七年级上数学期末考试复习题集锦

合集下载

人教版七年级数学上册期末复习---计算题及答案

人教版七年级数学上册期末复习---计算题及答案

人教版七年级数学上册期末复习---计算题及答案1、我国研制的“曙光3000超级服务器”,它的峰值计算速度达到403,200,000,000次/秒,用科学计数法可表示为( )A. 4032×108B. 403.2×109C. 4.032×1011D. 0.4032×10122、下面四个图形每个都由六个相同的小正方形组成,折叠后能围成正方体的是()3、下列各组数中,相等的一组是()A.-1和- 4+(-3) B. |-3|和-(-3) C. 3x2-2x=x D. 2x+3x=5x24.巴黎与北京的时差是-7(正数表示同一时刻比北京早的时数),若北京时间是7月2日14:00时整,则巴黎时间是()A.7月2日21时B.7月2日7时C.7月1日7时D.7月2日5时5、国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期的利率为2.25%,今小磊取出一年到期的本金及利息时,交纳了4.5元利息税,则小磊一年前存入银行的钱为 A. 1000元 B. 900元 C. 800元 D. 700元()6、某种品牌的彩电降价30%后,每台售价为a元,则该品牌彩电每台售价为()A. 0.7a 元B. 0.3a元C. 元D. 元7、两条相交直线所成的角中()A.必有一个钝角B.必有一个锐角C.必有一个不是钝角D.必有两个锐角8、为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33 25 28 26 25 31.如果该班有45名学生,根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量约为 ( )A.900个B.1080个C.1260个D.1800个9、若关于x的方程3x+5=m与x-2m=5有相同的解,则x的值是( )A. 3B. –3C. –4D. 410、已知:│m + 3│+3(n-2)2=0,则m n值是 ( )A. –6B.8C. –9D. 911. 下面说法正确的是 ( )A. 过直线外一点可作无数条直线与已知直线平行B. 过一点可作无数条直线与已知直线垂直C. 过两点有且只有二条直线D. 两点之间,线段最短.12、正方体的截面中,边数最多的多边形是()A.四边形 B.五边形 C.六边形 D. 七边形二、填空题13、用计算器求4×(0.2-3)+(-2)4时,按键的顺序是14、计算51°36ˊ=________°15、张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则张大伯的卖报收入是___________.16、已知:如图,线段AB=3.8㎝,AC=1.4㎝,D为CB的中点,A C DB 则DB= ㎝17、设长方体的面数为f, 棱数为v,顶点数为e,则f + v + e =___________.18.用黑白两种颜色的正六边形地面砖按如下所示的规律拼成若干个图案:则第(4)个图案中有白色地面砖________块;第n(1)(2)(3)个图案中有白色地面砖_________块.19. 一个袋中有白球5个,黄球4个,红球1个(每个球除颜色外其余都相同),摸到__________球的机会最小20、一次买10斤鸡蛋打八折比打九折少花2元钱,则这10斤鸡蛋的原价是________元.21、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面的草图所示:……第一次捏合后第二次捏合后第三次捏合后这样捏合到第次后可拉出128根细面条。

人教版初中数学七年级上期末复习专题卷(1-4及答案

人教版初中数学七年级上期末复习专题卷(1-4及答案

第一学期七年级数学期末复习专题有理数姓名:_______________班级:_______________得分:_______________一选择题:1.如果+20%表示增加20%,那么﹣6%表示()A.增加14%B.增加6%C.减少6%D.减少26%2.一种零件的直径尺寸在图纸上是30±(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过()A.0.03mmB.0.02mmC.30.03mmD.29.98mm3.某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如:9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()A.3B.-3C.-2.5D.-7.452.010010001…中,有理数有()4.在-,3.1415,0,-0.333…,-,-,A.2个B.3个C.4个D.5个5.10月7日,铁路局“十一”黄金周运输收官,累计发送旅客640万人,640万用科学计数法表示为()A.6.4×102B.640×104C.6.4×106D.6.4×1056.若向北走27米记为-27米,则向南走34米记为()A.34米B.+7米C.61米D.+34米7.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,相反数最大是()A.aB.bC.cD.d8.比较,,的大小,结果正确的是()A. B.C. D.9.如果,则x的取值范围是()A.x>0B.x≥0C.x≤0D.x<010.已知ab≠0,则+的值不可能的是()A.0B.1C.2D.﹣211.如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若+=3,则原点是().A.M或NB.M或RC.N或PD.P或R12.一只蚂蚁从数轴上A点出发爬了4个单位长度到了表示-1的点B,则点A所表示的数是()A.-3或5B.-5或3C.-5D.313.已知=3,=4,且x>y,则2x-y的值为()A.+2B.±2C.+10D.-2或+1014.有理数a,b,c在数轴上的位置如图所示,则()A.-2bB.0C.2cD.2c-2b15.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005B.﹣2010C.0D.﹣116.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a、b的值分别为()A.10、91B.12、91C.10、95D.12、9517.下列是用火柴棒拼成的一组图形,第①个图形中有3根火柴棒,第②个图形中有9根火柴棒,第②个图形中有18根火柴棒,…依此类推,则第6个图形中火柴棒根数是()A.60B.61C.62D.6318.a为有理数,定义运算符号“※”:当a>-2时,※a=-a;当a<-2时,※a=a;当a=-2时,※a=0.根据这种运算,则※[4+※(2-5)]的值为()A.1B.-1C.7D.-719.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳各计算结果中的个位数字的规律,猜测32017+1的个位数字是()A.0B.2C.4D.820.计算(﹣2)2016+(﹣2)2015的结果是()A.﹣1B.﹣22015C.22015D.﹣22016二填空题:21.把下面的有理数填在相应的大括号里:15,-,0,-30,0.15,-128,,+20,-2.6.(1)非负数集合:{,…};(2)负数集合:{,…};(3)正整数集合:{,…};(4)负分数集合:{,…}.22.近似数3.06亿精确到___________位.23.按照如图所示的操作步骤,若输入的值为3,则输出的值为________.24.已知(x﹣2)2+|y+4|=0,则2x+y=_______.25.绝对值不大于5的整数有个.26.小韦与同学一起玩“24点”扑克牌游戏,即从一幅扑克牌(去掉大、小王)中任意抽出4张,根据牌面上的数字进行有理数混合运算(每张牌只能用一次)使运算结果等于24或-24,小韦抽得四张牌如图,“哇!我得到24点了!”他的算法是__27.有理数在数轴上的对应点如图所示,化简:.28.观察下列各题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52…根据上面各式的规律,请直接写出1+3+5+7+9+…+99=________.29.观察下列等式:,,,…则=.(直接填结果,用含n的代数式表示,n是正整数,且n≥1)30.观察下列等式:解答下面的问题:21+22+23+24+25+26+…+22015的末位数字是三计算题:31.32.33.34.35.小丽有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?(3)从中取出2张卡片,利用这2张卡片上数字进行某种运算,得到一个最大的数,如何抽取?最大的数是多少?(4)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).37.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照下列图象并思考,完成下列各题:(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是_______,A,B两点间的距离是________;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是_______,A,B两点间的距离为________;(3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是_________,A,B两点间的距离是________.(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么,请你求出终点B表示什么数?A,B两点间的距离为多少?38.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=.(2)若|x﹣2|=5,则x=.(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,这样的整数是.39.阅读材料:求1+2+22+23+24+…+2200的值.解:设S=1+2+22+23+24+…+2199+2200,将等式两边同时乘以2得2S=2+22+23+24+25+…+2200+2201,将下式减去上式得2S-S=2201-1,即S=2201-1,即1+2+22+23+24+…+2200=2201-1.请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34+…+3n.(其中n为正整数)40.已知数轴上有A、B、C三个点,分别表示有理数﹣24,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=,PC=;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.第一学期七年级数学期末复习专题有理数参考答案1、C2、C3、B4、D5、C6、D7、A8、D9、C10、B11、B12、B13、D14、B15、A16、A17、D18、B19、C20、C21、(1)15,0,0.15,,+20(2)-,-30,-128,-2.6(3)15,+20(4)-,-2.622、百万;23、5524、0.25、1126、23(1+2)__.27、-b+c+a;28、502.29、30、4.31、32、.33、;34、原式=-1×[-32-9+]-2.5=-1×(-32-9+2.5)-2.5=+32+9-2.5-2.5=36.35、(1)抽取;(2)抽取;(3)抽取;(4)答案不唯一;例如抽取-3,-5,3,4;36、37、(1)4_7__(2)1_2__(3)—92__88__(4)m+n-p_38、【解答】解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.故答案为:6;﹣3或7;﹣2、﹣1、0、1、2、3、4.39、解:(1)211-1(2)设S=1+3+32+33+34+…+3n ,将等式两边同乘以3得3S=3+32+33+34+35+…+3n+1,所以3S-S=3n+1-1,即2S=3n+1-1,所以S=2131-+n ,即1+3+32+33+34+ (3)=2131-+n 40、【解答】解:(1)∵动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒,∴P 到点A 的距离为:PA=t,P 到点C 的距离为:PC=(24+10)﹣t=34﹣t;故答案为:t,34﹣t;(2)当P 点在Q 点右侧,且Q 点还没有追上P 点时,3t+2=14+t 解得:t=6,∴此时点P 表示的数为﹣4,当P 点在Q 点左侧,且Q 点追上P 点后,相距2个单位,3t﹣2=14+t 解得:t=8,∴此时点P 表示的数为﹣2,当Q 点到达C 点后,当P 点在Q 点左侧时,14+t+2+3t﹣34=34解得:t=13,∴此时点P 表示的数为3,当Q 点到达C 点后,当P 点在Q 点右侧时,14+t﹣2+3t﹣34=34解得:t=14,∴此时点P 表示的数为4,综上所述:点P 表示的数为﹣4,﹣2,3,4.第一学期七年级数学期末复习专题整式的加减姓名:_______________班级:_______________得分:_______________一选择题:1.下列说法中错误的是()A.-x2y的系数是-B.0是单项式C.xy的次数是1D.-x是一次单项式2.下列说法:①最大的负整数是;②的倒数是;③若互为相反数,则;④=;⑤单项式的系数是-2;⑥多项式是关于x,y的三次多项式。

