高三上册数学测试题

合集下载

高三数学考试卷及答案

高三数学考试卷及答案

一、选择题(本大题共10小题,每小题5分,共50分)1. 下列各数中,有理数是:A. √2B. πC. -3D. 无理数2. 函数y=2x-1的图像是:A. 一次函数图像B. 二次函数图像C. 指数函数图像D. 对数函数图像3. 已知等差数列{an}的第一项a1=3,公差d=2,则第10项an的值为:A. 19B. 21C. 23D. 254. 在△ABC中,∠A=30°,∠B=45°,则∠C的度数是:A. 105°B. 120°C. 135°D. 150°5. 若复数z满足|z-1|=2,则复数z在复平面上的几何意义是:A. z到点(1,0)的距离为2B. z到点(0,1)的距离为2C. z到点(1,1)的距离为2D. z到点(0,0)的距离为26. 下列函数中,是奇函数的是:A. y=x^2B. y=x^3C. y=x^4D. y=x^57. 已知函数f(x)=x^2-4x+3,则f(2)的值为:A. 1B. 3C. 5D. 78. 在直角坐标系中,点P(2,3)关于y轴的对称点坐标是:A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,3)9. 若log2(x+1)=3,则x的值为:A. 2B. 3C. 4D. 510. 下列不等式中,正确的是:A. 3x > 2xB. 3x < 2xC. 3x ≤ 2xD. 3x ≥ 2x二、填空题(本大题共5小题,每小题5分,共25分)11. 已知等比数列{an}的第一项a1=1,公比q=2,则第n项an=______。

12. 在△ABC中,若∠A=60°,b=8,c=10,则a=______。

13. 函数y=2^x的图像与y=2^(-x)的图像关于______对称。

14. 若复数z=3+4i,则|z|=______。

15. 已知等差数列{an}的前n项和为Sn,若a1=2,d=3,则S10=______。

高三数学前六章测试卷

高三数学前六章测试卷

一、选择题(每题5分,共50分)1. 若函数f(x) = 2x + 3,则f(-1)的值为:A. 1B. 0C. -1D. -22. 已知等差数列{an}的公差为d,且a1 = 3,a5 = 9,则d的值为:A. 1B. 2C. 3D. 43. 函数y = x^2 - 4x + 3的图像与x轴的交点坐标为:A. (1, 0) 和 (3, 0)B. (2, 0) 和 (1, 0)C. (2, 0) 和 (3, 0)D. (1, 0) 和 (2, 0)4. 在直角坐标系中,点P(2, 3)关于y轴的对称点为:A. (-2, 3)B. (2, -3)C. (-2, -3)D. (2, 3)5. 已知复数z = 3 + 4i,其模长为:A. 5B. 7C. 9D. 126. 若不等式2x - 3 < x + 1,则x的取值范围是:A. x < 2B. x ≤ 2C. x > 2D. x ≥ 27. 已知函数y = log2(x - 1),则其定义域为:A. x > 1B. x ≥ 1C. x < 1D. x ≤ 18. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为:A. 45°B. 60°C. 75°D. 90°9. 若直线l的斜率为-2,且经过点(1, 3),则直线l的方程为:A. 2x + y - 5 = 0B. 2x - y + 5 = 0C. -2x + y - 5 = 0D. -2x - y + 5 = 010. 已知圆C的方程为x^2 + y^2 = 16,则圆C的半径为:A. 4B. 8C. 2D. 10二、填空题(每题5分,共50分)11. 若等差数列{an}的首项为2,公差为3,则第10项an的值为______。

12. 函数y = 3x^2 - 12x + 9的顶点坐标为______。

高三上学期期末考试数学试卷(附答案解析)

高三上学期期末考试数学试卷(附答案解析)

