11.1与三角形有关的线段 1
人教版数学八年级上册第十一章三角形第一课《与三角形有关的线段》

由以上讨论可知,其他两边的长分别为7 厘米,7 厘米或6 厘米,8 厘米.
课堂小结
边、顶点、内角
A
概念
(直角、 锐角、钝
c
b
三
按角分 角)三角
角
分类 形B
a
C
形 按边分
性质
三角形两边的和大于第三边. 三角形两边的差小于第三边.
等腰三角形的周长为20厘米. (1)若已知腰长是底长的2倍,求各边的长; (2)若已知一边长为6厘米,求其他两边的长.
解:(1)设底边长为x厘米,则腰长为2x 厘米. x + 2x + 2x = 20, 解得 x = 4.
所以三边长分别为4cm,8cm,8cm.
(2)如果6 厘米长的边为底边,设腰长为x 厘米,则6 + 2x = 20,解得x = 7;
所以,三角形的特征有: (1)三条线段;(2)不在同一直线上;(3)首尾顺次连接.
探究新知
①边:组成三角形的每条线段叫做三角形的边.
②顶点:每两条线段的交点叫做三角形的顶点.
③内角:相邻两边组成的角.
顶点A
角
边c
边b
顶点B
角 边a
角 顶点C
探究新知
三角形的表示: 三角形用符号“△”表示.
记作“△ ABC”读作“三角形ABC”.
课堂检测
基础巩固题
1. 如图,图中直角三角形共有( C )
A.1个 B.2个
C.3个
D.4个
2. 下列各组数中,能作为一个三角形三边边长的是
( C)
A.1,1,2
B.1,2,4
2022秋八年级数学上册第十一章三角形11.1与三角形有关的线段1三角形的边授课课件新版新人教版

分类
按“边”分
按“角”分
两边之和大于第三 边,两边之差小于 第三边
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月12日星期六2022/3/122022/3/122022/3/12 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/122022/3/122022/3/123/12/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/122022/3/12March 12, 2022
A.5 B.6 C.12 D.16
3. (南通)下列长度的三条线段能组成三角形的是( A )
A.5,6,10 B.5,6,11
C.3,4,8
D.4a,4a,8a(a>0)
课堂小结
三角形的边
通过本课时的学习需要我们掌握
概念
三角形
△ABC
表示方法
1.三条线段 2.不在同一直线上 3.首尾顺次相接
三边关系
第十一章 三角形
11.1
与三角形有关的线段
第1课时 三角形的边
学习目标
1 课时讲解 2 课时流程
三角形及其有关概念 三角形的分类 三角形的三边关系
逐点 导讲练
课堂 小结
作业 提升
课时导入
复习提问 引出问题
下面请同学们仔细观察一组图片,找出你熟悉 的几何图形.
复习提问 引出问题
课时导入
复习提问 引出问题
感悟新知
总结
知3-讲
注意: 1.一个三角形的三边关系可以归纳成如下一句话:三
人教版八年级数学上册说课稿11.1与三角形有关的线段

人教版八年级数学上册说课稿11.1 与三角形有关的线段一. 教材分析人教版八年级数学上册第11.1节《与三角形有关的线段》,这部分内容是学生在学习了三角形的性质和分类后,进一步研究三角形的线段性质。
本节内容主要包括三角形的角平分线、中线和高线的性质及其应用。
这些线段在三角形中具有重要的地位,对于学生深入理解三角形的结构特征和解决三角形相关问题具有重要意义。
二. 学情分析学生在学习本节内容前,已经掌握了三角形的基本性质和分类,对三角形有一定的认识。
但学生对于三角形的角平分线、中线和高线的性质及其应用可能还比较陌生,因此需要在教学过程中引导学生通过观察、思考、探究,从而理解和掌握这些线段的性质。
三. 说教学目标1.知识与技能目标:使学生了解三角形的角平分线、中线和高线的定义,掌握它们的性质及其应用。
2.过程与方法目标:通过观察、思考、探究,培养学生解决问题的能力和空间想象力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 说教学重难点1.教学重点:三角形的角平分线、中线和高线的性质及其应用。
2.教学难点:理解和证明三角形的角平分线、中线和高线的性质,以及如何在实际问题中灵活运用。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,引导学生通过观察、思考、探究,从而理解和掌握三角形的角平分线、中线和高线的性质。
2.教学手段:利用多媒体课件辅助教学,通过动画演示和图形展示,帮助学生直观地理解三角形的线段性质。
六. 说教学过程1.导入新课:通过复习三角形的基本性质和分类,引出三角形的角平分线、中线和高线的概念。
2.探究性质:引导学生观察三角形,发现角平分线、中线和高线的特点,学生分组讨论,总结出它们的性质。
3.证明性质:学生代表上台演示和证明三角形的角平分线、中线和高线的性质,其他学生进行评价和补充。
4.应用拓展:给出一些实际问题,让学生运用所学的线段性质进行解决,教师进行指导和点评。
11.1.1 与三角形有关的线段 初中数学人教版八年级上册教学课件

直角三角形
形
钝角三角形
探究二
除了按角的大小分类,还可以怎样分类?