(完整版)人教版七年级数学上册 压轴题 期末复习试卷及答案

(完整版)人教版七年级数学上册 压轴题 期末复习试卷及答案

(完整版)人教版七年级数学上册 压轴题 期末复习试卷及答案一、压轴题1.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。

点A 表示的数为—2,点B 表示的数为1,动点P 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设点P 运动时间为t (t>0)秒.(1)长方形的边AD 长为 单位长度;(2)当三角形ADP 面积为3时,求P 点在数轴上表示的数是多少;(3)如图2,若动点Q 以每秒3个单位长度的速度,从点A 沿数轴向右匀速运动,与P 点出发时间相同。

那么当三角形BDQ ,三角形BPC 两者面积之差为12时,直接写出运动时间t 的值.2.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.3.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12.东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题:(1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为,取得最佳值最小值的数列为(写出一个即可);(3)将2,-9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a的值.4.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.5.如图1,线段AB的长为a.(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M 是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.6.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____; 灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____; (3)若∣a-2∣+∣a+4∣=10,则a =______; 实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。

人教版七年级上数学期末复习训练卷

人教版七年级上数学期末复习训练卷

人教版七年级上数学期末复习训练卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)计算|﹣6|﹣1的最后结果是()A.﹣5B.5C.﹣7D.72.(3分)已知﹣7是关于x的方程2x﹣7=ax的解,则a的值是()A.﹣2B.﹣3C.3D.﹣143.(3分)如果x=y,那么根据等式的性质下列变形不正确的是()A.x+2=y+2B.3x=3y C.5﹣x=y﹣5D.=4.(3分)下列计算正确的是()A.2﹣3=1B.a2+2a2=3a4C.3×(﹣1)2=3D.﹣|﹣3|=3 5.(3分)一张桌子摆放着若干盘子,从三个方向上看,三种视图如下所示,则这张桌子上共有()个盘子A.10B.11C.12D.136.(3分)1﹣2x2+xy﹣y2=1﹣(),在括号里填上适当的项应该是()A.2x2+xy﹣y2B.﹣2x2﹣xy﹣y2C.2x2﹣xy+y2D.x2﹣xy+y2 7.(3分)如图,点C在线段AB上,若AB=10,BC=2,M是线段AB的中点,则MC的长为()A.2B.3C.4D.58.(3分)下列四个说法:①射线AB和射线BA是同一条射线;②若点B为线段AC的中点,则AB=BC;③锐角和钝角互补;④一个角的补角一定大于这个角.其中正确说法的个数是()A.0个B.1个C.2个D.3个9.(3分)三个连续奇数的和为81,则其中最小的一个奇数是()A.23B.25C.27D.2910.(3分)已知AB是圆锥(如图1)底面的直径,P是圆锥的顶点,此圆锥的侧面展开图如图2所示.一只蚂蚁从A点出发,沿着圆锥侧面经过PB上一点,最后回到A点.若此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T均在PB上)四个点中,它最有可能经过的点是()A.M B.N C.S D.T11.(3分)一只笼子中装有若干只蜘蛛和3只甲虫,共42条腿,每只蜘蛛8条腿,每条甲虫6条腿,则笼子中蜘蛛有()A.1只B.2只C.3只D.4只12.(3分)点C为线段AB的延长线上的一点,则下列各式中成立的是()A.BC>AB B.AB>BC C.AB=BC D.AC>AB二.填空题(共4小题,满分12分,每小题3分)13.(3分)若∠α=42°,则∠α的余角为°,∠α的补角为°.14.(3分)已知x=3是关于x的方程x﹣1=a的一个解,则a=.15.(3分)如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n个几何体中只有两个面涂色的小立方体共有个.16.(3分)铁路上的火车票价是根据两站距离的远近而定的,距离愈远,票价愈高.如果一段铁路上共有五个车站,每两站间的距离都不相等,则这段铁路上的火车票价共有种.三.解答题(共9小题,满分72分,每小题8分)17.(8分)某饮品店只出售甲、乙两种奶茶,每杯甲奶茶需用糖15克,每杯乙奶茶需用糖18克.在某半个小时内,售出的两种奶茶恰好用去了相同数量的糖,问:(1)这半个小时内,这两种奶茶分别至少用去了多少克糖?(2)如果这半个小时内,这两种奶茶一共售出的杯数在20至30之间,则这两种奶茶一共售出多少杯?18.(8分)解方程:(1)x=;(2)x÷=12.19.(6分)先化简,再求值:5x2y﹣7(x2y﹣xy2)﹣3xy2,其中x=2,y=﹣1.20.(6分)一只小虫从点A出发向北偏西30°方向爬行了3cm到点B,再从点B出发向北偏东60°方向爬行了3cm到点C,(1)试画图确定A、B、C的位置;(2)从图上量出点C到点A的距离.(精确到0.1cm)(3)指出点C在点A的什么方位?21.(6分)(1)已知:点C在线段AB上,线段AC=6厘米,BC=4厘米,点M、N分别是AC、BC的中点,求线段MN的长度.(2)根据上述计算过程和结果,设AC+BC=a,其他的条件不变,你能猜出MN的长度吗?请用一句简洁的语言表述你的发现.22.(8分)某城市按以下规定收取每月的水费:用水量如果不超过6吨,按每吨1.2元收费;如果超过6吨,未超过的部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?23.(8分)教育部数据显示,近五年共有创业大学生约55万人,国务院办公厅也出台了《关于进一步支持大学生创业的指导意见》来支持大学生创新创业.河南的小张也加入了创业大军,回到自己家乡,做茶叶加工,然后销售到全国各地,创业初期,小张从茶农那里采购甲,乙两种品种的茶叶共100千克.(1)如果小张购进甲,乙两种茶叶共用了9600元,已知每千克甲种茶叶进价80元,每千克乙种茶叶进价120元,求小张购进甲,乙两种茶叶各多少千克?(2)在(1)的条件下,经过加工,小张把甲种茶叶加价50%作为标价,乙种茶叶加价40%作为标价.由于乙种茶叶深受大众的喜爱,在按标价进行销售的情况下,乙种茶叶很快售完,接着甲种茶叶的最后10千克按标价打折处理全部售完.在这次销售中,小张获得的利润率为42.5%.求甲种茶叶打几折销售?24.(10分)已知A、B两点在数轴上表示的数为a和b,M、N均为数轴上的点,且OA<OB.(1)若A、B的位置如图所示,试化简:|a|﹣|b|+|a+b|+|a﹣b|.(2)如图,若|a|+|b|=8.9,MN=3,求图中以A、N、O、M、B这5个点为端点的所有线段长度的和;(3)如图,M为AB中点,N为OA中点,且MN=2AB﹣15,a=﹣3,若点P为数轴上一点,且P A=AB,试求点P所对应的数为多少?25.(12分)如图所示,OB是∠AOC的平分线,OD是∠COE的平分线.(1)如果∠AOB=50°,∠DOE=35°,那么∠BOD是多少度?(2)如果∠AOE=160°,∠COD=25°,那么∠AOB是多少度?。