高三上学期期末考试数学试卷(附答案解析)班级:___________姓名:___________考号:______________一、单选题1.已知集合12|log (1)0A x ax ⎧⎫=->⎨⎬⎩⎭,若1A ∈,则a 的取值范围是( )A .(,2)-∞B .31,2⎛⎫ ⎪⎝⎭C .(1,2)D .(2,)+∞2.设函数f (x )=cosx+bsinx (b 为常数),则“b=0”是“f (x )为偶函数”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件3.给出如下几个结论:①命题“R,cos sin 2x x x ∃∈+=”的否定是“R,cos sin 2x x x ∃∈+≠”; ②命题“1R,cos 2sin x x x ∃∈+≥”的否定是“1R,cos 2sin x x x∀∈+<”; ③对于π10,,tan 22tan x x x⎛⎫∀∈+≥ ⎪⎝⎭;④R x ∃∈,使sin cos x x +=其中正确的是( ) A .③B .③④C .②③④D .①②③④4.已知a 、b 为正实数,a+b=1,则2134a b+的最小值是( ) A .1112 B .116C .1112+D .1112+5.函数2441()2x f x x -+=的大致图象是( )A .B .C .D .6.当()0,x ∈+∞时幂函数()2531m y m m x --=--为减函数,则实数m 的值为( )A .2m =B .1m =-C .1m =-或2m =D .m ≠7.若0.110a =与lg0.8b =和5log 3.5c =,则( ) A .a b c >> B .b a c >> C .c a b >>D .a c b >>8.已知函数()f x 是定义在R 上的函数,()11f =.若对任意的1x ,2x R ∈且12x x <有12123f x f x x x ,则不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦的解集为A .2,13⎛⎫⎪⎝⎭B .4,3⎛⎫-∞ ⎪⎝⎭ C .24,33⎛⎫ ⎪⎝⎭ D .4,3⎛⎫+∞ ⎪⎝⎭9.已知0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,且()2sin 2cos 2cos 1sin αβαβ=+,则下列结论正确的是( )A .22παβ-=B .22παβ+=C .2παβ+=D .2παβ-=10.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,其图象相邻的最高点之间的距离为π,将函数()y f x =的图象向左平移12π个单位长度后得到函数()g x 的图象,且()g x 为奇函数,则( ) A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称B .()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称C .()f x 在,63ππ⎛⎫- ⎪⎝⎭上单调递增D .()f x 在2,36ππ⎛⎫-- ⎪⎝⎭上单调递增 11.函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )A.2,3π-B.2,6π-C.4,6π-D.4,3π12.已知函数()2ln,01,0xxf x xx x⎧>⎪=⎨⎪-≤⎩若函数()()g x f x k=-有三个零点,则()A.1ek<≤B.1ek-<<C.1e<<k D.11ek<<二、填空题13.若22x x a++≥对Rx∈恒成立,则实数a的取值范围为___.14.已知实数0a≠,函数2,1()2,1x a xf xx a x+<⎧=⎨--≥⎩,若(1)(1)f a f a-=+,则a的值为________ 15.已知1cos63πα⎛⎫⎪⎝=⎭+,则5cos6πα⎛⎫-⎪⎝⎭的值为______.三、双空题四、解答题17.已知幂函数()2()294mf x m m x=+-在(,0)-∞上为减函数.(1)试求函数()f x解析式;(2)判断函数()f x的奇偶性并写出其单调区间.18.已知函数()e ln exf x a x=--.(1)当1a=时讨论函数()f x的零点存在情况;(2)当1a>时证明:当0x>时()2ef x>-.19.已知函数2()sin sin 2f x x x x π⎛⎫=- ⎪⎝⎭.(1)求()f x 的最小正周期和最大值;(2)讨论()f x 在2,63ππ⎡⎤⎢⎥⎣⎦上的单调性.20.已知函数()()2112122f x cos x sin x cos x x R ππ⎛⎫⎛⎫=+++-∈ ⎪ ⎪⎝⎭⎝⎭.()1求()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最大值和最小值;()2若7224f απ⎛⎫-=⎪⎝⎭2sin α的值. 21.已知函数()||1()f x x x a x =--+∈R .(1)当2a =时试写出函数()()g x f x x =-的单调区间; (2)当1a >时求函数()f x 在[1,3]上的最大值.22.已知函数π()e sin sin ,[0,π]4xf x x x x ⎛⎫=-∈ ⎪⎝⎭.(1)若1a ≤,判断函数()f x 的单调性; (2)证明:e (π)1sin cos x x x x -+≥-.参考答案与解析1.C【详解】1A ∈12log (1)0a ∴-> 011a ∴<-<,即12a <<则实数a 的取值范围是(1,2) 故选:C. 2.C【分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断. 【详解】0b = 时()cos sin cos f x x b x x =+=, ()f x 为偶函数;()f x 为偶函数时()=()f x f x -对任意的x 恒成立()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查. 3.B【分析】根据全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题可判断①,②;利用基本不等式判断③;结合三角函数恒等变换以及性质判断④,可得答案.【详解】根据全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题 知①不正确 命题“1R,cos 2sin x x x ∃∈+≥”的否定是“1R,cos 2sin x x x∀∈+<或sin 0x = ”,故②不正确;因为π10,,tan 22tan x x x ⎛⎫∀∈+≥ ⎪⎝⎭当且仅当1tan tan x x=即π0,2π4x ⎛=∈⎫ ⎪⎝⎭ 时取等号,③正确;由πsin cos [4x x x ⎛⎫+=+∈ ⎪⎝⎭,比如π4x =时π4x ⎛⎫+ ⎪⎝⎭故R x ∃∈,使sin cos x x += 故选:B 4.D 【分析】将2134a b +与a b +相乘,展开后利用基本不等式可求得2134a b+的最小值.【详解】由已知条件可得()2118318311111113412121212b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝=时等号成立.因此,2134a b +的最小值是1112+故选:D. 5.D【分析】判断函数的奇偶性可排除B ,C ;利用特殊值可判断A,D,即得答案.【详解】因为函数2441()2x f x x -+=的定义域为(,0)(0,)-∞+∞ ,且2441()()2x f x f x x -+-== 故2441()2x f x x -+=是偶函数,排除选项B ,C ;当2x =时15(2)032f -=<,对应点在第四象限,故排除A 故选:D. 6.A【分析】根据幂函数的定义和单调性可得答案.【详解】因为函数()2531m y m m x --=--既是幂函数又是()0,+∞的减函数所以211530m m m ⎧--=⎨--<⎩解得:m=2.故选:A. 7.D【分析】根据指数函数以及对数函数的性质,判断a,b,c 的范围,即可比较大小,可得答案. 【详解】由函数10x y =为增函数可知0.1110a =>由lg y x =为增函数可得lg0.80b =<,由由5log y x =为增函数可得50log 3.51c <=<0.15101log 3.50lg0.8a c b ∴=>>=>>=a cb ∴>>故选:D 8.C【解析】因为等式12123f x f x x x 可化为()()()12123f x f x x x -<--,即()()112233f x x f x x +<+,令函数()()3F x f x x =+,根据函数()F x 是R 上的增函数,即可求得答案.【详解】 不等式12123f x f x x x 可化为()()()12123f x f x x x -<--即()()112233f x x f x x +<+令函数()()3F x f x x =+,由()()112233f x x f x x +<+ 可得()()21>F x F x ,结合12x x <∴ 函数()()3F x f x x =+是R 上的增函数又()14F =不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦ ∴ ()()2log 321F x F -<⎡⎤⎣⎦ ∴ ()2log 321x -<,即0322x <-< ∴2433x <<不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦的解集为:24,33⎛⎫⎪⎝⎭. 故选:C.【点睛】利用函数性质解抽象函数不等式,解题关键是根据已知构造函数,利用对应函数单调性进行求解函数不等式,考查了转化能力和分析能力,属于中档题. 9.A【分析】用二倍角公式、两角差的正弦公式和诱导公式化简()2sin 2cos 2cos 1sin αβαβ=+,由此得出正确结论.【详解】有()2sin 2cos 2cos 1sin αβαβ=+,得()22sin cos cos 2cos 1sin ααβαβ=+sin cos cos sin cos αβαβα-= ()πsin cos sin 2αβαα⎛⎫-==- ⎪⎝⎭,由于0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,所以ππ,222αβααβ-=--=,故选A. 【点睛】本小题主要考查三角恒等变换,考查二倍角公式、两角差的正弦公式和诱导公式,属于中档题. 10.C【分析】根据函数()f x 图象相邻的最高点之间的距离为π,得到T π=,易得()()2sin 2f x x ϕ=+.将函数()y f x =的图象向左平移12π个单位长度后,可得()2sin 26g x x πϕ⎛⎫++ ⎪⎝⎭=,再根据()g x 是奇函数,得到()2sin 26f x x π⎛⎫=- ⎪⎝⎭,然后逐项验证即可.【详解】因为函数()f x 图象相邻的最高点之间的距离为π 所以其最小正周期为T π=,则22Tπω==. 所以()()2sin 2f x x ϕ=+. 将函数()y f x =的图象向左平移12π个单位长度后 可得()2sin 22sin 2126x x g x ππϕϕ⎡⎤⎛⎫⎛⎫++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=的图象又因为()g x 是奇函数,令()6k k Z πϕπ+=∈所以()6k k ϕπ=π-∈Z .又2πϕ<所以6πϕ=-.故()2sin 26f x x π⎛⎫=- ⎪⎝⎭.当6x π=时()1f x =,故()f x 的图象不关于点,06π⎛⎫⎪⎝⎭对称,故A 错误; 当6x π=-时()2f x =-,故()f x 的图象关于直线6x π=-对称,不关于点,06π⎛⎫- ⎪⎝⎭对称,故B 错误; 在,63ππ⎛⎫- ⎪⎝⎭上2,622x πππ⎛⎫-∈- ⎪⎝⎭,()f x 单调递增,故C 正确;在2,36ππ⎛⎫-- ⎪⎝⎭上3,2262x πππ⎛⎫-∈-- ⎪⎝⎭,()f x 单调递减,故D 错误. 故选:C【点睛】本题主要考查三角函数的图象和性质及其图象变换,还考查了运算求解的能力,属于中档题. 11.A【分析】根据()f x 的图象求得T π=,求得2ω=,再根据5()212f π=,求得2,3k k Z πϕπ=-+∈,求得ϕ的值,即可求解.【详解】根据函数()f x 的图象,可得353()41234T πππ=--=,可得T π=所以22Tπω== 又由5()212f π=,可得5sin(2)112πϕ⨯+=,即52,62k k Z ππϕπ+=+∈ 解得2,3k k Z πϕπ=-+∈因为22ππϕ-<<,所以3πϕ=-.故选:A. 12.C【分析】将问题转化为()y f x =与y k =图象有三个交点,分析分段函数的性质并画出()f x 图象,即可确定k 的范围.