①
②
三边都不相等的三角形 三边都不相等的三角形
③ 三边都不相等的三角形
④ 等腰三角形
⑤ 等边三角形
⑥ 等腰三角形
按边的关系分类:
三边都不相等的三角形
按边的相等关系
底边和腰不相等的
等腰三角形
等腰三角形
等边三角形
小结:三角形的分类
1.按角的大小分类
因此,以1,2,3无法组成三角形. 因此,以2,3,4可以组成三角形.
因此,判断三条线段能否组成三角形时,只需利用 “较短的两边之和大于第三边”就可以进行判断.
小试牛刀
下列长度的三条线段能否组成三角形?为什么? (1)3,4,8 ( 不能 ) 因为:3 + 4 < 8 (2)2,5,6 ( 能 ) 因为:2 + 5 > 6 (3)4,6,10 ( 不能 ) 因为:4 + 6 = 10
(1)AB + AC > BC (2)BC+ AC > AB (3)BC +AB > AC
AB > BC - AC AC > AB -BC BC > AC -AB
结论2: 三角形两边之差小于第三边
第三边的取值范围: 两边之差<第三边<两边之和
较大的边-较小的边
小试牛刀
已知三角形一边为5,另一边为3,求第三边长c的取值
变式2:已知等腰三角形的一边长为5cm,周长为17cm,则其他两边长 为_5_c_m_,__7_c_m_或__6_c_m_,_.6cm
学以致用
1.下图中三角形的个数是( D )
11.1与三角形有关的线段

与三角形有关的线段相关知识链接1.线段的中点:如果点M 把线段AB 分成相等的两条线段AM 与BM ,那么点M 叫做线段AB 的中点。
2.角:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。
3.角的平分线:从一个角的顶点引一条射线,如果把这个角分为两个相等的角,那么这条射线叫做这个角的平分线。
知识点1 三角形的有关概念定义:由不在同一条直线上的三条线段首尾相接所组成的图形叫做三角形。
有关概念及其表示方法:(1) 如图所示,线段AB,AC,BC 叫做△ABC 的三条边。
(2) 点A,B,C 叫做三角形ABC 的三个顶点。
(3) 顶点式A ,B ,C 的三角形,记作“△ABC ”,读作“三角形ABC ”。
数三角形个数的方法:(1) 按图形形成的过程(2) 按大小顺序(3) 可从图中的某一条线段开始沿着一定方向去数(4) 先固定一个顶点,变换另两个顶点来数知识点2 三角形的分类等腰三角形:有两条边相等的三角形叫做等腰三角形,其中相等的两边都叫做腰,另一边叫做底边。
等边三角形:底边与腰相等的等腰三角形叫作等边三角形,即三边都相等的三角形叫做等边三角形。
按边的相等关系分类:三角形⎪⎩⎪⎨⎧⎩⎨⎧等边三角形三角形底边和腰不相等的等腰等腰三角形三边都不相等的三角形 分类示意图如图:按角的大小分类:三角形⎪⎩⎪⎨⎧钝角三角形锐角三角形直角三角形知识点3 三角形的三边关系三边关系的性质:三角形两边的和大于第三边,三角形两边的差小于第三边。
三角形的三边关系反映了任意三角形边的限制关系。
三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段之和大于最长线段的长,则这三条线段可以组成三角形;否则不能组成三角形。
已知三角形两边长,求第三边的取值范围。
知识点4 三角形的高、中线、角平分线三角形的高:从三角形的一个顶点向它的对边所在直线画垂线,顶点和垂足之间的线段叫做三角形的高。
三角形的高的几何表达形式:如图1所示,AD 是△ABC 的BC 边上高,或AD 是△ABC 的高,或AD ⊥BC 于点D ,或∠BDA=∠CDA=90°。
11.1 与三角形有关的线段 11.1.1 三角形的边

上海 2006 高考 理科 状元-武亦 文
武亦文 格致中学理科班学生 班级职务:学习委员 高考志愿:复旦经济 高考成绩:语文127分 数学142分 英语144分
物理145分 综合27分 总分585分
“一分也不能少”
“我坚持做好每天的预习、复习,每 天放学回家看半小时报纸,晚上10: 30休息,感觉很轻松地度过了三年 高中学习。”当得知自己的高考成 绩后,格致中学的武亦文遗憾地说 道,“平时模拟考试时,自己总有 一门满分,这次高考却没有出现,
解:(1)设第三根木棒长x,由三角形的三边关系可得5-3<x<5 +3,即2<x<8,故规格为3 m,4 m,5 m,6 m的四种木棒可供小 明的爷爷选择 (2)当第三根木棒长为3 m时,最省钱
20.已知a,b,c为△ABC的三边,b,c满足(b-2)2+|c-3|=0, 且a为方程|a-4|=2的解,求△ABC的周长,并判断△ABC的形 状.