2022-2023学年人教版七年级数学上册期末综合复习训练题(附答案)

2022-2023学年人教版七年级数学上册期末综合复习训练题(附答案)

2022-2023学年人教版七年级数学上册期末综合复习训练题(附答案)一.选择题1.下列各组式子中,属于同类项的是()A.ab与a B.ab与ac C.xy与﹣2yx D.a与b2.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2B.3C.4D.53.已知∠A与∠B互余,∠B与∠C互补,若∠A=60°,则∠C的度数是()A.30°B.60°C.120°D.150°4.下列说法中正确的是()A.射线AB和射线BA是同一条射线B.延长线段AB和延长线段BA的含义是相同的C.延长直线ABD.经过两点可以画一条直线,并且只能画一条直线5.某正方体的每个面上都有一个汉字.它的一种平面展开图如图所示,那么在原正方体中,与“筑”字所在面相对的面上的汉字是()A.抗B.疫C.长D.城6.如图,小林利用圆规在线段CE上截取线段CD,使CD=AB.若点D恰好为CE的中点,则下列结论中错误的是()A.CD=DE B.AB=DE C.CE=CD D.CE=2AB7.如图,O是直线AB上一点,∠AOC=46°,OD是∠COB的角平分线,则∠DOB等于()A.46°B.60°C.67°D.76°8.如图,点O在直线AB上,射线OC、OD在直线AB的同侧,∠AOD=40°,∠BOC=50°,OM、ON分别平分∠BOC和∠AOD,则∠MON的度数为()A.135°B.140°C.152°D.45°9.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x名学生,则依题意所列方程正确的是()A.3x﹣20=4x﹣25B.3x+20=4x+25C.3x﹣20=4x+25D.3x+20=4x﹣2510.如图,C,D是线段AB上的两点,E是AC的中点,F是BD的中点,若EF=m,CD =n,则AB=()A.m﹣n B.m+n C.2m﹣n D.2m+n二.填空题11.已知|a+2|=0,则a=.12.数轴上与原点的距离等于2个单位的点表示的数是.13.已知﹣5x m y3与4x3y n能合并,则m n=.14.若方程(m﹣1)x|m|+1+2mx﹣3=0是关于x的一元二次方程,则m=.15.已知∠A=100°,则∠A的补角等于°.16.已知∠A=30°45',∠B=30.45°,则∠A∠B.(填“>”、“<”或“=”)17.如图,射线OA的方向是北偏东27°35',那么∠α=.三.解答题18.计算:(1)6×(1﹣)﹣32÷(﹣9).(2)﹣22+|5﹣8|+24÷(﹣3)×.19.先化简再求值:2(3x2y﹣xy2)﹣3(x2y﹣2xy2),其中x=﹣1,y=﹣2.20.补全解题过程:如图,已知线段AB=6,延长AB至C,使BC=2AB,点P、Q分别是线段AC和AB的中点,求PQ的长.解:∵BC=2AB,AB=6∴BC=2×6=12∴AC=+=6+12=18∵点P、Q分别是线段AC和AB的中点∴AP==×18=9AQ==×6=3∴PQ=﹣=9﹣3=621.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出:a+b=,cd=,m=;(2)求的值.22.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?23.如图,已知线段a和线段AB,(1)延长线段AB到C,使BC=a(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=5,BC=3,点O是线段AC的中点,求线段OB的长.24.在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式﹣2x2﹣4x+1的一次项系数,b是数轴上最小的正整数,单项式的次数为c.(1)a=,b=,c=.(2)请你画出数轴,并把点A,B,C表示在数轴上;(3)请你通过计算说明线段AB与AC之间的数量关系.25.如图,已知点A,O,B在同一条直线上,OE平分∠BOC,∠DOE=90°.(1)填空:与∠COD互余的角有;(2)若∠COE=30°,求∠AOE的度数;(3)求证:OD是∠AOC的平分线.26.一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需要3小时.(1)求无风时飞机的飞行速度;(2)求两城之间的距离.27.已知m,x,y满足:(1)(x﹣5)2+|m|=0;(2)﹣2ab y+1与4ab3是同类项.求代数式(2x2﹣3xy+6y2)﹣m(3x2﹣xy+9y2)的值.28.某超市为了回馈广大新老客户,元旦期间决定实行优惠活动.优惠一:非会员购物所有商品价格可获九折优惠;优惠二:交纳200元会费成为该超市的一员,所有商品价格可优惠八折优惠.(1)若用x(元)表示商品价格,请你用含x的式子分别表示两种购物优惠后所花的钱数;(2)当商品价格是多少元时,两种优惠后所花钱数相同;(3)若某人计划在该超市购买价格为2700元的一台电脑,请分析选择哪种优惠更省钱?29.(1)如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点,求线段MN的长;(2)若C为线段上任一点,满足AC+CB=acm,点M、N分别是AC、BC的中点,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,点M、N分别是AC、BC的中点,你能猜想MN的长度吗?请画出图形,并说明理由.30.如图,A、B、C是数轴上的三点,O是原点,BO=3,AB=2BO,5AO=3CO.(1)写出数轴上点A、C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒6个单位长度的速度沿数轴向左匀速运动,M为线段AP的中点,点N在线段CQ上,且CN=CQ.设运动的时间为t(t>0)秒.①数轴上点M、N表示的数分别是(用含t的式子表示);②t为何值时,M、N两点到原点的距离相等?参考答案一.选择题1.解:xy与﹣2yx属于同类项,故选:C.2.解;∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选:D.3.解:∵∠A=60°,∠A与∠B互余,∴∠B=90°﹣∠A=90°﹣60°=30°,∵∠B与∠C互补,∴∠C=180°﹣∠B=180°﹣30°=150°.故选:D.4.解:A、射线用两个大写字母表示时,端点字母写在第一个位置,所以射线AB和射线BA不是同一条射线,此选项错误;B、延长线段AB是按照从A到B的方向延长的,而延长线段BA是按照从B到A的方向延长的,意义不相同,故此选项错误;C、直线本身就是无限长的,不需要延长,故此选项错误;D、根据直线的公理可知:两点确定一条直线,故此选项正确.故选:D.5.解:这是一个正方体的平面展开图,共有六个面,其中与“筑”字所在面相对的面上的汉字是疫.故选:B.6.解:∵点D恰好为CE的中点,∴CD=DE,∵CD=AB,∴AB=DE=CE,即CE=2AB=2CD,故A,B,D选项正确,C选项错误,故选:C.7.解:∵∠AOC=46°,∴∠BOC=180°﹣46°=134°,∵OD是∠COB的角平分线,∴∠DOB=∠COB=×134°=67°,故选:C.8.解:易知:∠COD=180°﹣∠AOD﹣∠BOC=90°,∵OM、ON分别平分∠BOC和∠AOD,∴∠NOD=∠AOD=20°,∠COM=∠BOC=25°,∴∠MON=20°+25°+90°=135°故选:A.9.解:设这个班有学生x人,由题意得,3x+20=4x﹣25.故选:D.10.解:由题意得,EC+FD=m﹣n∵E是AC的中点,F是BD的中点,∴AE+FB=EC+FD=EF﹣CD=m﹣n又∵AB=AE+FB+EF∴AB=m﹣n+m=2m﹣n故选:C.二.填空题11.解:由绝对值的意义得:a+2=0,解得:a=﹣2;故答案为:﹣2.12.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为:±2.13.解:∵﹣5x m y3与4x3y n能合并,∴﹣5x m y3与4x3y n是同类项,∴m=3,n=3,∴m n=27.故答案为:27.14.解:由题意得:,解得:m=﹣1.15.解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.16.解:∵∠A=30°45'=30.75°,∠B=30.45°,30.75°>30.45°,∴∠A>∠B.故答案为:>.17.解:∵射线OA的方向是北偏东27°35',∴∠α=90°﹣27°35′=62°25′,故答案为:62°25°.三.解答题18.解:(1)6×(1﹣)﹣32÷(﹣9)=6×﹣9÷(﹣9)=4+1=5;(2)﹣22+|5﹣8|+24÷(﹣3)×=﹣4+3+(﹣8)×=﹣1﹣=﹣.19.解:原式=6x2y﹣2xy2﹣3x2y+6xy2=3x2y+4xy2,把x=﹣1,y=﹣2代入,原式=3×(﹣1)2×(﹣2)+4×(﹣1)×(﹣2)2=﹣6﹣16=﹣22.20.解:∵BC=2AB,AB=6∴BC=2×6=12∴AC=AB+BC=6+12=18∵点P、Q分别是线段AC和AB的中点∴AP=AC=×18=9AQ=AB=×6=3∴PQ=AP﹣AQ=9﹣3=6,故答案为:AB;BC;AC;AB;AP;AQ.21.解:(1)∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2;故答案为:0,1,±2;(2)当m=2时,原式=2+1=3;当m=﹣2时,原式=﹣2+1+0=﹣1,则原式=3或﹣1.22.解:设应分配x人生产甲种零件,12x×2=23(62﹣x)×3,解得x=46,62﹣46=16(人).故应分配46人生产甲种零件,16人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套.23.解:(1)如图:(2)∵AB=5,BC=3,∴AC=8,∵点O是线段AC的中点,∴AO=CO=4,∴BO=AB﹣AO=5﹣4=1,∴OB长为1.24.解:(1)多项式﹣2x2﹣4x+1的一次项系数是﹣4,则a=﹣4,数轴上最小的正整数是1,则b=1,单项式的次数为6,则c=6,故答案为:﹣4,1,6;(2)如图所示,,点A,B,C即为所求.;(3)AB=b﹣a=1﹣(﹣4)=5,AC=c﹣a=6﹣(﹣4)=10.∵10÷5=2,∴AC=2AB.25.解:(1)∵OE平分∠BOC,∴∠COE=∠BOE,∵∠COD+∠COE=∠DOE=90°,∴∠COD+∠BOE=90°,与∠COD互余的角有∠BOE、∠COE;故答案为:∠BOE、∠COE;(2)∵OE平分∠BOC,∴∠COE=∠BOE=30°,∴∠AOE=180°﹣30°=150°;(3)证明:∵OE是∠BOC的平分线,∴∠COE=∠BOE,∵∠DOE=90°,∴∠COD+∠COE=90°,且∠DOA+∠BOE=180°﹣∠DOE=90°,∴∠DOC+∠COE=∠DOA+∠BOE,所以∠DOC=∠DOA,所以OD是∠AOC的平分线.26.解:(1)设无风时飞机的速度为x千米每小时,两城之间的距离为S千米.则顺风飞行时的速度v1=x+24,逆风飞行的速度v2=x﹣24顺风飞行时:S=v1t1逆风飞行时:S=v2t2即S=(x+24)×=(x﹣24)×3解得x=840,答:无风时飞机的飞行速度为840千米每小时.(2)两城之间的距离S=(x﹣24)×3=2448千米答:两城之间的距离为2448千米.27.解:∵(x﹣5)2+|m|=0,∴(x﹣5)2≥0|m|≥0,∴x=5,m=0,∵﹣2ab y+1与4ab3是同类项,∴y+1=3,∴y=2,∴(2x2﹣3xy+6y2)﹣m(3x2﹣xy+9y2)=2x2﹣3xy+6y2=2×52﹣3×5×2+6×22=50﹣30+24=44.28.解:(1)由题意可得:优惠一:付费为:0.9x,优惠二:付费为:200+0.8x;(2)当两种优惠后所花钱数相同,则0.9x=200+0.8x,解得:x=2000,答:当商品价格是2000元时,两种优惠后所花钱数相同;(3)∵某人计划在该超市购买价格为2700元的一台电脑,∴优惠一:付费为:0.9x=2430,优惠二:付费为:200+0.8x=2360,答:优惠二更省钱.29.解:(1)∵AC=8cm,点M是AC的中点,∴CM=0.5AC=4cm,∵BC=6cm,点N是BC的中点,∴CN=0.5BC=3cm,∴MN=CM+CN=7cm,∴线段MN的长度为7cm,(2)MN=a,由M,N分别是AC,BC的中点,得MC=AC,NC=BC.MN=MC+NC=AC+BC=(AC+BC)=a,∴当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:,则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.30.解析(1)点A、C表示的数分别是﹣9、15.(2)①点M、N表示的数分别是t﹣9、15﹣4t,故答案为:t﹣9、15﹣4t.②当点M,点N分别在原点两侧时,由题意可知9﹣t=15﹣4t.解这个方程,得t=2.此时点M在原点左侧,点N在原点右侧.当点M、N在原点同侧时,由题意可知t﹣9=15﹣4t.解这个方程,得t=.此时点M、N同时在原点左侧.所以当t=2或 时,M、N两点到原点的距离相等.。