【详解】由题意,()y f x =与y k =图象有三个交点 当0x >时()ln x f x x=,则()21ln xf x x -'=∴在()0,e 上0fx,()f x 递增,在()e,+∞上0fx,()f x 递减∴0x >时()ln x f x x =有最大值()1e ef =,且在()0,e 上()1(,)e f x ∈-∞,在()e,+∞上()1(0,)ef x ∈.当0x ≤时()21f x x =-+单调递增∴()f x 图象如下∴由图知:要使函数()g x 有三个零点,则10e<<k . 故选:C. 13.94a ≥【分析】根据一元二次不等式对R x ∈恒成立,可得Δ14(2)0a =--≤ ,即可求得答案. 【详解】220x x a ++-≥对R x ∈恒成立,9Δ14(2)0,4a a ∴=--≤∴≥ 故答案为:94a ≥14.34-【解析】分当0a >时和当a<0时两种分别讨论求解方程,可得答案. 【详解】当0a >时11,1+>1a a -<,所以(1)(1)f a f a -=+ ()()211+2,a a a a -+=--解得302a =-<,不满足,舍去;当a<0时1>1,1+1a a -<,所以()()1221,a a a a ---=++解得304a =-<,满足.故答案为34-.【点睛】本题考查解分段函数的方程,在分段函数求函数值的时候,要把自变量代入到所对应的解析式中是解本题的关键,属于基础题.15.13-【分析】由已知条件,利用诱导公式化简5cos cos 66ππαπα⎡⎤⎛⎫⎛⎫-=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即可求解.【详解】解:因为1cos 63πα⎛⎫ ⎪⎝=⎭+所以51cos cos cos 6663πππαπαα⎡⎤⎛⎫⎛⎫-=-+=-+=-⎪⎛⎫⎪⎢⎥⎝⎭⎝⎭⎣⎦⎪⎝⎭ 故答案为:13-.16. sin x - 【分析】对()cos f x x '=求导可得()sin f x x ''=-,由正弦函数的图象可知()0f x ''<成立 根据函数的性质123123sin sin sin 3sin 3x x x x x x ++⎛⎫++≤ ⎪⎝⎭,即可求得123sin sin sin x x x ++的最大值. 【详解】设()sin f x x =,()0,πx ∈则()cos f x x '= 则()sin f x x ''=-,()0,πx ∈由于()0f x ''<恒成立 故()f x 有如下性质()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≥⎪⎝⎭.则123123πsin sin sin 3sin 3sin 33x x x x x x ++⎛⎫++≤=⨯= ⎪⎝⎭∴123sin sin sin x x x ++故答案为 sin x -17.(1)5()f x x -=(2)奇函数,其单调减区间为(,0)-∞ (0,)+∞【分析】(1)根据幂函数的定义,令22941m m +-=,求解即可; (2)根据幂函数的性质判断函数的单调性,继而可得其单调区间. 【详解】(1)由题意得22941m m +-=,解得12m =或5m =- 经检验当12m =时函数12()f x x =在区间(,0)-∞上无意义所以5m =-,则5()f x x -=. (2)551()f x x x -==,∴要使函数有意义,则0x ≠ 即定义域为(,0)(0,)-∞+∞,其关于原点对称.5511()()()f x f x x x-==-=--∴该幂函数为奇函数.当0x >时根据幂函数的性质可知5()f x x -=在(0,)+∞上为减函数函数()f x 是奇函数,∴在(,0)-∞上也为减函数故其单调减区间为(,0)-∞ (0,)+∞.18.(1)两个零点;(2)证明见解析.【分析】(1)将1a =代入可得(1)0f =,求出函数()f x 的导数,利用导数探讨函数的单调性并借助零点存在性定理即可求解;(2)根据已知条件构造函数()e ln 2x g x x =--,证明()0g x >在0x >时恒成立即可得解.【详解】(1)当1a =时()e ln e x f x x =--,显然(1)0f =,即1是()f x 的一个零点求导得()1e x f x x '=-,()f x '在(0,)+∞上单调递增,且131e 303f ⎛⎫'=-< ⎪⎝⎭(1)e 10f '=-> 则()f x '在1(,1)3上存在唯一零点0x ,当00x x <<时()0f x '<,当0x x >时()0f x '> 因此,函数()f x 在()00,x 上单调递减,在()0,x +∞上单调递增,而()0(1)0f x f <= 31e 31e 3e 0ef ⎛⎫=+-> ⎪⎝⎭ 从而得在()00,x 上函数()f x 存在一个零点所以函数()f x 存在两个零点;(2)令()e ln 2x g x x =--,x>0,则1()e x g x x'=-,由(1)知()g x '在(0,)+∞上单调递增,且在1(,1)3上存在唯一零点0x ,即001x e x = 当()00,x x ∈时()g x 单调递减,当()0,x +∞时()g x 单调递增因此()000000011()e ln 2e ln 220e x x x g x g x x x x ≥=--=--=+->,即ln 2x e x ->,则e ln e 2e x x -->- 而1a >,有e e x x a >,于是得()e ln e>e ln e 2e x x f x a x x =---->-所以当1a >,0x >时()2e f x >-.19.(1)最小正周期为π,最大值为1(2)在5,612ππ⎡⎤⎢⎥⎣⎦单调递增,在52,123ππ⎡⎤⎢⎥⎣⎦单调递减. 【分析】(1)由条件利用三角恒等变换化简函数,再利用正弦函数的周期性和最值求得()f x 的最小正周期和最大值;(2)根据[]20,3x ππ-∈,利用正弦函数的单调性,分类讨论求得()f x 的单调性. 【详解】(1)2()sin sin 2f x x x x π⎛⎫=- ⎪⎝⎭2sin cos x x x =11cos 2sin 222x x +=sin 23x π⎛⎫=- ⎪⎝⎭则()f x 的最小正周期为22T ππ== 当22,32x k k Z πππ-=+∈,即25,1ππ=+∈x k k Z 时()f x取得最大值为1; (2)当2,63x ππ⎡⎤∈⎢⎥⎣⎦时[]20,3x ππ-∈ 则当20,32x ππ⎡⎤-∈⎢⎥⎣⎦,即5,612x ππ⎡⎤∈⎢⎥⎣⎦时()f x 为增函数; 当2,32x πππ⎡⎤-∈⎢⎥⎣⎦时即52,123x ππ⎡⎤∈⎢⎥⎣⎦时()f x 为减函数 f x 在5,612ππ⎡⎤⎢⎥⎣⎦单调递增,在52,123ππ⎡⎤⎢⎥⎣⎦单调递减. 【点睛】本题考查正弦函数的性质,解题的关键是利用三角恒等变换化简函数.20.(1)3()4=max f x()min f x =;(2)2325 【分析】利用倍角公式降幂,再由辅助角公式化积.()1由x 的范围求得相位的范围,则函数最值可求;()2由已知求得145sin πα⎛⎫-= ⎪⎝⎭,再由诱导公式及倍角公式求2sin α的值. 【详解】解:()2112122f x cos x sin x cos x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭212111622222222sin x cos x cos x cos x x π⎛⎫+ ⎪⎛⎫+⎝⎭=+-=+ ⎪ ⎪⎝⎭131222222223cos x x sin x x x π⎛⎫⎫⎛⎫=+=+ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ()1,02x π⎡⎤∈-⎢⎥⎣⎦,22,333x πππ⎡⎤∴+∈-⎢⎥⎣⎦23sin x π⎡⎛⎫∴+∈-⎢ ⎪⎝⎭⎣⎦ 则3()4max f x =()min f x = ()2由7224f απ⎛⎫-= ⎪⎝⎭7123ππα⎛⎫-+= ⎪⎝⎭145sin πα⎛⎫∴-= ⎪⎝⎭. 2123221212242525sin cos sin ππααα⎛⎫⎛⎫∴=-=--=-⨯= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题考查三角函数的恒等变换应用,考查()y Asin x ωϕ=+型函数的图象与性质,考查计算能力,属于中档题.21.(1)单调递减区间为3,2⎛⎤-∞ ⎥⎝⎦和[2,)+∞,单调递增区间为3,22⎛⎫ ⎪⎝⎭ (2)()()max 1(13)103(34)24a f x a a a a ⎧<≤⎪=-<<⎨⎪-≥⎩【分析】(1)当2a =时求出()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩,利用二次函数的性质确定函数的单调区间; (2)作出函数()f x 的大致图象,数形结合,分类讨论,比较()f x 在[1,3]上的函数值(1)f (3)f ()f a 的大小关系,即可求得答案.(1)当2a =时()()2221(2)21212x x x f x x x x x x ⎧-+<⎪=--+=⎨-++≥⎪⎩所以()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩当2x <时2()31g x x x =-+,其图象开口向上,对称轴方程为32x =所以()g x 在3,2⎛⎤-∞ ⎥⎝⎦上单调递减,在3,22⎛⎫ ⎪⎝⎭上单调递增; 当2x ≥时2()1g x x x =-++,其图象开口向下,对称轴方程为12x =所以()g x 在[2,)+∞上单调递减. 综上可知,()g x 的单调递减区间为3,2⎛⎤-∞ ⎥⎝⎦和[2,)+∞,单调递增区间为3,22⎛⎫ ⎪⎝⎭;(2)由题意知1a >,()()2211()x ax x a f x x ax x a ⎧-++≥=⎨-+<⎩作出大致图象如图:易得(0)()1f f a == 2124a a f ⎛⎫=- ⎪⎝⎭ 所以可判断()f x 在[1,3]上的最大值在(1)f (3)f ()f a 中取得.当13a 时max ()()1f x f a ==.当3a >时()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在,32a ⎛⎤ ⎥⎝⎦上单调递增 又13422a a a ⎛⎫⎛⎫---=- ⎪ ⎪⎝⎭⎝⎭ 所以,若34a <<,则max ()(3)103f x f a ==-;若4a ≥,则max ()(1)2f x f a ==-.综上可知,在区间[1,3]上()()max1(13)103(34)24a f x a a a a ⎧<≤⎪=-<<⎨⎪-≥⎩ . 22.(1)在3π[0,]4上,()f x 为增函数;在3π[,π]4上时()f x 为减函数. (2)证明见解析.【分析】(1)求出函数的导数,判断导数正负,从而判断函数单调性;(2)当1a =时结合(1)可得πe sin 14x x x ⎛⎫-≥- ⎪⎝⎭,整理为e sin 1sin cos x x x x +≥-,然后构造函数()πsin g x x x =--,利用其导数证明结论.【详解】(1)因为π()e sin sin ,[0,π]4x f x x x x ⎛⎫=-∈ ⎪⎝⎭所以()π()e sin e cos cos()e sin cos )(cos sin )e (sin (cos )4x x x x f x x x x x x a x x a x x '=+-=+-+=-+因为1a ≤,所以在()0,π上e 0x a ->由()0f x '=,解得3π4x =. 当3π04x <<时()0f x '>,故()f x 在3π[0,]4上为增函数; 当3ππ4x <<时()0f x '<,()f x 在3π[,π]4上为减函数. (2)证明:由(1)知,当1a =时π()e sin 4x f x x x ⎛⎫=- ⎪⎝⎭在3π[0,]4上为增函数,在3π[,π]4上为减函数. 因为(0)1,(π)1f f ==-所以()(π)f x f ≥故πe sin 14x x x ⎛⎫-≥- ⎪⎝⎭所以e sin sin cos 1x x x x ≥--所以e sin 1sin cos x x x x +≥-.设()πsin ,()1cos 0g x x x g x x '=--=--≤所以()g x 在[0,π]上为减函数.又(π)0g =,则()(π)0g x g ≥=,所以πsin x x -≥所以e (π)1e sin 1sin cos x x x x x x -+≥+≥-.【点睛】本题考查了利用导数判断函数的单调性以及利用导数证明不等式问题,解答时要明确导数与函数的单调性之间的关系,解答的关键是根据题中要证明的不等式合理变式,构造函数,利用导数判断单调性进而进行证明.。