3.如图,以AD为边的三角形是__△__A__B_D_,__△__A__D_E_,__△__A__D_C_,以 ∠C为一个内角的三角形是_____△__A_E__C_,__△__A_D__C_,__△__A_B__C_____.
知识点2:三角形的分类 4.用集合来表示“用边把三角形分类”,下面集合正确的是 (D )
知识点3:三角形的三边关系 7.(2017·岳阳模拟)下列长度的三根小木棒能构成三角形的是 (D ) A.2 cm,3 cm,5 cm B.7 cm,4 cm,2 cm C.3 cm,4 cm,8 cm D.3 cm,3 cm,4 cm
8.(2016·盐城)若 a,b,c 为△ABC 的三边长,且满足|a-4|+ b-2 =0,则 c 的值可以为( A )
坚持做好每个学习步骤
八年级数学上册第十一章三角形11.1与三角形有关的线段11.1.1三角形的边

第十一章 三角形 11.1 与三角形有关的线段 11.1.1 三角形的边学习目标 1.了解三角形的概念,会用符号语言表示三角形. 2.通过具体的实践活动理解三角形三边的不等关系.学习过程 一、自主学习 问题 1:观察下面的图片,你能找到哪些我们熟悉的图形?问题 2:在小学,我们学过三角形,你了解三角形的哪些性质? 二、深化探究 探究 1:观察三角形的构成,探索三角形的概念 问题 1:你能画出一个三角形吗?问题 2:结合你画的三角形,说明三角形是由什么组成的? 问题 3:下面的几个图形都是由三条线段组成的,它们都是三角形吗?问题 4:什么叫三角形?探究 2:自主学习三角形的表示方法及分类 阅读教材第 2 页到第 3 页探究前内容,回答下列问题. 问题 1:如图回答以下问题: (1)在三角形中,什么叫边?什么叫内角?什么叫顶点? (2)三角形有几条边?有几个内角?有几个顶点? (3)如何用符号表示三角形 ABC? (4)如何用小写字母表示三角形 ABC 的三条边?问题 2:如果将三角形分类,按照边的关系分可以分成几类?按照角的关系又如何分类呢?问题 3:如图,找出图中的三角形,用符号表示出来,并指出 AB,AD,CD 分别是哪个三角形的边.探究 3:通过观察实践,理解三角形三边关系 问题 1:任意画一个△ABC,假设有一只小虫从点 B 出发,沿三角形的边爬到点 C,它有几条线路 可以选择?各条线路的长一样吗?问题 2:联系三角形的三边,从问题 1 中你可以得到怎样的结论? 问题 3:用三条长度分别为 5,9,3 的线段能组成一个三角形吗?为什么? 三、练习巩固 练习 1:三角形是指( ) A.由三条线段所组成的封闭图形 B.由不在同一直线上的三条直线首尾顺次相接组成的图形 C.由不在同一直线上的三条线段首尾顺次相接组成的图形 D.由三条线段首尾顺次相接组成的图形 练习 2:图中有几个三角形?用符号表示这些三角形.练习 3.有三根木棒的长度分别为 3 cm,6 cm 和 4 cm,用这些木棒能否围成一个三角形?为什么?练习 4:用一条长 18 cm 的细绳围成一个等腰三角形. (1)如果腰长是底边的 2 倍,那么各边的长是多少? (2)能围成有一边的长为 4 cm 的等腰三角形吗?为什么?四、深化提高 练习 1:下面各组数中作为线段长不能构成三角形的一组是( ) A.0.2,0.6,0.7 B.5k,7k,10k(k>0) C.m-a,m,m+a(m>a,m>0,a>0) D.22,22,33 练习 2:小明想要钉一个三边长都是整数的三角形,现在他只有两根分别长 4 cm 和 5 cm 的木 条,那么第三根木条的长度可以是多少?(写出所有可能结果)练习 3:平面上有四个点 A,B,C,D,用它们作顶点可以组成几个三角形?参考答案 一、自主学习问题 1:三角形、四边形等. 问题 2:三条边;三个内角;具有稳定性;三角形的内角和是 180°. 二、深化探究 探究 1: 问题 1:能 问题 2:三角形是由三条线段组成的. 问题 3:只有第(1)个是三角形,其他的都不是. 问题 4:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 探究 2: 问题 1:组成三角形的三条线段都叫做三角形的边;相邻两边所组成的角叫做三角形的内角,简 称三角形的角;相邻两边的公共端点是三角形的顶点.三角形有三条边、三个内角、三个顶点.三角 形 ABC 用符号表示为△ABC.△ABC 的边 AB 为∠C 所对的边,可以用顶点 C 的小写字母 c 表示,同样, 边 AC 可用 b 表示,边 BC 可用 a 表示. 