-=n n a a (2≥n ). 又当1≥n 时,1122=-S a ,得12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .…………………………………4分 又由题意知,11b =,12n n b b +=+,即12+-=n n b b ∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .………………………2分 (Ⅱ)(Ⅱ)由(Ⅰ)知,(21)2=-n n c n …………………………………………1分 ∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n ③231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由③-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n ……………1分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n ……………………………………………1分 ∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n …………………………………3分【思路点拨】(Ⅰ)由条件直接求解即可;(Ⅱ)数列(21)2=-nn c n ,为差比数列,利用错位相减法直接求解. 【题文】19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象.(Ⅰ)根据图象,求A ,ω,ϕ,B 的值;(Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:【知识点】函数模型及其应用B10 【答案】【解析】(Ⅰ)1,22A B == ,12T =,6πω=(Ⅱ)11.625时(Ⅰ)由图知12T =,6πω=.………………………………………………1分2125.15.22m i n m a x =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分 ∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f . (Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t .又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t .又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分……………………………………………1分∴应该在11.625时停产.……………………………………………………………1分(也可直接由0)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产).【思路点拨】(Ⅰ)由三角函数图像可直接求)1,22A B == ,12T =,6πω=,代点(0,2.5)可求2πϕ=;(Ⅱ)理解二分法定义即可求解本题.【题文】20.(本小题满分13分) 已知椭圆Γ:12222=+byx (0>>b a )的右焦点为)0,22(,且椭圆Γ上一点M 到其两焦点12,F F的距离之和为(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:(l y x m m =+∈R)与椭圆Γ交于不同两点A ,B ,且AB =0(,2)P x 满足=PA PB,求0x 的值.【知识点】直线与椭圆H8【答案】【解析】(Ⅰ)141222=+yx (Ⅱ)0x 的值为3-或1- (Ⅰ)由已知2=a =a ,又=c∴2224=-=b a c . ∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分 ∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m ,得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321m x x -=+, 2123124-⋅=m x x .∴12=-==AB x又由AB =231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点.设AB 的中点为),(00y x E ,则432210m x x x -=+=,400m m x y =+=, ①当2m =时,31(,)22E - ∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--. 令2=y ,得03x =-.…………………………………………………………………2分②当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分综上所述,0x 的值为3-或1-.【思路点拨】联立直线与椭圆,可得2m =±,因为=PA PB ,所以点P 为线段AB 的中垂线与直线2=y 的交点,分情况讨论即可求0x .【题文】21.(本小题满分14分)已知函数2()ln mx f x x =-,2()emx mx g x m =-,其中m ∈R 且0m ≠.e 2.71828=为自然对数的底数.(Ⅰ)当0m <时,求函数()f x 的单调区间和极小值; (Ⅱ)当0m >时,若函数()g x 存在,,a b c 三个零点,且a b c <<,试证明:10e a b c -<<<<<;(Ⅲ)是否存在负数m ,对1(1,)x ∀∈+∞,2(,0)x ∀∈-∞,都有12()()f x g x >成立?若存在,求出m 的取值范围;若不存在,请说明理由.【知识点】函数综合B14【答案】【解析】(Ⅰ)()2f x me =-极小值(Ⅱ)略(Ⅲ)(,(21)∈-∞-+m e e 解:(Ⅰ)2222)(ln )ln 21()(ln ln 2)(ln 1ln 2)(x x mx x x x x m x x x x x m x f -⋅=-=⋅--='(0>x 且1≠x ).∴由0)(>'x f ,得21e x >;由0)(<'x f ,得210e x <<,且1≠x .…………………1分∴函数)(x f的单调递减区间是(0,1),(1,单调递增区间是),(+∞e .……………2分 ∴me e f x f 2)()(-==极小值.……………………………………………………………1分 (Ⅱ)222(2)(),(0)mx mx mx mx mxe mx e m mx mx g x m e e--'=-=>. ∴()g x 在(,0)-∞上单调递增,2(0,)m 上单调递减,2(,)m +∞上单调递增. ∵函数()g x 存在三个零点. ∴20(0)02402()00>⎧>⎧⎪⎪⎪⇒⇒<<⎨⎨<⎪⎪-<⎩⎪⎩m g m e g m m m e . ∴02<<me …………………………………………………………………………………3分由(1)(1)0-=-=-<m m g m me m e . ∴22()(1)0=-=-<em em me e g e m m e e.……………………………………………………1分 综上可知,()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得:(1,0),(0,),(,)a b e c e ∈-∈∈+∞.即10a b e c -<<<<<,得证.…………………………………………………………1分(III )由题意,只需min max ()()>f x g x ∵2(12ln )()(ln )-'=mx x f x x 由0<m ,∴函数()f x 在12(1,)e 上单调递减,在12(,)e +∞上单调递增. ∴12min ()()2==-f x f e me .………………………………………………………………2分 ∵(2)()-'=mx mx mx g x e由0<m ,∴函数()g x 在2(,)m -∞上单调递增,2(,0)m 上单调递减. ∴max 224()()==-g x g m m e m.…………………………………………………………2分 ∴242->-me m e m ,不等式两边同乘以负数m ,得22242-<-m e m e.∴224(21)e m e+>,即224(21)m e e >+.由0<m ,解得(21)m e e <-+. 综上所述,存在这样的负数(,)(21)∈-∞-+m e e 满足题意.……………………………1分 【思路点拨】(Ⅰ)2(12ln )()(ln )mx x f x x ⋅-'=,由0)(>'x f 和0)(<'x f ,求得其单调区间,进而可求极值 ;(Ⅱ)(2)(),(0)mx mx mx g x m e -'=>,∴()g x 在(,0)-∞上单调递增,2(0,)m 上单调递减,2(,)m +∞上单调递增,得()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得10a b e c -<<<<<.(III )由题意,只需min max ()()>f x g x ,12min ()()2==-f x f e me ,max 224()()==-g x g m m e m,求解即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档