高三开学考试数学试题(附详解)

高三开学考试数学试题(附详解)

高三上学期开学考试数学试题一、单选题(每小题5分,共40分)1.已知集合{}1,2,4A =,集合{},2B a a =+,若A B B = ,则=a ()A .0B .12C .1D .2【答案】D【详解】由集合{}1,2,4A =,集合{},2B a a =+,因为A B B = ,可得B A ⊆,当1a =时,则23a +=,此时{}1,3B =,此时不满足B A ⊆,舍去;当2a =时,则24a +=,此时{}2,4B =,此时满足B A ⊆;当4a =时,则26a +=,此时{}4,6B =,此时不满足B A ⊆,舍去,综上可得,2a =.故选:D.2.命题:p :R,0x x x ∀∈+≥的否定为()A .R,0x x x ∃∈+≥B .,0x R x x ∃∈+≤C .R,0x x x ∃∈+<D .R,0x x x ∀∈+<【答案】C【详解】命题R x ∀∈,0x x +≥的否定为R x ∃∈,0x x +<.故选:C.3.下列函数为奇函数且在()0,1上为减函数的是()A .()()sin f x x =-B .()tan f x x=C .()cos f x x=D .()sin f x x=【答案】A【详解】依题意,对于A :()()sin sin f x x x =-=-为奇函数且在()0,1上为减函数,故A 正确;对于B :()tan f x x =为奇函数,在()0,1上为增函数,故B 错误;对于C :()cos f x x =为偶函数,故C 错误;对于D :()sin f x x =为奇函数,在()0,1上为增函数,故D 错误.故选:A.4.设,a b 为实数,则“0a b <<”是“11a b <”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D【详解】当“0a b <<”时,则0,0b a ab ->>,则0b a ab ->,所以11a b>,所以“0a b <<”无法推出“11a b<”,当11a b<,即0b aab -<时,有可能0a b <<,但不会有0a b <<,所以“11a b>”无法推出“0a b <<”.所以“0a b <<”是“11a b>”既不充分也不必要条件.故选:D.5.若不等式224221mx mx x x +-<+-对任意实数x 均成立,则实数m 的取值范围是()A .()2,2-B .(]10,2-C .()[),22,-∞-+∞ D .(],2-∞-【答案】B【详解】依题意,不等式224221mx mx x x +-<+-对任意实数x 均成立,即不等式()()22230m x m x -+--<恒成立,当2m =时,不等式可化为30-<恒成立,当2m <时,()()222122820m m m m ∆=-+-=+-()()1020m m =+-<,解得102m -<<,综上所述,m 的取值范围是(]10,2-.故选:B6.已知ππππ()sin 3333f x x x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,则(1)(2)(2023)++⋅⋅⋅+f f f 的值为()A .BC .1D .0【答案】B【详解】因为ππππππππ()sin cos 2sin 2sin 33333333f x x x x x⎡⎤⎛⎫⎛⎫⎛⎫=++=+-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以()f x 的周期为2π6π3=,因为π(1)2sin 3f ==2π(2)2sin3f ==3π(3)2sin 03f ==,4π(4)2sin3f ==5π(5)2sin 3f ==6π(6)2sin 03f ==,所以(1)(2)(3)(4)(5)(6)0f f f f f f +++++=,所以[](1)(2)(2016)337(1)(2)(6)(1)++⋅⋅⋅+=⨯++⋅⋅⋅++=f f f f f f f ,故选:B7.已知∆ABC 中,2AC =,sin tan A B =,π(0,]3∈A ,则边AB 的最小值为()A .2B .3C .2D .52【答案】B【详解】ABC 中,2AC =,sin tan A B =,则sin cos sin A B B =,则cos 2a B b ==,则22422a c a ac+-=,整理得22440a c c +--=,又ABC 中,π0,3A ⎛⎤∈ ⎥⎝⎦,则2241cos ,142c a A c +-⎡⎫=∈⎪⎢⎣⎭,整理得2222420440c a c c a c ⎧+--≥⎨+--<⎩,又2244a c c =+-,代入整理得223040c c c c ⎧-≥⎨-<⎩,解之得34c ≤<.故AB 的最小值为3.故选:B8.已知 1.4a =,0.41.1e b =,0.5e c =,则,,a b c 的大小关系是()A .a b c <<B .a c b <<C .b c a <<D .c b a <<【答案】A【详解】构造函数()()1.5e xf x x =-,则()0.4b f =,()0.5c f =,且()()0.5e x f x x '=-,当0.5x <时,()0f x ¢>,函数()f x 在(),0.5-∞上单调递增,当0.5x >时,()0f x '<,函数()f x 在()0.5,+∞上单调递减,所以()()0.40.5b f f c =<=;设()e 1x g x x =--,则()e 1xg x '=-,当0x <时,()0g x '<,函数()g x 在(),0∞-上单调递减,当0x >时,()0g x '>,函数()g x 在()0,∞+上单调递增,所以()e 100xx g --≥=故e 1x x ≥+,所以0.41.1e 1.11.4 1.4>⨯>,即a b <.综上,a b c <<,故选:A .二、多选题(每小题5分,共20分)9.已知实数a ,b 满足等式1123ab⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则下列不可能成立的有()A .a b =B .0b a >>C .0b a >>D .0a b>>【答案】CD【详解】作出函数12xy ⎛⎫= ⎪⎝⎭和13xy ⎛⎫= ⎪⎝⎭的图象如图所示:设1123a bm ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭= ,0m >,当1m >时,由图可知0a b <<;当1m =时,由图可知0a b ==;当01m <<时,由图可知0a b >>,故选:CD.103)A 22︒︒B .2cos 15sin15cos 75︒︒-︒C .2tan151tan 15︒-︒D .1tan151tan15+︒-︒【答案】AD【详解】对于A 222sin(1545)2sin 603︒︒︒︒︒=+==A 项成立;对于B 项,2223cos 15sin15cos 75cos 15sin 15cos(215)cos302︒︒︒︒︒︒︒-=-=⨯==,故B 项不成立;对于C 项,22222sin151sin 30tan15sin15cos1513cos152tan 30sin 151tan 15cos 15sin 15cos3021cos 15︒︒︒︒︒︒︒︒︒︒︒︒︒=====---C 项不成立;对于D 项,1tan15tan 45tan15tan(4515)tan 6031tan151tan 45tan15︒︒︒︒︒︒︒︒︒++==+==--,故D 项成立.故选:AD.11.已知函数π()cos()0,0,||2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示,将()f x 的图像向左平移π4个单位长度,再向上平移1个单位长度后得到函数()g x 的图像,则()A .π()2cos 23f x x ⎛⎫=- ⎪⎝⎭B .π()2cos 216g x x ⎛⎫=++ ⎪⎝⎭C .()g x 的图像关于点π,06⎛⎫⎪⎝⎭对称D .()g x 在π5π,π(Z)1212k k k π⎡⎤-++∈⎢⎥⎣⎦上单调递减【答案】ABD【详解】由图像可知函数()f x 的最大值为2,最小值为2-,所以2A =,2,2362T T ππππ=-=⇒=,又22T πωω=⇒=,又(22cos(2)266f ππϕ=⇒⨯+=所以2(Z)2(Z)33k k k k ππϕπϕπ+=∈⇒=-∈,又π||2ϕ<,所以3πϕ=-所以π()2cos 23f x x ⎛⎫=- ⎪⎝⎭,故A 正确,将()f x 的图像向左平移π4个单位长度,再向上平移1个单位长度后得π()2cos 2++1=2cos 2+1436g x x x ππ⎡⎤⎛⎫⎛⎫=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故B 选项正确,由2+(Z)(Z)6262k x k k x k πππππ=+∈⇒=+∈所以()g x 的图像关于点π,16⎛⎫⎪⎝⎭对称,故C 错误.由22+2(Z)6k x k k ππππ≤≤+∈即π5ππ(Z)1212k x k k π-+≤≤+∈所以选项D 正确故选:ABD.12.已知函数()f x 定义域为R ,()1f x +是奇函数,()()()1g x x f x =-,函数()g x 在[)1,+∞上递增,则下列命题为真命题的是()A .()()11f x f x --=-+B .函数()g x 在(],1-∞上递减C .若21a b <-<,则()()()1g g b g a <<D .若()()1g a g a >+,则12a <【答案】BCD【详解】对于A ,因为()1f x +是奇函数,所以()()11f x f x -+=-+,故A 错误;因为()1f x +是奇函数,所以()y f x =的图象关于点()1,0对称,即有()()=2f x f x --,所以()()()()()()()()2122121g x x f x x f x x f x g x ⎡⎤-=---=--=-=⎣⎦,所以()y g x =的图象关于直线1x =对称,函数()g x 在[)1,x ∞∈+上单调递增,所以()g x 在(],1x ∈-∞上单调递减,故B 正确;因为21a b <-<,所以()()()12g g b g a <-<,即()()()1g g b g a <<,故C 正确;因为()()1g a g a >+,且1a a <+,由函数()y g x =的图象关于直线1x =对称,得()112a a ++<,解得12a <,故C 正确.故选:BCD.三、填空题(每小题5分,共20分)13.扇形的圆心角为60︒,半径为4,则扇形的面积为;.【答案】8π3【详解】因为扇形的圆心角为60︒,转化为弧度为π3,所以该扇形的面积为21π8π4233⨯⨯=.故答案为:8π3.14.已知()f x 是定义域为R 的奇函数,当0x >时,5()log 1f x x =+,则(5)f -=;【答案】-2【详解】()f x 是定义域为R 的奇函数,当0x >时,5()log 1f x x =+,则有()5(5)(5)log 512f f -=-=-+=-.故答案为:-215.已知函数()πcos (0)6f x x ωω⎛⎫=-> ⎪⎝⎭在区间7π,2π6ω⎛⎤⎥⎝⎦上有且只有2个零点,则ω的取值范围是;.【答案】4[,311)6【详解】因为7π,2π6x ω⎛⎤∈⎥⎝⎦,所以πππ,2π66x ωω⎛⎤-∈- ⎥⎝⎦,因为函数()πcos (0)6f x x ωω⎛⎫=-> ⎪⎝⎭在区间7π,2π6ω⎛⎤⎥⎝⎦上有且只有2个零点,所以5ππ7π2π262ω≤-<,解得43116ω≤<,故答案为:4[,311)6.16.已知11,23a b >>,127a b +=,则312131a b +--的最小值.【答案】20【详解】令11,2131x y a b ==--,则1226711x y a b x y +=+=++,去分母化简得:57xy x y --=,所以(1)(5)12x y --=,所以3133(1)(5)88202131x y x y a b +=+=-+-+≥+=--,当且仅当24,311a b ==时,等号成立.