问题 2:三角形按照“有几条边相等”可以分为:{ 等边三角形 等腰三角形 三角形 不等边三角形也可以按照边的相等关系分为:{ { 不等边三角形等腰三角形底边和腰不相等的等腰三角形 等边三角形三角形三角形按照角的关系可以分为:{直角三角形锐角三角形 三角形 钝角三角形 问题 3:图中共有三个三角形,分别是△ABC,△ABD,△ADC,其中 AB 既是△ABC 的边,也是△ABD 的边,AD 既是△ABD 的边,也是△ADC 的边,CD 是△ADC 的边. 探究 3: 问题 1:小虫从点 B 出发沿三角形的边爬到点 C 有 2 条线路: (1)从 B→C,即线段 BC 的长; (2)从 B→A→C,即线段 BA 与线段 AC 长之和:BA+AC. 经过测量可得 BA+AC>BC,所以这两条线路的长不一样. 根据“两点的所有连线中,线段最短”,说明 BA+AC>BC. 问题 2:三角形两边的和大于第三边. 问题 3:用三条长度分别为 5,9,3 的线段不能组成一个三角形,因为 5+3<9. 三、练习巩固 答案:1.C 2.共有 5 个三角形.分别是:△ABC,△BCD,△BCE,△ABE,△CDE. 3.能,因为 3+4>6. 4.解:(1)设底边长为 x cm,则腰长 2x cm. x+2x+2x=18, 解得 x=3.6. 所以,三边长分别为 3.6 cm,7.2 cm,7.2 cm. (2)因为长 4 cm 的边可能是腰,也可能是底边,所以需要分情况讨论. 如果长 4 cm 的边为底边,设腰长为 x cm,则 4+2x=18, 解得 x=7. 如果长 4 cm 的边为腰,设底边长为 x cm,则 2×4+x=18, 解得 x=10. 因为 4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是 4 cm 的等腰三角形. 由以上讨论可知,可以围成一边长是 4 cm 的等腰三角形. 四、深化提高 练习 1:C 练习 2:解:第三根木条的长度可以是 2 cm,3 cm,4 cm,5 cm,6 cm,7 cm,8 cm. 练习 3:解:由于题中并没有说明这四个点是否在同一条直线上,所以要分情况讨论. (1)四点共线时,不能组成三角形. (2)三点共线时,可以组成三个三角形. (3)任意三点都不共线时,可以组成四个三角形.。
人教版八年级数学上册课堂随堂练习:11.1 与三角形有关的线段(解析版)

11.1 与三角形有关的线段基础题1.下列长度的三条线段能组成三角形的是A.2,3,5 B.7,4,2 C.3,4,8 D.3,3,42.已知三条线段的比是:①1∶3∶4;②1∶2∶3;③1∶4∶6;④3∶3∶6;⑤6∶6∶10;⑥3∶4∶5.其中可以构成三角形的有A.1个B.2个C.3个D.4个3.如图小明做了一个方形框架,发现很容易变形,请你帮他选择一个最好的加固方案A.B.C.D.A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短4.如图,已知△ABC中,AD,AE,AF分别是三角形的高线,角平分线及中线,那么下列结论错误的是A.AD⊥BC B.BF=CFC.BE=EC D.∠BAE=∠CAE5.以下说法错误的是A.三角形的三条高一定在三角形内部交于一点B.三角形的三条中线一定在三角形内部交于一点C.三角形的三条角平分线一定在三角形内部交于一点D.三角形的三条高可能相交于外部一点6.a,b,c为△ABC的三边,化简|a+b+c|-|a-b-c|-|a-b+c|-|a+b-c|,结果是A.0 B.2a+2b+2c C.4a D.2b2c7.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是A.20米B.15米C.10米D.5米8.如图,AE是△ABC的中线,已知EC=8,DE=3,则BD=___________.9.一个三角形的两边长分别是2和4,第三边长为偶数,则这个三角形的周长是__________.10.已知等腰三角形一腰上的中线将这个三角形的周长分为9 cm和15 cm两部分,求这个三角形的腰长和底边的长.11.如图,已知CD是△ABC的高,CM是△ABC的中线.(1)若△ABC的面积为40,求△AMC的面积;(2)若△AMC的面积为12,且AM边上的高为4,求AB的长度.能力题12.三角形一边上的高A.必在三角形内部B.必在三角形外部C .必在三角形的边上D .以上三种情况都有可能13.已知三角形的三边长为3,8,x .若周长是奇数,则x 的值有A .6个B .5个C .4个D .3个14.以长为13 cm 、10 cm 、5 cm 、7 cm 的四条线段中的三条线段为边可以画出三角形的个数为A .1B .2C .3D .415.在△ABC 中,三边长分别为a 、b 、c ,且a >b >c ,若b =8,c =3,则a 的取值范围是A .3<a <8B .5<a <11C .6<a <10D .8<a <1116.