人教版七年级数学上册期末复习第1-2章基础必刷题 含答案

人教版七年级数学上册期末复习第1-2章基础必刷题    含答案

人教版七年级数学上册期末复习第1-2章基础必刷题一.选择题1.﹣的倒数是()A.﹣B.﹣C.D.2.﹣是一个数的相反数,则这个数是()A.﹣B.﹣7C.D.73.﹣的绝对值是()A.﹣2020B.﹣C.D.20204.在四个数0,﹣2,﹣3,2中,最小的数是()A.0B.﹣2C.﹣3D.25.在1、﹣2、﹣5.6、﹣0、、﹣、π中负数有()A.3个B.4个C.5个D.6个6.2018年7月份,我国居民消费价格同比上涨2.1%,记作+2.1%,其中水产品价格下降0.4%,应记作()A.0.4%B.﹣0.4%C.0.4D.﹣0.47.下列计算正确的是()A.(﹣3)﹣(﹣3)=﹣6B.(﹣18)﹣(+9)=﹣9C.|5﹣2|=﹣(5﹣2)D.0﹣(﹣7)=78.据统计,某城市去年接待旅游人数约为89 000 000人,89 000 000这个数据用科学记数法表示为()A.8.9×106B.8.9×105C.8.9×107D.8.9×108 9.按括号内的要求用四舍五入法取近似数,下列正确的是()A.403.53≈403(精确到个位)B.2.604≈2.60(精确到十分位)C.0.0234≈0.02(精确到0.01)D.0.0136≈0.014(精确到0.0001)10.下列说法中,正确的为()A.两数之差一定小于被减数B.对任意有理数,若a+b=0,则|a|=|b|C.若两个有理数的和是负数,则这两个有理数都是负数D.0减去任何一个数,都得负数11.数a,b在数轴上的位置如图所示,下列式子中错误的是()A.a<b B.﹣a<b C.a+b<0D.b﹣a>0 12.单项式﹣3πa2的系数是()A.3B.﹣3C.3πD.﹣3π13.下列各项是同类项的是()A.1与﹣2B.xy与2y C.ab2与a2b D.5ab与6ab2 14.下列运算正确的是()A.2a﹣a=1B.2a+b=3abC.2a+3a=5a D.3a2+2a2=5a415.下列说法中正确的是()A.单项式πx2的系数是,次数是3B.多项式x2﹣2x﹣1的项是x2,2x,1 C.单项式的系数是﹣2D.多项式y﹣x2y+5xy2是三次三项式16.下列计算正确的是()A.43=4×3B.﹣=﹣C.4﹣4÷2=4﹣2=2D.32÷6×=9×1=917.下面去括号正确的是()A.2n+(﹣m﹣n)=2n+m﹣n B.a﹣2(3a﹣5)=a﹣6a+10C.n﹣(﹣m﹣n)=n+m﹣n D.x2+2(﹣x+y)=x2﹣2x+y18.现规定一种新运算“*”:a*b=4ab﹣(a+b),如6*2=4×6×2﹣(6+2)=48﹣8=40,则(﹣4)*(﹣2)=()A.﹣8B.C.38D.19.若代数式x2+ax﹣(bx2﹣x﹣3)的值与字母x无关,则a﹣b的值为()A.0B.﹣2C.2D.120.如图,把半径为0.5的圆放到数轴上,圆上一点A与表示1的点重合,圆沿着数轴滚动一周,此时点A表示的数是()A.0.5+π或0.5﹣πB.0.25+π或0.25﹣πC.1+π或1﹣πD.2+π或2﹣π二.填空题21.2020年12月9日世卫组织公布,全球新冠肺炎确诊病例超6810万例,请用科学记数法表示6810万例为例.22.1﹣|﹣2|=.23.比较大小:﹣﹣.(填“>”或“<”)24.计算(﹣48)÷÷(﹣12)×的结果是.25.数轴上的A点表示的数是2,则距A点5个单位的B点表示的数是.26.用四舍五入法把1.8049精确到0.01为.27.去括号:﹣3(a+3b)=.28.代数式系数为;多项式3x2y﹣7x4y2﹣xy4的最高次项是.29.若整式a2+a的值为7,则整式a2+a﹣3的值为.30.12a x﹣1b3与﹣5a5b y+1是同类项,则x y=.31.若关于x的多项式x3﹣4x2﹣2与2x3+mx2﹣3的和不含二次项,则m=.32.已知|x|=3,|y|=5,且x>y,则2x+y的值为.三.解答题33.把下列各数填在相应的表示集合的括号内.﹣1,,﹣|﹣3|,0,,﹣0.3,1.7,﹣(﹣2).整数:{…};非负整数:{…};非正数:{…};有理数:{…}.34.计算:(1)(+3)﹣(﹣9)+(﹣4)﹣(+2)(2)22﹣5×+|﹣2|;(3)﹣22×÷(﹣)2×(﹣2)3 (4)(﹣1)100×5+(﹣2)4÷4.35.把下列各数在数轴上表示出来,并用“<”号连接起来:3,﹣(+2),﹣|﹣4|,0,1.5,(﹣1)336.先去括号,再合并同类项.(1)3a﹣(4b﹣2a+1)(2)2(5a﹣3b)﹣3(a2﹣2b).37.(1)已知a<b<0<c,化简|a﹣b|+|a+b|﹣|c﹣a|.(2)若|a|=21,|b|=27,且|a+b|=a+b,求a﹣b的值.38.先化简,再求值:2(3a2b﹣ab2)﹣3(2a2b+4ab2),其中a=﹣1,b=.39.x,y表示两个数,规定新运算“※”及“△”如下:x※y=6x+5y,x△y=3xy,那么(﹣2※3)△(﹣4)是多少?40.已知a、b互为相反数,x、y互为倒数,m到原点距离2个单位.(1)根据题意,m=;(2)求m2++(﹣xy)2020的值.41.已知:A+B=﹣3x2﹣5x﹣1,A﹣C=﹣2x+3x2﹣5.求:(1)B+C;(2)当x=﹣1时,求B+C的值?42.仓库现有100袋小麦出售,从中随机抽取10袋小麦,以90kg为标准,超过的质量记为正数,不足的质量记为负数,称得的结果记录如下:+1,+1,+1.5,﹣1,+1.2,+1.3,﹣1.3,﹣1.2,+1.8,+1.1.(1)这10袋小麦总计超过或不足多少千克?(2)若每千克小麦的售价为25元,估计这100袋小麦总销售额是多少元?参考答案一.选择题1.解:的倒数是.故选:A.2.解:∵﹣是一个数的相反数,∴这个数是:.故选:C.3.解:|﹣|=.故选:C.4.解:因为﹣3<﹣2<0<2,所以在四个数0,﹣2,﹣3,2中,最小的数是﹣3.故选:C.5.解:在1、﹣2、﹣5.6、﹣0、、﹣、π中负数有﹣2、﹣5.6、﹣共3个,故选:A.6.解:若上涨记作“+”,那么下降就记作“﹣”.所以下降0.4%应记作“﹣0.4%”.故选:B.7.解:A、(﹣3)﹣(﹣3)=﹣3+3=0,故本选项不合题意;B、(﹣18)+(﹣9)=﹣27,故本选项不合题意;C、|5﹣2|=5﹣2,故本选项不合题意;D、0﹣(﹣7)=7,故本选项符号题意;故选:D.8.解:89 000 000这个数据用科学记数法表示为8.9×107.故选:C.9.解:A、403.53≈404(精确到个位),所以A选项错误;B、2.604≈2.6(精确到十分位),所以B选项错误;C、0.0234≈0.02(精确到0.01),所以C选项正确;D、0.0136≈0.0136(精确到0.0001),所以D选项错误.故选:C.10.