故答案为:20四、解答题17.(本题满分10分)∆ABC 中,角,,A B C 所对应的边分别为,,a b c cos 2sin cos B c A A =.(Ⅰ)求角A 的大小;(Ⅱ)若∆ABC的面积为a 是,b c 的等差中项,求∆ABC 的周长.17.【详解】(Ⅰ)cos 2sin cos B c A A =-,cos 2sin sin cos A B C A B A =-,cos cos 2sin sin 0A B B A C A +-=,()2sin sin 0A B C A +-=,2sin sin 0C C A -=,(),0,πC A ∈ ,sin 0C ∴≠,sin A ∴=π3A ∴=或23π.………5分(Ⅱ)因为ABC的面积为1sin 2S bc A ==16bc ∴=,………6分由边a 是,b c 的等差中项,得2b c a +=,且A 不是最大的角,π3A ∴=,………7分22222π2cos ()3()483a b c bc b c bc b c =+-=+-=+- ,22448a a ∴=-,216a ∴=,4a ∴=,28b c a ∴+==,所以ABC 的周长为8412b c a ++=+=.………10分18.(本题满分12分)已知数列{n a }是递增的等比数列,且23141227,a a a a +=⋅=.(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n S 为数列{n a }的前n 项和,11++=n n n n a b S S ,求数列{n b }的前n 项和n T .18.【详解】(Ⅰ)根据题意,设该等比数列的公比为q ,若23141227,a a a a +=⋅=,则有211122311312927a q a q a q a q a q =⎧+=⎧⇒⎨⎨==⎩⎩或121933a q q a q =⎧⇒=⎨=⎩或13q =.………3分又由数列{n a }是递增的等比数列,则3q =,则有11a =,则数列{n a }的通项公式1113n n n a a q --==;………6分(Ⅱ)由(1)可得13n n a -=,则()113112nnn a q S q--==-,则1111111n n n n n n n n n n a S S b S S S S S S +++++-===-,………9分则1212231111111n n n n T b b b S S S S S S +=+++=-+-++-= 111111123313131n n n n S S ++++--=-=--………12分19.(本题满分12分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,//AB CD ,AB AD ⊥,1AB =,2PA AD CD ===.E 为棱PC 上一点,平面ABE 与棱PD 交于点F .且BE PC ⊥.(Ⅰ)求证:F 为PD 的中点;(Ⅱ)求二面角B FC P --的余弦值.19.【详解】(Ⅰ)因为PA ⊥平面ABCD ,所以,PA AB PA AD ⊥⊥.在Rt PAB △中,PB ==.……1分在直角梯形ABCD 中,由1AB =,2AD CD ==,可求得BC =,所以PB BC =.………2分因为BE PC ⊥,所以E 为PC 的中点.………3分因为AB CD ∥,AB ⊄平面PCD ,所以//AB 平面PCD .因为平面ABEF I 平面PCD EF =,所以AB EF ∥.………4分所以CD EF ∥.所以F 为PD 的中点.………5分(Ⅱ)因为PA ⊥平面ABCD ,所以,PA AB PA AD ⊥⊥.又AB AD ⊥,所以,,AB AD AP 两两相互垂直.如图建立空间直角坐标系A x yz -,………6分则(0,0,0)A ,(1,0,0)B ,(2,2,0)C ,(0,0,2)P ,(0,2,0)D ,(0,1,1)F .所以(,,)120BC =uuu r ,(,,)111BF =-uuu r ,(,,)011AF =uuu r.设平面BCF 的法向量为(,,)x y z =m ,则0,0,BC BF =⎧⎪⎨=⎪⎩⋅⋅uuu r uuu rm m 即20,0.x y x y z +=⎧⎨-++=⎩令1y =-,则2x =,3z =.于是(2,1,3)=-m .………8分因为AB ⊥平面PAD ,且AB CD ∥,所以CD ⊥平面PAD .所以AF CD ⊥.又PA AD =,且F 为PD 的中点,所以AF PD ⊥.所以AF ⊥平面PCD ,所以AF uuu r是平面PCD 的一个法向量. (10)分cos ,7||||AF AF AF 〈〉==⋅uuu ruuu r uuu r m m m .………11分由题设,二面角B FC P --的平面角为锐角,所以二面角B FC P --.……12分20.(本题满分12分)某公司是一家集无人机特种装备的研发、制造与技术服务的综合型科技创新企业.该公司生产的甲、乙两种类型无人运输机性能都比较出色,但操控水平需要十分娴熟,才能发挥更大的作用.已知在单位时间内,甲、乙两种类型的无人运输机操作成功的概率分别为23和12,假设每次操作能否成功相互独立.(Ⅰ)该公司分别收集了甲型无人运输机在5个不同的地点测试的两项指标数i x ,i y (1,2,3,4,5i =),数据如下表所示:地点1地点2地点3地点4地点5甲型无人运输机指标数x 24568甲型无人运输机指标数y34445试求y 与x 间的相关系数r ,并利用r 说明y 与x 是否具有较强的线性相关关系;(若0.75r >,则线性相关程度很高)(Ⅱ)操作员连续进行两次无人机的操作有两种方案:方案一:在初次操作时,随机选择两种无人运输机中的一种,若初次操作成功,则第二次继续使用该类型设备;若初次操作不成功,则第二次使用另一类型进行操作.方案二:在初次操作时,随机选择两种无人运输机中的一种,无论初次操作是否成功,第二次均使用初次所选择的无人运输机进行操作.假定方案选择及操作不相互影响,试比较这两种方案的操作成功的次数的期望值.附:参考公式及数据:()()niix x y y r --=∑0.95≈.20.【详解】(Ⅰ)2456855x ++++==,3444545y ++++==,()()516iii x x yy =--=∑,==相关系数()()50.95iix x y y r --=∑,因为0.75r >,所以与具有较强的线性相关关系.………5分(Ⅱ)设方案一和方案二操作成功的次数分别为X ,Y ,则X ,Y 的所有可能取值均为0,1,2,方案一:()1211121011112322236P X ⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯-+⨯-⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()121122112111351111123223322322272P X ⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯+⨯⨯-+⨯-⨯+⨯⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()12211125223322272P X ==⨯⨯+⨯⨯=,所以()13525850126727272E X =⨯+⨯+⨯=.………9分方案二:选择其中一种操作设备后,进行2次独立重复试验,所以()121172223226E Y =⨯⨯+⨯⨯=,………11分所以()()E X E Y >,即方案一操作成功的次数的期望值大于方案二操作成功的次数的期望值.………12分21.(本题满分12分)已知曲线E 上任意一点Q到定点F 的距离与Q到定直线:14m x =的距离之比为3.(Ⅰ)求曲线E 的轨迹方程;(Ⅱ)斜率为k k ⎛> ⎝⎭的直线l 交曲线E 于B ,C 两点,线段BC 的中点为M ,点M 在x 轴下方,直线OM 交曲线E 于点N ,交直线=1x -于点D ,且满足2||||||ON OD OM =(O 为原点).求证:直线l 过定点.21.【详解】(Ⅰ)设曲线E 上任意一点(,)Q x y3=,化简整理得22195x y -=,所以曲线E 的轨迹方程为22195x y -=;………4分(Ⅱ)设()11,B x y ,()22,C x y ,直线l的方程为3y kx t k ⎛=+> ⎝⎭,联立22195y kx tx y =+⎧⎪⎨-=⎪⎩,得()22259189450k x ktx t ----=,因为有两个交点,所以2590Δ0k ⎧-≠⎨>⎩,即22259095k k t ⎧-≠⎨<+⎩,所以1221859kt x x k +=-,()()22121222182591025959k t t k t y y k x x t k k +-+=++==--,即2295,5959ktt M k k ⎛⎫ ⎪--⎝⎭,………7分因为点M 在x 轴下方,所以25059t k <-,又3k >,所以0t >,所以直线OM 的斜率59OMk k =,则直线OM 的直线方程为59y x k=,将其代入双曲线E 的方程,整理得2228195Nk x k =-,所以2222222258125||18195NNNk ON x y x k k +⎛⎫=+=+= ⎪-⎝⎭,………9分将59y x k =代入直线=1x -,解得51,9D k ⎛⎫-- ⎪⎝⎭,又因为2295,5959ktt M k k ⎛⎫ ⎪--⎝⎭,所以有||OD ==,2||95k t t OM k ==-.由2||||||ON OD OM =,解得9t k =±,因为3k >,0t >,所以9t k =,因此直线l 的方程为9(9)y kx k k x =+=+,故直线l 过定点(9,0)-.………12分22.(本题满分12分)已知函数()(0)e xa f x x a =+>.(Ⅰ)求函数()f x 的极值;(Ⅱ)若函数()f x 有两个不相等的零点1x ,2x ,(i )求a 的取值范围;(ii )证明:122ln x x a +>.解:(Ⅰ)(e )(),()1e e ex x x x a a a f x x f x -'=+=-=,当0a >时,由f ’(x )=0得,ln x a =,x ,f ’(x ),f (x )的变化情况如下表:x (,ln )a -∞ln a(ln ,)a +∞f ’(x )-0+f (x )单调递减极小值单调递增所以f (x )的极小值为f (ln a )=ln a +1............................4分(Ⅱ)(i )f (x )有两个零点的必要条件是ln a +1<0,即10e a <<;当10e a <<时,f (0)=a >0,f (-1)=-110ea -+<,ln 1a <-,所以f (x )在区间(ln ,)a +∞上有且仅有一个零点,又因为x →-∞时,()f x →+∞,(或111()0e aa f a a --=-+>)所以()f x 在区间(,ln )a -∞上有且仅有一个零点,所以()f x 有两个零点时,a 的取值范围是1(0,)e............................7分(ii )12()()0f x f x ==,不妨设12x x <,可知12ln 1x a x <<-<,即12120e ex x a a x x +=+=,所以1212e e x x a x x =-=-,122ln a x x >+等价于122ln x a x >-,因为22ln ln x a a -<,所以212ln x a x >-等价于12()(2ln )f x f a x <-,即222ln 2ln 0a x a a x e --+>,令22222ln ()2ln 1)e a x ag x a x x -=-+>-,因为22e x a x =-,所以22221()2ln()g x x x x =-+-,2222222222121()10x x g x x x x ++'=++=>,所以2()g x 在区间(1,)-+∞上单调递增,所以2()(1)0g x g >-=,所以122ln x x a +>............................12分。