下列四个图形中,线段BE 是△ABC 的高的是A .B .C .D .17.如图,在ABC △中,已知点D 、E 、F 分别为BC 、AD 、CE 的中点,且ABC △的面积是24cm ,则阴影部分的面积等于A .22cmB .21cmC .20.25cmD .20.5cm18.作ABC △中BC 边上的高AD ,下列作法正确的是A.B.C.D.19.如图,AE⊥BC于E,BF⊥AC于F,CD⊥AB于D,则△ABC中AC边上的高是垂线段A.AE B.CD C.BF D.AF20.如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性21.下面的说法正确的是A.三角形的角平分线、中线和高都在三角形内B.直角三角形的高只有一条C.三角形的高至少有一条在三角形内D.钝角三角形的三条高都在三角形外面22.三角形的三条中线的位置为A.一定在三角形内B.一定在三角形外C.可能在三角形内,也可能在三角形外D.可能与三角形一条边重合23.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF=2,则S△ABC等于A.16 B.14C.12 D.1024.若一个三角形周长是15,其三条边长都是整数,则此三角形最长边的最大值是___________.25.已知AD是△ABC的中线,且△ABC的面积为6 cm2,则△ADB的面积为___________ cm2.26.如图,BD是△ABC的中线,AB=8,BC=6,△ABD和△BCD的周长的差是__________.27.已知等腰三角形的周长等于23cm,一边长等于5cm,求其他两边的长.28.等腰三角形(有两条边相等的三角形为等腰三角形,其中相等的两边为腰,另一边为底边)一腰上的中线把该三角形的周长分为13.5cm和11.5cm两部分,求这个等腰三角形各边的长.参考答案1.【答案】D【解析】A.∵3+2=5,∴2,3,5不能组成三角形,故A错误;B.∵4+2<7,∴7,4,2不能组成三角形,故B错误;C.∵4+3<8,∴3,4,8不能组成三角形,故C错误;D.∵3+3>4,∴3,3,4能组成三角形,故D正确,故选D.2.【答案】B【解析】①中,1+3=4;②中,1+2=3;③中,1+4<6;④中,3+3=6;⑤中,6+6>10;⑥中,3+4>5.故可以构成三角形的是:⑤⑥.共2个,故选B.3.【答案】B【解析】因为三角形具有稳定性,只有B构成了三角形的结构.故选B.4.【答案】C【解析】∵AD,AE,AF分别是三角形的高线,角平分线及中线,∴AD⊥BC,∠BAE=∠CAE,BF=CF,∴A、B、D正确,C错误,故选C.5.【答案】A【解析】三角形的三条高不一定在三角形内部交于一点,比如直角三角形的三条高交于直角顶点.故选A.6.【答案】A【解析】|a+b+c|−|a−b−c|−|a−b+c|−|a+b−c|=a+b+c+a−b−c−a+b−c−a−b+c=0,故选A.7.【答案】D【解析】根据三角形的三边关系,可得5<AB<25,所以A、B间的距离不可能是5米,故选D.8.【答案】5【解析】∵AE是△ABC的中线,∴BE=CE=8,∴BD=BE–DE=8–3=5,故答案为:5.9.【答案】10【解析】已知三角形的两边长是2和4,根据三角形的三边关系可得第三边大小要大于2小于6,又因为第三边长是偶数,所以第三边是4,即可得周长=2+4+4=10,故答案为:10.10.【解析】设△ABC是等腰三角形,BC为底边,D是AC的中点,AB=x cm,BC=y cm.(1)当AB +AD =9 cm 时, 有92152x x x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得612x y =⎧⎨=⎩,6+6=12,不符合三角形三边关系,舍去. (2)当AB +AD =15 cm 时, 有15292x x x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得104x y =⎧⎨=⎩,4+10<10,符合三角形三边关系,符合题意.综上可得,所求等腰三角形的腰长为10 cm ,底边的长为4 cm . 11.【解析】(1)因为CM 是△ABC 的边AB 上的中线,所以S △AMC =12S △ABC =12×40=20. (2)因为S △AMC =12S △ABC ,S △AMC =12,CD =4,所以S △ABC =24=12AB ·CD =2AB ,所以AB =12.12.【答案】D【解析】锐角三角形所有高在内部,直角三角形两条高在边上,钝角三角形两条高在外部,故选D . 13.