解:A、两数之差不一定小于被减数,如1﹣(﹣1)=2,所以原说法错误,故本选项不合题意;B、对任意有理数,若a+b=0,则|a|=|b|,说法正确,故本选项符合题意;C、若两个有理数的和是负数,则这两个有理数不一定都是负数,如(﹣2)+1=﹣1,所以原说法错误,故本选项不合题意;D、0减去任何一个数,不一定都得负数,如0﹣(﹣1)=1,所以原说法错误,故本选项不合题意;故选:B.11.解:由数轴可得,a<0<b,|a|>|b|,则a<b,﹣a>b,a+b<0,b﹣a>0,错误的是B.故选:B.12.解:单项式﹣3πa2的系数是:﹣3π.故选:D.13.解:A、1和2是同类项,故本选项符合题意;B、xy与2y,所含字母不尽相同,不是同类项,故本选项不合题意;C、ab2与a2b,所含字母相同,但相同字母的指数不相同,不是同类项,故本选项不合题意;D、5ab与6ab2,所含字母相同,但相同字母的指数不尽相同,不是同类项,故本选项不合题意;故选:A.14.解:A、2a﹣a=a,故本选项不合题意;B、2a与b不是同类项,所以不能合并,故本选项不合题意;C、2a+3a=5a,故本选项符合题意;D、3a2+2a2=5a2,故本选项不合题意;故选:C.15.解:A.单项式x2的系数是,次数是2,故本选项不符合题意;B.多项式x2﹣2x﹣1的项是x2,﹣2x,﹣1,故本选项不符合题意;C.单项式﹣的系数是﹣,故本选项不符合题意;D.多项式y﹣x2y+5xy2是三次三项式,故本选项符合题意;故选:D.16.解:43=4×4×4,故选项A错误;=﹣,故选项B错误;4﹣4÷2=4﹣2=2,故选项C正确;32÷6×=9×=,故选项D错误;故选:C.17.解:2n+(﹣m﹣n)=2n﹣m﹣n,因此选项A不符合题意;a﹣2(3a﹣5)=a﹣6a+10,因此选项B符合题意;n﹣(﹣m﹣n)=n+m+n,因此选项C不符合题意;x2+2(﹣x+y)=x2﹣2x+2y,因此选项D不符合题意;故选:B.18.解:∵a*b=4ab﹣(a+b),∴(﹣4)*(﹣2)=4×(﹣4)×(﹣2)﹣[(﹣4)+(﹣2)]=32﹣(﹣6)=38.故选:C.19.解:∵x2+ax﹣(bx2﹣x﹣3)=x2+ax﹣bx2+x+3=(1﹣b)x2+(a+1)x+3,且代数式的值与字母x无关,∴1﹣b=0,a+1=0,解得:a=﹣1,b=1,则a﹣b=﹣1﹣1=﹣2,故选:B.20.解:∵半径为0.5的圆从数轴上表示1的点沿着数轴滚动一周到达A点,∴A点与1之间的距离是:2×π×0.5=π,当A点在1的左边时表示的数是1﹣π,当A点在1的右边时表示的数是1+π,故选:C.二.填空题21.解:6810万=68100000=6.81×107.故选:6.81×107.22.解:1﹣|﹣2|=1﹣2=1+(﹣2)=﹣1.故答案为:﹣1.23.解:∵|﹣|==,||==,,∴.故答案为:>.24.解:原式=(﹣48)×=4.故答案为:4.25.解:当B点在A点的左边时,点B表示的数为2﹣5=﹣3,当B点在A点的右边时,点B表示的数为2+5=7.故点B表示的数为7或﹣3.故答案为:7或﹣3.26.解:用四舍五入法把1.8049精确到0.01为1.80.故答案为:1.80.27.解:﹣3(a+3b)=﹣3a﹣9b.故答案为:﹣3a﹣9b.28.解:系数为﹣;多项式3x2y﹣7x4y2﹣xy4的最高次项是﹣7x4y2.故答案为:,﹣7x4y2.29.解:∵a2+a=7,∴a2+a﹣3=7﹣3=4.故答案为:4.30.解:根据题意得:x﹣1=5,y+1=3,解得x=6,y=2,∴x y=62=36.故答案是:36.31.解:x3﹣4x2﹣2+2x3+mx2﹣3=3x3+(m﹣4)x2﹣5,∵关于x的多项式x3﹣4x2﹣2与2x3+mx2﹣3的和不含二次项,∴m﹣4=0.解得,m=4.故答案为:4.32.解:∵|x|=3,|y|=5,∴x=±3,y=±5,∵x>y,∴y必小于0,y=﹣5.当x=3或﹣3时,均大于y.所以当x=3时,y=﹣5,代入2x+y=2×3﹣5=1.当x=﹣3时,y=﹣5,代入2x+y=2×(﹣3)﹣5=﹣11.所以2x+y=1或﹣11.故答案为:1或﹣11.三.解答题33.解:整数:{﹣1,﹣|﹣3|,0,﹣(﹣2)…};非负整数:{0,﹣(﹣2)…};非正数:{﹣1,﹣,﹣|﹣3|,0,﹣0.3…};有理数:{﹣1,﹣,﹣|﹣3|,0,,﹣0.3,1.7,﹣(﹣2)…}.故答案为:﹣1,﹣|﹣3|,0,﹣(﹣2);0,﹣(﹣2);﹣1,﹣,﹣|﹣3|,0,﹣0.3;﹣1,﹣,﹣|﹣3|,0,,﹣0.3,1.7,﹣(﹣2).34.解:(1)原式=3+9﹣4﹣2=12﹣6=6;(2)原式=4﹣1+2=5;(3)原式=﹣4××4×(﹣8)=32;(4)原式=1×5+16÷4=5+4=9.35.解:如图所示:,﹣|﹣4|<﹣(+2)<(﹣1)3.36.解:(1)原式=3a﹣4b+2a﹣1=5a﹣4b﹣1;(2)原式=10a﹣6b﹣3a2+6b=10a﹣3a2.37.解:(1)∵a<b<0<c,∴a﹣b<0,a+b<0,c﹣a>0,|a﹣b|+|a+b|﹣|c﹣a|=b﹣a﹣a﹣b﹣c+a=﹣a﹣c;(2)∵|﹣a|=21,|+b|=27,∴a=±21,b=±27,∵|a+b|=a+b,∴a+b≥0,∴①a=﹣21,b=27,则a﹣b=﹣21﹣27=﹣49;②a=21,b=﹣27,则a﹣b=21+27=49;③a=21,b=27,则a﹣b=21﹣27=﹣6.故a﹣b的值为﹣49或49或﹣6.38.解:原式=6a2b﹣2ab2﹣6a2b﹣12ab2=﹣14ab2,当a=﹣1,b=时,原式=﹣14ab2=﹣14×(﹣1)×()2=14×=.39.解:∵x※y=6x+5y,x△y=3xy,∴(﹣2※3)△(﹣4)=[6×(﹣2)+5×3]△(﹣4)=[(﹣12)+15]△(﹣4)=3△(﹣4)=3×3×(﹣4)=﹣36.40.解:(1)∵m到原点距离2个单位,∴m=2或﹣2,故答案为:2或﹣2;(2)根据题意知a+b=0,xy=1,m=2或﹣2,当m=2时,原式=22+0+(﹣1)2020=4+1=5;当m=﹣2时,原式=(﹣2)2+0+(﹣1)2020=4+1=5;综上,m2++(﹣xy)2020的值为5.41.解:(1)∵A+B=﹣3x2﹣5x﹣1,A﹣C=﹣2x+3x2﹣5,∴A+B﹣(A﹣C)=﹣3x2﹣5x﹣1﹣(﹣2x+3x2﹣5),∴B+C=﹣3x2﹣5x﹣1+2x﹣3x2+5,∴B+C=﹣6x2﹣3x+4,(2)把x=﹣1代入﹣6x2﹣3x+4,得,B+C=﹣6×1﹣3×(﹣1)+4=1.42.解:(1)+1+1+1.5+(﹣1)+1.2+1.3+(﹣1.3)+(﹣1.2)+1.8+1.1=5.4(千克).答:这10袋小麦总计超过5.4千克;(2)总质量:(90+5.4÷10)×100=9054(千克),9054×25=226350(元).答:这100袋小麦总销售额是226350元.。