高三数学考试卷子及答案

高三数学考试卷子及答案

一、选择题(每题5分,共50分)1. 若函数f(x) = 2x^2 - 3x + 1的图像开口向上,则其顶点坐标为()。

A. (1, 0)B. (1, -2)C. (0, 1)D. (0, -2)2. 下列函数中,在区间(-∞,+∞)上单调递增的是()。

A. y = x^3B. y = x^2C. y = x^3 - xD. y = x^2 + 2x3. 若等差数列{an}的前n项和为Sn,且a1 = 3,S5 = 45,则该数列的公差d为()。

A. 3B. 4C. 5D. 64. 已知函数f(x) = ax^2 + bx + c(a ≠ 0),若f(1) = 2,f(2) = 4,f(3) = 6,则a,b,c的值分别为()。

A. 1,1,1B. 2,0,2C. 1,2,1D. 2,1,25. 在三角形ABC中,∠A = 60°,AB = AC = 2,BC = √3,则三角形ABC的面积为()。

A. 2B. √3C. 3D. 46. 已知复数z = a + bi(a,b ∈ R),若|z| = 1,则z的辐角θ满足()。

A. 0 ≤ θ < 2πB. 0 ≤ θ ≤ 2πC. -π ≤ θ < 0D. -π ≤θ ≤ 07. 若函数f(x) = x^3 - 3x + 2在x = 1处的导数为0,则f(x)在x = 1处的极值点为()。

A. 极大值点B. 极小值点C. 无极值点D. 不存在极值点8. 下列不等式中,正确的是()。

A. 2x + 3 > 3x + 2B. x^2 + 2x + 1 < 0C. x^2 - 4x + 4 > 0D.x^2 - 3x + 2 ≤ 09. 在直角坐标系中,点P(2,-1)关于直线y = x的对称点为()。

A. (2,-1)B. (1,2)C. (-1,2)D. (-2,1)10. 已知函数f(x) = |x - 2| + |x + 3|,则f(x)的最小值为()。

数学高三试卷真题加答案

数学高三试卷真题加答案

一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x + 2,若f(x)在x=1处取得极值,则该极值是()A. 最大值B. 最小值C. 无极值D. 无法确定答案:A解析:首先求导f'(x) = 3x^2 - 3,令f'(x) = 0,解得x = 1或x = -1。

再求二阶导数f''(x) = 6x,将x = 1代入f''(x),得f''(1) = 6 > 0,因此f(x)在x=1处取得极小值。

2. 已知等差数列{an}的首项a1 = 3,公差d = 2,则第10项an = ()A. 23B. 25C. 27D. 29答案:C解析:由等差数列的通项公式an = a1 + (n - 1)d,代入a1 = 3,d = 2,n = 10,得an = 3 + (10 - 1)×2 = 3 + 18 = 21。

3. 若复数z = 1 + bi(b∈R),且|z| = √2,则b的值为()A. 1B. -1C. √2D. -√2答案:A解析:由复数的模的定义,得|z| = √(1^2 + b^2) = √2,解得b = ±1。

因为题目中未指定b的正负,所以答案为A。

4. 若不等式|x| + |y| ≤ 1表示的区域为D,则D的面积为()A. 1B. 2C. πD. 4答案:B解析:不等式|x| + |y| ≤ 1表示的区域D是一个以原点为中心的正方形,边长为2,所以D的面积为2×2=4。

5. 已知函数f(x) = log2(x - 1) + log2(3 - x),则f(x)的定义域为()A. (1, 3)B. (1, 2)C. (2, 3)D. (1, 2)∪(2, 3)答案:D解析:由对数函数的定义,得x - 1 > 0且3 - x > 0,解得1 < x < 3。