【答案】D【解析】根据三角形的三边关系可得:8–3<x <8+3,即:5<x <11,∵三角形的周长为奇数,∴x =6,8,10,共3个.故选D . 14.【答案】C【解析】首先可以组合的数组有13,10,5;13,10,7;13,5,7;10,5,7.再根据三角形的三边关系,发现其中的13,5,7不能构成三角形,则可以画出的三角形有3个.故选C . 15.【答案】D【解析】∵8–3<a <8+3,∴5<a <11,又∵a >b >c ,b =8,c =3,∴8<a <11,故选D . 16.【答案】A【解析】从三角形的顶点向它所对的边所在的直线画垂线,顶点和垂足之间的线段叫做该三角形的高.根据定义,线段BE 是△ABC 的高的图形只有选项A .故选A . 17.【答案】B【解析】∵点F 是CE 的中点,∴BF 是BCE △的中线,∴12BEF BEC S S =△△,同理得12BDE ABD S S =△△,12EDC ADC S S =△△,∴12EBC ABC S S =△△,∴14BEF ABC S S =△△,又24cm ABC S =△,∴21cm BEF S =△,即阴影部分的面积为21cm .故选B . 18.【答案】D【解析】判断三角形的高在三角形的内部或外部,关键取决于三角形的形状,可分为锐角三角形、直角三角形和钝角三角形三种情况讨论,不同的三角形的高所在的位置也不同.故选D . 19.【答案】C【解析】AC 边上的高线是指过点B 作直线AC 的垂线段,则BF 为AC 边上的高线.本题中AE 是BC 边上的高线,CD 是AB 边上的高线.故选C . 20.【答案】D【解析】加上EF 后,原不稳定的四边形ABCD 中具有了稳定的△EAF ,故这种做法的根据是三角形的稳定性.故选D . 21.【答案】C【解析】A ,三角形的三条高不一定都在三角形的内部,错误;B ,直角三角形有三条高,其中有两条高就是两条直角边,错误;C ,锐角三角形的三条高都在内部;直角三角形有两条是直角边,另一条高在内部;钝角三角形有两条在外部,一条在内部,正确;D ,钝角三角形有两条高在外部,一条在内部,错误.故选C . 22.【答案】A【解析】三角形的三条中线的交点一定在三角形内.故选A . 23.【答案】A【解析】∵DF 是△CDE 的中线,∴S △CDE =2S △DEF , ∵CE 是△ACD 的中线,∴S △ACD =2S △CDE =4S △DEF , ∵AD 是△ABC 的中线,∴S △ABC =2S △ACD =8S △DEF , ∵△DEF 的面积是2,∴S △ABC =2×8=16.故选A . 24.【答案】7【解析】根据三角形的三边关系,依题意得三角形的三边长可能是以下几种情况: ①1,7,7;②2,6,7;③3,5,7;④3,6,6;⑤4,4,7;⑥4,5,6;⑦5,5,5. 所以此三角形的最长边的最大值是7.故答案为:7. 25.【答案】3【解析】三角形的中线把三角形分成面积相等的两个三角形,所以△ADB 的面积为3 2cm .故答案为:3. 26.【答案】2【解析】∵BD 是△ABC 的中线,∴AD =CD ,∴△ABD 和△BCD 的周长的差=(AB +BD +AD )-(BC +BD +CD )=AB +BD +AD -BC -BD -CD =AB -BC =8-6 =2,故答案为:2.27.【解析】因为给出的边长不确定是等腰三角形的腰长还是底边长,所以需要分两种情况讨论.(1)当5cm 长的边是底边时,设腰长为cm x ,则523x x ++=,解得9x =.又因为长分别为5cm ,9cm ,9cm 的三条线段能组成三角形,所以等腰三角形其他两边的长均为9cm . (2)当5c m 长的边是腰时,另一腰长也是5cm ,则底边长为235513(cm)--=.而5513+<.说明长为5cm ,5cm ,13cm 的三条线段不能组成三角形,所以此种情况不存在.故等腰三角形其他两边的长均为9cm .28.【解析】设在ABC △中,AB AC =,BD 是中线,依题意,当AB BC >时,13.511.52AB BC -=-=,2AB BC =+,所以2(2)13.511.5BC BC ++=+,解得7BC =.则29AB AC BC ==+=.当AB BC <时,13.511.52BC AB -=-=,2BC AB =+. 所以2213.511.5AB AB ++=+, 解得233AB =,则233AC =,2329233BC =+=. 综上,这个等腰三角形三边的长分别为9cm ,9cm 和7cm 或23cm 3,23cm 3和29cm 3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章 三角形
11.1.1
三角形的边
2
3
4
学生活动 (1)交流在日常生活中所看到的三角形.