七年级上期数学期末总复习题

七年级上期数学期末总复习题

七年级数学上期期末总复习题一、选一选。

1、下列四个图中的线段(或直线、射线)能相交的是( )1()CDBA2()CD BA3()C D BA4()CDBAA.(1)B.(2)C.(3)D.(4) 2、下列图中角的表示方法正确的个数有( )A .1个B .2个C .3个 D .4个3、如图所示,要把角钢(1)弯成120°的钢架(2),则在直钢(1)截取的缺口是( )A .45°B .60°C .90°D .120°4、如图①是一些大小相同的小正方体组成的几何体,其主视图如图②所示,则其俯视图是( )5、一个几何体是由一些大小相同的小正方块摆成的,其俯视图、主视图如图所示,则组成这个几何体的小正方块最多..有( ) A. 4个 B. 5个 C. 6个 D. 7个图① 图② A B C D俯视图主视图6、已知线段AB=6厘米,在直线AB 上画线段AC=2厘米,则BC 的长是( ) A .8厘米 B .4厘米 C .8厘米或4厘米 D .不能确定7、如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是( )8、下列说法中正确的是( )A.若AP=21AB ,则P 是AB 的中点 B.若AB =2PB ,则P 是AB 的中点 C .若AP =PB ,则P 为AB 的中点 D.若AP =PB=21AB ,则P 是AB 的中点9、甲看乙的方向为北偏东30°,那么乙看甲的方向是( )A .南偏东60°B .南偏西60°C .南偏东30°D .南偏西30° 10、如右图,AB 、CD 交于点O ,∠AOE=90°,若∠AOC :∠COE=5:4,则∠AOD 等于 ( ) A .120° B .130°C .140°D .150°11、下列各组数中,不相等...的一组是 ( ) A .()23-与23- B .-23-与23- C . -33-与 33- D .()33- 与33-12、《广东省重点建设项目计划(草案)》显示,港珠澳大桥工程估算总726亿元,用科学记数法表示正确的是( ) A .107.2610⨯ 元 B .972.610⨯ 元 C .110.72610⨯ 元 D .117.2610⨯元 13、国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为( )A .42610⨯平方米B .42.610⨯平方米 C .52.610⨯平方米D .62.610⨯平方米14、如果ab <0,那么下列判断正确的是( ).A .a <0,b <0B . a >0,b >0C . a ≥0,b ≤0D . a <0,b >0或a >0,b <0 15、实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误的是( ) A .0ab > B .0a b +< C .ba<0 D .0a b -< 16、下列运算正确的是( )A .b a b a --=--2)(2B .b a b a +-=--2)(2C .b a b a 22)(2--=--D .b a b a 22)(2+-=--17、已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )ab 0A B C DA .51x --B .51x +C .131x --D .131x +18、下列变形中,正确的是( )A 、若ac=bc ,那么a=b 。

苏科版七年级数学第一学期期末复习三 :一元一次方程(有答案)