2025届西安市高三数学上学期第一次质量检测考试卷附答案解析

2025届西安市高三数学上学期第一次质量检测考试卷附答案解析

2025届西安市高三数学上学期第一次质量检测考试卷本卷满分:150分考试时间:120分钟一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}2210,1=-=-A x x B x log x x ,则A B ⋂=()A.{}10x x - B.{}10x x -< C.{}10x x -< D.{}10x x -<<2.“01a <<”是“函数()log (2)a f x a x =-在(,1)-∞上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.函数()()2sin x xf x x e e x-=-+-在区间[]2.8,2.8-的大致图像为()A. B. C. D.4.已知5log 2a =,2log b a =,1()2bc =,则()A.c b a >> B.c a b>> C.a b c>> D.b c a>>5.已知定义在R 上的函数()f x 满足3(2)()f x f x +=,且(2)1f =-,则(100)f =()A.3B.1C.1-D.3-6.已知函数1,0,()()12,0,x e x f x g x kx x x⎧-⎪==-⎨<⎪⎩ ,若关于x 的方程()()f x g x =有2个不相等的实数解,则实数k 的取值范围是()A.{}e B.[,)e +∞ C.1(,0){}8e -⋃ D.1(,){}8e -∞-⋃7.已知函数3()1f x x x =-+,则()A.()f x 有三个极值点B.()f x 有三个零点C.直线2y x =是曲线()y f x =的切线D.点(0,1)是曲线()y f x =的对称中心8.已知函数24,0(),0x x f x x log x x ⎧+>⎪=⎨⎪<⎩,2()g x x ax b =++,若方程()0g f x =⎡⎤⎣⎦有且仅有5个不相等的整数解,则其中最大整数解和最小整数解的和等于()A.28-B.28C.14- D.14二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列导数运算正确的是()A.211(x x'=- B.()x xe e '--= C.21(tan )x cos x'=D.1(ln ||)x x'=10.甲乙丙等5人的身高互不相同,站成一排进行列队训练,则()A.甲乙不相邻的不同排法有48种B.甲乙中间恰排一个人的不同排法有36种C.甲乙不排在两端的不同排法有36种D.甲乙丙三人从左到右由高到矮的不同排法有20种11.已知0c b a <<<,则()A.ac b bc a+<+ B.333b c a +< C.a c ab c b+<+ D.>三、填空题:本题共3小题,每小题5分,共15分.12.某班的全体学生参加化学测试,成绩的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100],则该班学生化学测试成绩的第40百分位数为__________.13.若曲线x y e x =+在点(0,1)处的切线也是曲线ln(1)y x a =++的切线,则a =__________.14.5(1)(2)y x y x-+的展开式中,23x y 的系数为__________.四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数3212()2.32a f x x x ax +=-+(1)若1a =,求函数()f x 的极值;(2)讨论函数()f x 的单调性.16.为践行“更快更高更强”的奥林匹克格言,落实全民健身国家战略.某校高三年级发起了“发扬奥林匹克精神,锻炼健康体魄”的年度主题活动,经过一段时间后,学生的身体素质明显提高.为了解活动效果,该年级对开展活动以来近6个月体重超重的人数进行了调查,调查结果统计如图,根据上面的散点图可以认为散点集中在曲线bx a y e +=的附近,请根据下表中的数据求出(1)该年级体重超重人数y 与月份x 之间的经验回归方程(系数a 和b 的最终结果精确到0.01);(2)预测从开展活动以来第几个月份开始该年级体重超标的人数降至10人以下.月份x 123456体重超标人数y987754483227ln z y= 4.58 4.37 3.98 3.87 3.46 3.29附:经验回归方程:ˆˆˆybx a =+中,1221ˆniii nii x ynx y b xnx ==-⋅=-∑∑,ˆˆay bx =-;参考数据:6123.52i i z ==∑,6177.72i ii x z==∑,62191i i x ==∑,ln10 2.30.≈17.已知函数()log (1)a f x x =+,()2log (2)(a g x x t t =+∈R ),0a >,且 1.a ≠(1)当01a <<且1t =-时,求不等式()()f x g x 的解集;(2)若函数()2()21f x F x a tx t =+-+在区间(1,2]-上有零点,求t 的取值范围.18.某企业对某品牌芯片开发了一条生产线进行试产.其芯片质量按等级划分为五个层级,分别对应如下五组质量指标值:[45,55),[55,65),[65,75),[75,85),[85,95].根据长期检测结果,得到芯片的质量指标值X 服从正态分布2(,)N μσ,并把质量指标值不小于80的产品称为A 等品,其它产品称为B 等品.现从该品牌芯片的生产线中随机抽取100件作为样本,统计得到如图所示的频率分布直方图.(1)根据长期检测结果,该芯片质量指标值的标准差s 的近似值为11,用样本平均数x 作为μ的近似值,用样本标准差s 作为σ的估计值.若从生产线中任取一件芯片,试估计该芯片为A 等品的概率(保留小数点后面两位有效数字);(①同一组中的数据用该组区间的中点值代表;②参考数据:若随机变量ξ服从正态分布2(,)N μσ,则()0.6827P μσξμσ-<<+≈,(22)0.9545P μσξμσ-<<+≈,(33)0.9973.)P μσξμσ-<<+≈(2)(ⅰ)从样本的质量指标值在[45,55)和[85,95]的芯片中随机抽取3件,记其中质量指标值在[85,95]的芯片件数为η,求η的分布列和数学期望;(ⅱ)该企业为节省检测成本,采用随机混装的方式将所有的芯片按100件一箱包装.已知一件A 等品芯片的利润是(124)m m <<元,一件B 等品芯片的利润是ln(25)m -元,根据(1)的计算结果,试求m 的值,使得每箱产品的利润最大.19.已知函数1()ln (1).x f x ae x a x -=+-+(1)当0=a 时,求函数()f x 的单调区间;(2)当1a =时,证明:函数()f x 在(0,)+∞上单调递增;(3)若1x =是函数()f x 的极大值点,求实数a 的取值范围.一.选择题(本题共8小题,每小题5分,共40分)二.选择题(本题共3小题,每小题6分,共18分)三、填空题:(本题共3小题,每小题5分,共15分.)12.6513.ln 214.40三、解答题:(本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分)15.(本小题满分13分)解:(1)1a =时,3213()2,()(1)(2)32f x x x x f x x x '=-+=--,所以1x <或2x >时,()0f x '>;12x <<时,()0f x '<则()f x 在(1,2)上递减,在(,1),(2,)-∞+∞上递增,所以()f x 的极小值为2(2)3f =,极大值为5(1)6f =...............................5分陕西省西安中学高2025届高三第一次质量检测数学参考答案题号12345678答案CBABDCDA题号91011答案ACDBCDABD3212(2)()232a f x x x ax +=-+,则()()(2)f x x a x '=--,当2a =时,()0f x ' ,所以()f x 在(,)-∞+∞上递增,当2a >时,2x <或x a >时,()0f x '>;2x a <<时,()0f x '<,所以()f x 在(,2),(,)a -∞+∞上递增,在(2,)a 上递减,当2a <时,x a <或2x >时,()0f x '>;2a x <<时,()0f x '<所以()f x 在(,),(2,)a -∞+∞上递增;在(,2)a 上递减................................8分(2)令-+<=≈,所以,解得,由于,所以,所以从第十个月开始,该年级体重超标的人数降至10人以下................................5分17.(本小题满分15分)解:(1)1=- t 时,()()2log 1log 21a a x x +- ,又01a <<,21(21)210x x x ⎧+-∴⎨->⎩,2450151242x x x x ⎧-⎪∴∴<⎨>⎪⎩,∴解集为:15{|}24x x <;...............................6分(2)解法一:()222F x tx x t =+-+,由()0F x =得:22(2x t xx +=-≠-且12)x -< ,22(2)4(2)2x t x x +∴=-+-++,设2U x =+(14U < 且2U ≠,则212424U t U U U U=-=--+-+,令2()U U Uϕ=+, 当1U <<时,()U ϕ4U <<时,()U ϕ单调递增,且9(1)3,(4).2ϕϕϕ===9()2U ϕ∴且() 4.U ϕ≠12402U U∴---< 或2044U U<--- ,t 的取值范围为:2t - 或224t +解法二:()222F x tx x t =+-+,若0t =,则()2F x x =+在(1,2]-上没有零点.下面就0t ≠时分三种情况讨论:①方程()0F x =在(1,2]-上有重根12x x =,则0∆=,解得:24t =,又1212x x t ==-(]1,2,∈-24t +∴=;②()F x 在(1,2]-上只有一个零点,且不是方程的重根,则有()()120F F -<,解得:2t <-或1t >,又经检验:2t =-或1t =时,()F x 在(1,2]-上都有零点;2t ∴- 或 1.t ③方程()0F x =在(1,2]-上有两个相异实根,则有0,01122(1)0(2)0t t F F >∆>⎧⎪⎪-<-<⎪⎨⎪->⎪>⎪⎩或0,01122(1)0(2)0t t F F <∆>⎧⎪⎪-<-<⎪⎨⎪-<⎪<⎪⎩,解得:214t +<<,综上可知:t 的取值范围为2t - 或224t +...............................15分18.(本小题满分17分)(1)(1)由题意,估计从该品牌芯片的生产线中随机抽取100件的平均数为:10(0.01500.025600.04700.015800.0190)69.x =⨯⨯+⨯+⨯+⨯+⨯=即69x μ≈=11s σ≈≈,所以X ∽2(69,11)N ,因为质量指标值X 近似服从正态分布2(69,11)N ,所以1(69116911)1()(80)22P X P X P X μσμσ--<<+--<<+== 10.68270.158650.162-≈=≈,所以从生产线中任取一件芯片,该芯片为A 等品的概率约为0.16................................5分(2)()(0.010.01)1010020i +⨯⨯=,所以所取样本的个数为20件,质量指标值在[85,95]的芯片件数为10件,故η可能取的值为0,1,2,3,相应的概率为:3010103202(0)19C C P C η===,21101032015(1)38C C P C η===,12101032015(2)38C C P C η===,0310103202(3)19C C P C η===,随机变量η的分布列为:η0123P21915381538219所以η的数学期望2151523()0123.193838192E η=⨯+⨯+⨯+⨯=...............................11分()ii 设每箱产品中A 等品有Y 件,则每箱产品中B 等品有(100)Y -件,设每箱产品的利润为Z 元,由题意知:(100)ln(25)(ln(25))100ln(25)Z mY Y m m m Y m =+--=--+-,由(1)知:每箱零件中A 等品的概率为0.16,所以Y ∽(100,0.16)B ,所以()1000.1616E Y =⨯=,所以()[(ln(25))100ln(25)]E Z E m m Y m =--+-(ln(25))()100ln(25)m m E Y m =--+-16(ln(25))100ln(25)m m m =--+-1684ln(25)m m =+-,令()1684ln(25)(124)f x x x x =+-<<84()16025f x x '=-=-得,794x =,又79(1,)4x ∈,()0f x '>,()f x 递增79;(,24)4x ∈,()0f x '<,()f x 递减,所以当79(1,24)4x =∈时,()f x 取得最大值.所以当794m =时,每箱产品利润最大................................17分19.(本小题满分17分)(1)解:当0=a 时,()ln =-f x x x ,且知11()1-'=-=xf x x x,在(0,1)上,()0'>f x >,()f x 在(0,1)上单调递增;在(1,)+∞上,()0'<f x ,()f x 在(1,)+∞上单调递减;所以函数()f x 的单调增区间为(0,1),单调减区间为(1,)+∞..............................4分(2)证明:因为1a =,所以1()ln 2x f x e x x -=+-,且知11()2x f x e x-'=+-,要证函数()f x 单调递增,即证()0f x ' 在(0,)+∞上恒成立,设11()2x g x ex -=+-,0x >,则121()x g x e x-'=-,注意1x y e -=,21y x=-在(0,)+∞上均为增函数,故()g x '在(0,)+∞上单调递增,且(1)0g '=,于是()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,()(1)0g x g = ,即()0f x ' ,因此函数()f x 在(0,)+∞上单调递增;...............................10分(3)由11()1x f x ae a x -'=+--,有(1)0f '=,令11()1x h x ae a x -=+--,有121()x h x ae x-'=-,①当0a 时,11()0x xh x aex -'=-<在(0,)+∞上恒成立,因此()f x '在(0,)+∞上单调递减,注意到(1)0f '=,故函数()f x 的增区间为(0,1),减区间为(1,)+∞,此时1x =是函数()f x 的极大值点;②当0a >时,1x y ae -=与21y x=-在(0,)+∞上均为单调增函数,故()h x '在(0,)+∞上单调递增,注意到(1)1h a '=-,若(1)0h '<,即01a <<时,此时存在(1,)n ∈+∞,使()0h n '=,因此()f x '在(0,)n 上单调递减,在(,)n +∞上单调递增,又知(1)0f '=,则()f x 在(0,1)上单调递增,在(1,)n 上单调递减,此时1x =为函数()f x 的极大值点,若(1)0h '>,即1a >时,此时存在(0,1)m ∈,使()0h m '=,因此()f x '在(0,)m 上单调递减.在(,)m +∞上单调递增,又知(1)0f '=,则()f x 在(,1)m 上单调递减,在(1,)+∞上单调递增,此时1x =为函数()f x 的极小值点.当1a =时,由(1)可知()f x 单调递增,因此1x =非极大值点,综上所述,实数a 的取值范围为(,1).-∞..........................17分。

新高三数学测试题及答案

新高三数学测试题及答案

新高三数学测试题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 6x + 8,则f(3)的值为:A. -1B. 1C. 9D. 11答案:B2. 已知等差数列{a_n}中,a_1 = 2,公差d = 3,求a_5的值。

A. 14B. 17C. 20D. 23答案:A3. 圆的方程为(x - 2)^2 + (y - 3)^2 = 9,圆心坐标为:A. (2, 3)B. (-2, -3)C. (0, 0)D. (3, 2)答案:A4. 函数y = sin(x) + cos(x)的值域为:A. [-1, 1]B. [-√2, √2]C. [0, 2]D. [1, 2]答案:B5. 已知集合A = {1, 2, 3},B = {2, 3, 4},则A∩B =:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}答案:B6. 已知向量a = (3, 4),b = (-4, 3),则向量a与向量b的夹角θ满足:A. cosθ = 1/7B. cosθ = -1/7C. cosθ = 7/√50D. cosθ = -7/√50答案:A7. 函数y = x^3 - 3x^2 + 4x的导数y'为:A. 3x^2 - 6x + 4B. x^2 - 3x + 4C. 3x^2 - 6x + 1D. x^2 - 3x + 2答案:A8. 已知复数z = 2 + 3i,求|z|的值。