(2)选派代表说明三角形的存在于我们 的生活之中.
5
电线杆
自行车
6
读一读 阅读课本P1~2,并回答以下问题: (1)什么叫三角形? (2)三角形有几条边?有几个内角?有几个顶 点? (3)三角形ABC用符号表示________. △ABC (4)三角形ABC的边AB、AC和BC可用小写 c、 b、 a 字母分别表示为________.
F H D A 12 E
G
C
三角形的高、中线与角平分线都是线段
拓展练习
1.下列各组图形中,哪一组中AD是△ABC 的高( D )
C A B D C (A)
D
A (B)
B
C
B
A (C) D
B
C D (D) A
2.如果一个三角形的三条高的交点恰是三角形的一 个顶点,那么这个三角形是( B) A.锐角三角形 C.钝角三角形 B.直角三角形 D.锐角三角形
2
拓展练习
4.填空:如图,在ΔABC中,AE是中线, AD是角平分线,AF是高。 1 BC (1)BE= CE = ; 2 1 BAC (2)∠BAD= ∠CAD = 2 ∠;
(3)∠AFB= ∠AFC = 90°
A
C
E D F
B
拓展练习
5.如图1所示,在△ABC中,∠ACB=90°,把△ABC沿 直线AC翻折180°,使点B 落在点B′的位置,则线段 AC具有性质( )D A.是边BB′上的中线 B.是边BB′上的高 C.是∠BAB′的角平分线 D.以上三种性质合一
D
C
三角形的角平分线与角的平分 线有什么区别?
三角形的角平分线是一条 线段 , 角的平分线是一条 射线
思 考
练一练
如图,在△ABC中, ∠1=∠2,G为AD中点,延长BG 交AC于E,F为AB上一点,CF⊥AD于H,判断下列 说法那些是正确的,哪些是错误的? ①AD是△ABE的角平分线 (× ) ②BE是△ABD边AD上的中线(×) ③BE是△ABC边AC上的中线(×) ④CH是△ACD边AD上的高 ( √ ) B
锐角三角形的三条高都在三角形的内部。
直角三角形的三条高
在纸上画一个直角三角形 (1)画出直角三角形的三条高 (2)它们有怎样的位置关系? 将你的结果与同伴进行交流.
A D B
●
直角三角形的三条高交 于直角顶点.
直角边BC边上的高是 AB ; 直角边AB边上的高是 CB ; BD; 斜边AC边上的高是
C
钝角三角形的三条高
A
在纸上画一个钝角三角形 (1)画出钝角三角形的三条高 (2)钝角三角形的三条高交于一点吗? (3)它们所在的直线交于一点吗?
D
钝角三角形的三条高不相 交于一点 钝角三角形的三条高所在直 线交于一点
B
C F
E
小结:三角形的高
从三角形中的一个顶点向它的对边所在直线作垂 线, 顶点和垂足之间的线段叫做三角形这边的高。
拓展练习
6.如图2所示,D,E分别是△ABC的边AC,BC的 中点,则下列说法不正确的是( C ) A.DE是△BCD的中线 B.BD是△ABC的中线 C.AD=DC,BD=EC D.∠C的对边是DE
A
D E
B
C
今天我们学了什么呀?
1.三角形的高、中线、角平分线
的有关概念及它们的画法。
2.三角形的高、中线、角平分线
A
B
E D
C
(A)35(B)25(C)15(D)5
11、如果一个三角形的三条高的交点
恰好是这个三角形的顶点,那么这个 三角形是( C )
(A)锐角三角形
(C)直角三角形
(B)钝角三角形
(D)难以确定
1.通过本节课的学习,你有什么收获? 还有什么困惑吗? 2.你对自己本节课的表现满意吗?为 什么?
A
3
2
B
D
E
C
1
这个图形中一共有6个三角形。
锐角三角形有2个;
22
下面图形中一共有多少个三角形?锐角 三角形、直角三角形、钝角三角形各有多少个?
A
3
2
B
D
E
C
1
这个图形中一共有6个三角形。
锐角三角形有2个;
23
下面图形中一共有多少个三角形?锐角 三角形、直角三角形、钝角三角形各有多少个?