苏科版七年级数学第一学期期末复习三 :一元一次方程(有答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯苏科版七年级数学第一学期期末复习三一元一次方程一、选择题1. 在①2x+1;②1+7=15-8+1;③1- x=x-1;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个2. 下列方程是一元一次方程的是()A.-2=0B.2x=1C.x+2y=5D.-1=2x3.某制衣店现购买蓝色、黑色两种布料共138m,共花费540元.其中蓝色布料每米3元,黑色布料每米5元,两种布料各买多少米?设买蓝色布料x米,则依题意可列方程()A.3x+5(138-x)=540B.5x+3(138-x)=540C.3x+5(138+x)=540D.5x+3(138+x)=5404. 若关于x的一元一次方程m(x+4)-3m-x=5的解为x=3,则m的值是()A.-2B.2C.D.-5. 如果与互为倒数,那么x的值为()A.x=B.x=10C.x=-6D.x=6.若方程3x+6=12的解也是方程6x+3a=24的解,则a的值为()A. B.4 C.12 D.27. 方程|2x+1|=7的解是()A.x=3B.x=3或x=-3C.x=3或x=-4D.x=-48. 下列解方程过程正确的是()A.2x=1系数化为1,得x=2B.x-2=0解得x=2C.3x-2=2x-3移项得3x-2x=-3-2D.x-(3-2x)=2(x+1)去括号得x-3-2x=2x+19.解一元一次方程-2= - ,去分母正确的是()A.5(3x+1)-2=(3x-2)-2(2x+3)B.5(3x+1)-20=(3x-2)-2(2x+3)C.5(3x+1)-20=(3x-2)-(2x+3)D.5(3x+1)-20=3x-2-4x+610.某组织去乡村慰问留守儿童,为他们送去一些图书,每人分8本图书,还少5本,每人分7本图书,还多6本,则该村留守儿童有()A.10名B.11名C.12名D.13名11.一艘轮船在A、B两港口之间匀速行驶,顺水航行需要6h,逆水航行需要8h,水流速度为5km/h,则A、B两地之间的路程是()A.200kmB.240kmC.300kmD.320km12.一项工作,甲单独做要20天完成,乙独做要12天完成.若先由甲做若干天,然后由乙继续做完,从开始到完成共用14天,则这项工作由甲先做()天.A. B.5 C.4 D.613. 某市出租车收费标准是:起步价8元(即行驶距离不超过3km,付8元车费),超过3km,每增加1km收1.6元(不足1km按1km计),小梅从家到图书馆的路程为xkm,出租车车费为24元,那么x的值可能是()A.10B.13C.16D.18二、填空题14. 已知5+3=1是关于x的一元一次方程,则m=_____.15.x的3倍与4的和等于x的5倍与2的差,方程可列为_____.16. 某件商品,以原价的出售,现售价是300元,则原价是_____元.17. 有一列数,按一定的规律排列成,-1,3,-9,27,-81,….若其中某三个相邻数的和是-567,则这三个数中第一个数是_____.18. 由3x=2x-1得3x-2x=-1,在此变形中,方程两边同时_____.19. 当x=_____时,代数式2x+1与5x-6的值互为相反数.20.已知关于x的方程2x+a=x-1的解和方程2x+4=x+1的解相同,则a=_____.21.若x=2是方程3x-4=-a的解,则+的值是_____.22.已知方程|2x-1|=2-x,那么方程的解是_____.23.某项工程,甲单独完成要12天,乙单独完成要18天,甲先做了7天后乙来支援,由甲乙合作完成剩下的工程,则甲共做了_____天.24.小张有三种邮票共18枚,它们的数量之比为1:2:3,则最多的一种邮票有_____枚.三、解答题25. 解方程:(1)2x+3=11-6x;(2)(3x-6)=x-3.26. 已知代数式M=3(a-2b)-(b+2a).(1)化简M;(2)如果(a+1)+4-3=0是关于x的一元一次方程,求M的值.27.列方程解应用题:某商场第一季度销售甲、乙两种冰箱若干台,其中乙种冰箱的数量比甲种冰箱多销售40台,第二季度甲种冰箱的销量比第一季度增加10%,乙种冰箱的销量比第一季度增加20%,且两种冰箱的总销量达到554台.求:(1)该商场第一季度销售甲种冰箱多少台?(2)若每台甲种冰箱的利润为200元,每台乙种冰箱的利润为300元,则该商场第二季度销售冰箱的总利润是多少元?28. 列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服.下面是某服装厂给出的运动服价格表:购买服装数量(套)1~3536~6061及61以上每套服装价格(元)605040已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元.问七年级一班和七年级二班各有学生多少人?29. (2分)已知点A在数轴上对应的数为a,点B对应的数为b,且(a+4+|b-11|=0,G为线段AB上一点,M,N两点分别从G,B点沿BA方向同时运动,设M点的运动速度为1cm/s,N点的运动速度为2cm/s,运动时间为ts.(1)A点对应的数为_____,B点对应的数为_____;(2)若AB=2AG,试求t为多少s时,M,N两点的距离为2.5cm;(3)若AB=mAG,点H为数轴上任意一点,且AH-BH=GH,请直接写出的值.期末复习三答案1、B2、B3、A4、B5、B6、B7、C8、 B9、B10、B11、B12、B13、B14、-115、3x+4=5x-216、37517、设这三个数中的第⼀个数为x,则另外两个数分别为-3x,9x,依题意,得:x-3x+9x=-567,解得:x=-8118、减2X519、720、2x+4=x+1, 2x-x=1-4, x=-3,把x=-3代入解得:a=1021、-222、解:由|2x-1|=2-x,可得:2-x=±(2x-1),当2-x=2x-1,解得:x=1,当2-x=-2x+1,解得:x=-1,所以方程的解为x=±123、1024、解:设数量最少的邮票有x枚,则另两种分别有2x枚和3x枚,依题意,得:x+2x+3x=18,解得:x=3,∴3x=9故答案为:925、(1)2x+3=11-6x,移项,得2x+6x=11-3,合并同类项,得8x=8,系数化1,得x=127、(1)设第⼀季度甲种冰箱销量为x台,根据题意得:(1+10%)x+(1+20%)(x+40)=554解之得:x=220答:第⼀季度甲种冰箱的销量为220台.(2)第⼀季度甲种冰箱的利润为:220×(1+10%)×200=48400(元)第⼀季度⼀种冰箱的利润为:(220+40)×(1+20%)×300=93600(元)所以第⼀季度的总利润为48400+93600=142000(元)28、解:∵67×60=4020(元),4020>3650,∴⼀定有⼀个班的人数大于35人.设大于35人的班有学生x人,则另⼀班有学生(67-x)⼀,依题意,得:50x+60(67-x)=3650,解得:x=37,∴67-x=3029、解:(1)∵(a+4)2+|b-11|=0,∴a+4=0,b-11=0,∴a=-4,b=11,故答案为:-4;11;∴M点对应的数为:3.5-t,N点对应的数为11-2t,∴MN=|(3.5-t)-(11-2t)|=|t-7.5|=2.5,∴t=5或10,答:t为5或10s时,M,N两点的距离为2.5cm(3)①当H在A与B之间时,若H点不在G点左边,如图,∵AH-BH=GH,∴AG+GH-BG+GH=GH,∴AG-BG+GH=0,∴AG-AB+AG+GH=0,∵AB=mAG,∴GH=(m-2)AG若H点在G点左边,如图,∵AH-BH=GH,∴AG-GH-BG-GH=GH,∴AG-BG-3GH=0,∴AG-AB+AG-3GH=0,∵AB=mAG,②当H与B重合时,则BH=0,∵AH-BH=GH,∴AH=GH,即A与G重合,∵AB=mAG=0,与已知AB=15相⼀盾,不合题意,应舍去;③当H在AB的延长线上时,∵AH-BH=GH,∴AB=GH,此时G与B重合一天,毕达哥拉斯应邀到朋友家做客。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上数学期末考试复习题第一章:丰富的图形世界1、下列四个图中,每个都是由六个相同的小正方形组成,折叠后能围成正方体的是……………………………( )2、 如图,有一个无盖的正方体纸盒,下底面标有字母“M ”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是( )3、如图所示的几何体,共有_____个面围成.4、一个几何体的主视图,左视图,俯视图都是同一个图形,那么这个几何体形状可能是————(填写一个即可)。

MMMM(A)(B)(C)(D)5、如图所示图形需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是( )A. B. C. D.6、如图是由几个小立方块所堆成几何体俯视图,小正方形里的数字表示该位置小立方块的个数,请画出这个几何体的主视图和左视图。

第二章:有理数8、–8的相反数是_____,绝对值是_____.9、计算:_______)121(2=-10、13-的倒数是_____________,相反数是___________________. 11、若3-a 与2)(b a +互为相反数,则代数式b a 22-的值为______ 。