A. √13B. √19C. √7D. √17答案:A9. 已知双曲线方程为x^2/9 - y^2/16 = 1,求其渐近线方程。

A. y = ±(4/3)xB. y = ±(3/4)xC. y = ±(16/9)xD. y = ±(9/16)x答案:A10. 已知等比数列{b_n}中,b_1 = 2,公比q = 2,求b_4的值。

A. 16B. 32C. 64D. 128答案:A二、填空题(每题4分,共20分)1. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x) = _______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三上学期期末考数 学 试 题考试时间为120分钟,满分150分一、选择题(每小题5分,共60分) 1.下列函数中,周期为2π的是( )A .2sinxy = B .x y 2sin =C .4cosx y = D .x y 4cos =2.设变量y x z y y x y x y x 42,241,+=⎪⎩⎪⎨⎧≥≤+-≥-则目标函数满足约束条件的最大值为 ( )A .10B .12C .13D .14 3.)2cos(2tan "32"θπθπθ+==是的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.已知焦点在x 轴上的椭圆的离心率为,21它的长轴等于圆0152:22=--+x y x C 的半径,则椭圆的标准方程为( )A .13422=+y x B .1121622=+y x C .1422=+y x D .141622=+y x 5.已知||,),4,3(),0,2(c c a b a b a 则若⋅=⋅==的最小值为 ( )A .1B .2C .3D .46.若函数0)1()1(log )1(2)(21>-⎪⎩⎪⎨⎧>≤=x f x x x f x x 则不等式的解集为 ( )A .),0(+∞B .),0[+∞C .),1(),0(+∞⋃+∞D .]1,(-∞7.(理)在λλ则实数若边上的高是中,,,,,AB AD AB OD b OB a OA OAB ===∆等于( )A .2||)(b a a b a --⋅ B .2||)(b a b a a --⋅ C .||)(b a a b a --⋅ D .||)(b a b a a --⋅(文)若向量c c b a 则),2,1(),1,1(),1,1(-=-==等于( )A .b a 2321+-B .b a 2321--C .b a 2123- D .b a 2123+- 8.若0>>b a ,则下列不等式中一定成立的是( )A .a b b a 11+>+B .11++>a b a b C .a b b a 11->-D .bab a b a >++22 9.从原点向圆0271222=+-+y y x 作两条切线,则这两条切线夹角的大小为 ( )A .6πB .3π C .2π D .32π 10.等差数列==++++28211098,28,}{S a a a a a n 则中( )A .28B .56C .112D .22411.已知双 曲线)0,0(12222>>=-b a by a x 的焦点为F 1,F 2,点M 在双曲线上,且||2||,0121211MF F F F F MF ==⋅,则该双 曲线的离心率为( )A .213+ B .215+ C .215- D .213- 12.函数xx xx x x f cos 232)4sin(2)(22+-++=π的 最大值为M ,最小值为N 则有 ( )A .M-N=4B .M-N=2C .M+N=4D .M+N=2二、填空题(每小题5分,共20分)13.与直线2042x y y x ==--平行且与曲线相切的直线方程是 14.如果)4cos(),23,(,132cos πθππθθ+∈-=那么的值等于 15.数列}{,1,}{21+⋅=n n n a a a a 且和数列中是以2为公比的等比数列,则=2009a 16.定义在R 上的函数)1(,0)()2(:)(+=++x f x f x f x f 且函数满足为奇函数,对于下列命题: ①函数)(x f 是以T=2为周期的函数②函数)(x f 图象关于点(1,0)对称③函数)(x f 的图象关于直线2=x 对称 ④函数)(x f 的最大值为)2(f⑤0)2009(=f ,其中正确的序号为三、解答题(共6道题,70分)17.(10分)在A B C ∆中,角A 、B 、C 的对边分别为n m b a c a n c b a m c b a //),,(),,(,,,且设向量+-=-=(1)求角B(2)设)(,32cos 2sin 22cos32)(2A f xx x x f 求-+=的取值范围。

18.(12分)(理)已知数列)(3,1,}{*11N n a a a a a n nn n ∈+==+中 (1)求数列}{n a 的通项公式 (2)设n n n n n n n S b b b S a a b 求,,321211+++=⋅⋅=+ (12分)(文)已知等比数列}{n a 的前n 项和为126,14,63==S S S n (1)求数列}{n a 的通项公式 (2)若n n n n n n S b b b b b b S a b 求设,111,log 132212++++== 19.(12分)已知)(x f 是定义在R 上的偶函数,图象关于直线2=x 对称,当3)(:]4,2[-=∈x x f x 时(1)求)(:]4,2[x f x 时∈的解析式(2)试求方程]2009,0[0)(在=x f 上根的个数,并证明你的结论。

20.(12分)已知函数x x m mx x f 的图象与1)3()(2+-+=轴的交点至少有一个在原点的右侧,求实数m 的取值范围。

21.(12分)椭圆x x l F b a by a x 与右准线的右焦点为2:),0,1()0(12222=>>=+轴交点为A ,P 是椭圆 上一点,若0,3,2=⋅+⋅==PM BM PB BM PF MP FA BF (1)求椭圆方程(2)求以P 、B 、F 为顶点的三角形面积22.(12分)(理)设22|)(|,)0(1)(min 2=>+++=x f a cx bx ax x f 且为奇函数数列}{}{n n b a 与满足如下条件:11,2)(,211+-=-==+n nn n n n a a b a a f a a (1)求)(x f 的解析式(2)证明:当nn b N n )31(:*≤∈有时(12分)(文)设22|)(|,)0(1)(min 2=>+++=x f a cx bx ax x f 且为奇函数 }{}{n n b a 与满足如下条件:11,2)(,211+-=-==+n nn n n n a a b a a f a a (1)求)(x f 的解析式(2)求证:21n n b b =+(3)求}{n b 的通项公式参考答案一、选择题1—5DCAAC 6—10BBABB 11—12BD 二、填空题13.012=--y x 14.2627- 15.4502 16.②③⑤ 三、解答题 17.(10分) 解:(1))())((//c a c b a b a nm -=+-∴整理得:ac b c a =-+222212cos 222=-+=∴ac b c a B3π=∴B …………4分(2)由已知:)3sin(23sin )cos 1(3)(π+=-++=x x x x f①②)3sin(2)(π+=∴A A f 由(1)知:32π=+C A),3(3)32,0(ππππ∈+∴∈∴A A]1,0()3sin(∈+∴πA)(A f ∴取值范围为]2,0(…………10分18.(12分)(理) (1)由已知:1311+=∴+nn a a 23211)211(321111=++=+∴+a a a n n 且…………4分 1323232111-=∴⋅=+∴-nn n n a a …………6分 (2)131131)13)(13(3211---=--⋅=-+n n n n n n b …………8分 131131131131131131132221---++---+---=+++=∴-n n n n b b b S131211--=-n …………12分 (12分)(文)解:(1)由已知:⎪⎩⎪⎨⎧=+++++=++126)1(14)1(5432121q q q q q a q q a 由①②解得:221==q an n a 2=∴…………6分(2)由(1)知:n b n =)1(132121111113221+++⨯+⨯=+++=∴+n n b b b b b b S n n n1113121211+-++-+-=n n1111+=+-=n nn …………12分 19.(12分) 解:(1)2)(=x x f 图象关于 对称)4()(x f x f -=∴…………2分当]4,2[4:]2,0[∈-∈x x 时 又3)(:]2,0[-=∈x x f x 时当∴x x x f x f x -=--=-=∈13)4()4()(:]2,0[时…………4分(2))()()(x f x f x f -=∴为偶函数 又)4()()4()(x f x f x f x f -=-∴-=即R x x f x f ∈+=对)4()(成立)(4x f 为∴的一个周期…………6分下面在[0,4]上解方程0)(=x f⎩⎨⎧=-≤<⎩⎨⎧=-≤≤03420120x x x x 或 解得:31==x x 或…………8分 方程)(x f 在R 上的解为:Z k k x k x ∈+=+=3414或…………10分由50241:2009140≤≤-≤+≤k k 得 由2150143:2009340≤≤-≤+≤k k 得]2009,0[0)(在方程=∴x f 上根的个数为1005个…………12分20.(12分)解:(1)当13)(:0+-==x x f m 则满足要求——2分(2)0≠m 则:有两种情况:①原点的两侧各有一个,则:⎪⎩⎪⎨⎧<=>--=∆0104)3(212m x x m m 0<∴m …………6分②都在原点右侧,则:⎪⎪⎪⎩⎪⎪⎪⎨⎧>=⋅>--=+>--=∆010304)3(21212m x x m m x x m m 10≤<∴m …………10分综上可知:]1,(-∞m21.(12分)解:(1)由已知:1,2,2,1222==∴==b a c a C故椭圆方程为1222=+y x …………4分 (2)设)0,2(),0,1(),,(),,(),,(A F y x P y x M y x B P P M M B B 又 )0,1(),,1(=--=∴FA y x BF B B),1(),,(P P M P M P y x PF y y x x MP --=--=),();,(),,(P M P M P B P B B M B M y y x x PM y y x x PB y y x x BM --=--=--=…………6分由⎩⎨⎧=-=-=021:2B B y x FA BF 知⎩⎨⎧=-=∴01B B y x由⎩⎨⎧-=--=-=P M P PM P y y y x x x PF MP 333:3知⎩⎨⎧=-=∴PM P M y y x x 434…………8分由0)2,42()4,24(:0=-⋅-=⋅+⋅P P P P y x y x PM BM PB BM 知即:0225222=++-P P P y x x ①又P 在椭圆上,故2222=+P P y x ②…………10分由①②解得:22,1±==P P y x2222221=⨯⨯=∴∆PBF S …………12分 22.(12分)(理)解:(1)由,0:,)(==c b x f 得是奇函数由222|)(|min ==a x f 是故xx x f 12)(2+=…………5分(2)22112211121)(12112111,212)(nn n nn n n n n n nn n n n b a a a a a a a a b a a a a f a ==++-+=+-=+=-=+-++++1121422--===-n n bbbb n n12111)31(3111-=∴=+-=n n b a a b …………9分 当31:11==b n 时,命题成立当n C C C C n n n n n n n n =+≥++++=+=≥-------111121111111)11(2:2 时n n n b )31()31(12≤=∴-综上:当nn b N n )31(:*≤∈时…………12分(12分)(文) 解:(1)由,0:)(==c b x f 是奇函数得由222|)(|min ==a x f 是故xx x f 12)(2+=…………6分(2),212)(21nn n n n a a a a f a +=-=+221122111)(12112111nn n nn n n n n n b a a a a a a a a b ==++-+=+-=+-+++…………9分 (3)3111111=+-=a a b 21nn b b =+ 1122212221)31(--=====∴-+n n b b b b n n n …………12分。

相关文档
最新文档