A
3
2
B
A
5
2 3
4
3
2
1
0
D
C
1
2
3
4
5
0 1 4 5 6 7 8
9
锐角三角形的三条高
在纸上画一个锐角三角形 (1)你能画出这个三角形的三条高吗? (2)这三条高之间有怎样的位置关系? 将你的结果与同伴进行交流 锐角三角形的三条高是在三 B 角形的内部还是外部?
A F O D
E
C
锐角三角形的三条高交于同一点.
42 5 3 4 5
A
B
C
0
1
2 0 3 1 4 205 31
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
三角形的高
从三角形的一个顶点 向它的对边所在直线作垂线, 顶点和垂足之间的线段 叫做三角形这边的高, B 简称三角形的高。 如图,线段AD是BC边上的高 . 三角形高的符号语言: ∵AD是△ ABC的高 ∴∠ BDA = ∠ CDA =90°
E
C
1
19
下面图形中一共有多少个三角形?锐角 三角形、直角三角形、钝角三角形各有多少个?
A
3
2
B
D
E
C
1
这个图形中一共有6个三角形。
20
下面图形中一共有多少个三角形?锐角 三角形、直角三角形、钝角三角形各有多少个?
A
3
2
B
D
E
C
1
这个图形中一共有6个三角形。
21
下面图形中一共有多少个三角形?锐角 三角形、直角三角形、钝角三角形各有多少个?
三角形的三条高的特性: 高在三角形内部的数量 高所在的直线是否相交 高之间是否相交 三条高所在直线的 交点的位置
锐角三角形 直角三角形 钝角三角形
相交 相交
三角形内部
3
相交 相交
直角顶点
1
1
相交
不相交
三角形外部
三角形的三条高所在直线交于一点
三角形的中线
在三角形中,连结一个顶点和它对边中点的线 段叫做这个三角形这边的中线. A 三角形中线的符号语言:
三角形的三条角平分线相交于一点, 交点在三角形的内部
任意画一个三角形,然后画出这个三角形三个 角的角平分线,你发现了什么?
角平分线的符号语言
∵BE是△ABC的角平分线 1 ∠CBE ∴ ∠ABE = _____ = ∵CF是△ABC的角平分线
A F
O
2
∠ABC
E
B ∠ BCF ∴∠ACB=2______=2____ ∠ACF
7
围成三角形的每条线段叫做三角形的边。 每两条线段的交点叫做三角形的顶点。
顶点A
边c
角
边b 角 边a 角 顶点C
8
顶点B
做一做 画出一个△ABC,假设有一只小虫要 从B点出发,沿三角形的边爬到C,它有 几种路线可以选择?各条路线的长一样 吗? A
B
C
9
议一议 1.在同一个三角形中,任意两边之和与第 三边有什么关系? 2.在同一个三角形中,任意两边之差与第 三边有什么关系? 3.三角形三边有怎样的不等关系? 通过动手实验同学们可以得到哪些结论? 理由是什么?
D
E
C
1
这个图形中一共有6个三角形。
锐角三角形有2个;
24
下面图形中一共有多少个三角形?锐角 三角形、直角三角形、钝角三角形各有多少个?
A
3
2
B
D
E
C
1
这个图形中一共有6个三角形。
锐角三角形有2个; 直角三角形有3个;
25
下面图形中一共有多少个三角形?锐角 三角形、直角三角形、钝角三角形各有多少个?
(A)正方形 (C)直角三角形 (B)长方形 (D)平行四边形
2、要使下列木架稳定各至少需要多少根
木棍?
3.如图,工人师傅砌门时,常用木条EF 固定门框ABCD,使其不变形,这种做法的 根据是( ) A,两点之间线段最短 A E E D B矩形的对称性 C矩形的四个角都是 F 直角
D三角形的稳定性 B
8、判断:已知a+b>c,则以线段a、 b、c为边能够成三角形( × ) 9、如图,已知BM是ΔABC的中线, AB=6,BC=8,那么ΔMBC的周长与 ΔABM的周长相差 。 2
B
A
M
C
10、如图,在ΔABC中,AE是BAC的平分 线,AD是BC的高,且 B=50°, C=60°,则 EAD的度数是( D )
下面图形中一共有多少个三角形?锐角 三角形、直角三角形、钝角三角形各有多少个?
A
B
D
E
C
13
下面图形中一共有多少个三角形?锐角 三角形、直角三角形、钝角三角形各有多少个?
A
B
D
E
C
14
下面图形中一共有多少个三角形?锐角 三角形、直角三角形、钝角三角形各有多少个?
A
B
D
E
C
15
下面图形中一共有多少个三角形?锐角 三角形、直角三角形、钝角三角形各有多少个?