12、温升高1°记做+1°,气温下降6°记做_________。

13、 在0,2,-7,-5,3,中,最小数的相反数是___,绝对值最小的数是__。

14、下列各对数中,数值相等的是 ( )A 、–2+3与32+-B 、–(–3)与3--C 、32与23D 、312÷与 32⨯15、下列计算结果正确的是( )A 、(-4)×0、25=1B 、(-65)×(-59)=23C 、1÷(-9)=-9D 、(-2)÷21=1 16、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256……,则231的结果的个位数应为( )。

A 、2B 、4C 、8D 、6 17、5的相反数是( )A 、-5B 、15C 、5D 、15-18、今年2月份某市一天的最高气温是11℃,最低气温是-6℃,那么这一天的最高气温比最低气温高( )A 、-17℃B 、17℃C 、5℃D 、11℃ 19、已知(2)2-x +1+y =0,则x+y 的值是( ) A 、3 B 、-1 C 、-3 D 、120、如果2(x+3)的值与3(1-x)的值互为相反数,那么x 等于( ) A 、9 B 、8 C 、-9 D 、-821、在-32,-▏-2▏,(-1)3,-(-2),-4这五个数中,负数的个数是( ) (A )1 个 (B)2个 (C)3个 (D)4个22、冬季某天我国三个城市的最高气温分别是-10℃,1℃,-7℃,把他们从高到低排列正确的是( )(A )-10℃, -7℃ , 1℃ (B )-7℃ ,-10℃, 1℃ (C ) 1℃ , -7℃ ,-10℃ (D ) 1℃ ,-10℃ , -7℃ 23、绝对值为5的数是 ( )(A )5 (B )-5 (C )5或-5 (D )0或5 34、当1=a 时,3-a 的值为( )A.4B.-4C.2D.-225、计算(1))241()1218161(-÷+- (2)-22-(-2)2+(-3)2×(-32)-42÷|-4|(3) 11+(-22)-3×(-11) (4) 18-6÷(-2)×(-31)(5)[]4)20(112----- (6)81)4(21533--÷-(7)(7)(5)90(15)-⨯--÷- (8)42112(3)6⎡⎤--⨯--⎣⎦(9)-12-│0.5-32│÷31×[-2-(-3)2]26、将2,5,7,9这四个数玩“24点”游戏,写出算式。

27、画一条数轴,并在数轴上表示下列各数:–3,2,5,0,–2的倒数.第三章:字母表示数 28、写出一个与y x 221-是同类项的代数式:_____. 29、右图是一个数值转换机的示意图,若输入x 的值为3,y 的值为-2时,则输出的结果为: ______ .若输入x 的值为-3,y 的值为2时, 则输出的结果为:______ .30、已知a 为有理数且a0,则+=________31、如果∣a ∣= 5,∣b ∣= 3,则a +b= 。

32、m n y x y x 343-与是同类项,则=-n m 2_______; 33、23m x y --与325x y 是同类项,则m 的值是( )A.-2B.-5C.3D.-3 34、下列合并同类项的结果正确的是 ( )A 、a +3a=3a 2B 、 3a -a=2C 、3a +b=3abD 、 a 2-3a 2=-2a 2 35、多项式221312x xy y --+是( ) A.三次四项式 B.三次三项式 C.四次四项式 D.二次四项式 36、下列合并同类项的结果正确的是( )A 、a+3a=3a 2B 、3a -a=2C 、3a +b=3abD 、a 2-3a 2=-2a 2(3)x xy x xy 12587-+- 37.已知3-=-b a ,2=+d c ,则()()a d b c --+的值为( A )A.-5B.1C.5D.-138. 下列各式从左到右正确是 )(A )-(3X+2)=-3X+2 (B )-(-2X-7)=-2X+7 (C )-(3X-2)=-3X+2 (D )-(-2X-7)=2X-739、 3ab-4bc+1=3ab-( ),括号中所填入的代数式应是( )。

(A )-4bc+1 (B )4bc+1 (C )4bc-1 (D )-4bc-140、已知代数式x +2y 的值是3,则代数式2x +4y +1的值是 ( )A. 1B. 4C. 7D. 不能确定41、化简:(1)2(2a 2+9b )+3(-5a 2-4b) (2))143(3)92(222+--++a a a a42、先化简,再求值:(1)y xy x y x xy y x 22)(2)(22222----+的值,其中2,2=-=y x(2))32(36922x x x x --+,其中 21-=x(3)()222(35)43x x y x x x y ⎡⎤---+---⎣⎦,其中31,21-==y x .(4)]2)(5[)3(2222mn m mn m m mn +-----,其中2,1-==n m(5)9x+6x 2-3(x-232x),其中x=-2。

43、已知22(3)0a b -+-=,求a b b a -的值.44、(1)如图甲,在一个四边形内的某一点出发,分别连接四边形的各个顶点,可以把这个四边形分割成四个三角形;(2)如图乙,在一个五边形内的某一点出发,分别连接五边形的各个顶点,可以把这个五边形分割成五个三角形;(3)图丙是一个六边形,在这个六边形内的某一点出发,分别连接六边形的各个顶点,可以把这个六边形分割成____个三角形;(请你画出图形并写出结果)根据以上规律,在一个n 边形内的某一点出发,分别连接n 边形的各个顶点,可以把这个n 边形分割成_____个三角形. 第四章:平面图形及其位置关系45、如右上图,C 是线段AB 上任意一点,M ,N 分别是AC ,BC 的中点,如果 AB =12cm ,那么 MN 的长为_____cm .46.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,其依据是 。

47.22.5°= 度 分;12°24′= 度。

48、8点20分,钟表上时针与分针所成的角是______________度。

49、48396731''︒+︒= .50、可近似看作直线的是 ( ) 。

A 绷紧的琴弦B 探照灯射出的光线C 孙悟空的金骨棒D 太阳光线 51、上午9时30分,时钟的时针和分针所成的锐角为……………………………( ) A 、 90 B 、 100 C 、 105 D 、 120 52、把一个正方形的一个角切去,得到的图形可能是①一个三角形 ②一个四边形③一个五边形 ④一个六边形其中正确的是( )A 、①②B 、③④C 、②③D 、①②③53、如图,C 、D 是线段AB 上两点,若CB =4cm ,DB=7cm ,且D 是AC 的中点,则AC 的长等于( )A.3cmB.6cmC.11cmD.14cm54、如果A 、B 、C 在同一条直线上,线段AB=6 cm ,BC=2 cm ,则A 、C 两点间的距离是( )A 、8 cmB 、4 cmC 、8cm 或4cmD 、无法确定A BC M N 第3题图D C B A55、如图3,OA ⊥OB ,∠BOC =40°,OD 平分∠AOC ,则∠BOD 的度数是( )度。

A 、40B 、60C 、20D 、3056、如图,OA 是表示北偏东30°方向的一条射线,其中正确的( )57、如图,OE 为∠AOD 的角平线,∠COD=41∠EOC ,∠COD=15。

求(1)∠EOC 的大小;(2)∠AOD 的大小。

58、已知∠AOB=,自O 点引射线OC,若∠AOC:∠求OC 与∠AOB 的平分线所成的角的度数。

DC O B A 图3 A北AAO B 东东北BAO 30° 东北 C AO30° 东北DA O30°59、如图,已知AO ⊥OC ,OB ⊥OD ,∠COD=38°,求∠AOB 的度数。

(5分)60、O 是直线上一点,OC 是任一条射线,OD 、OE 分别是∠AOC 和∠BOC 的平分线。

(7分)(1)请你直接写出图中∠BOD 的补角,∠BOF 的余角。

(2)当∠BOF =25°时,试求∠DOF 和∠AOD 的度数分别是多少。

61、 已知任意三角形的内角和为180°,试利用多边形中过某一点的对角线条数,寻求多边形内角和的公式。

(本题3分)……内角和180° 180°×2 180°×3 180°×4 n 边形 根据上图所示,一个四边形可以分成____个三角形;于是四边形的内角和为_____度:一个五边形可以分成______个三角形,于是五边形的内角和为______度,……,按此规律,n 边形可以分成_______个三角形,于是n 边形的内角和为_________度。

第五章:一元一次方程62、设某数为x ,由“比某数大2的数是1”可以列出方程:_________ 63、日历中,一个竖列上相邻两个数的和是27,这两个数中较大的数是_____ 64、已知x=3是方程ax-6=a+10的解,则a=_________________。

相关文档
最新文档