2014年人教版数学八上能力培优11.1与三角形有关的线段
2014年秋人教版八年级数学上11.1与三角形有关的线段(1)同步习题精讲课件

习 题 精 讲
11.1 与三角形有关的线段
数 学 八年级上册 (人教版)
11.1 与三角形有关的线段
第1课时 三角形的边
1.由不在同一条直线上的三条线段首尾顺次
相接所组成的图形叫做 三角形 .
2.三边都相等的三角形叫做等边三角形 ,有
两边相等的三角形叫做 等腰三角形 .
3.三角形按边的相等关系分类:
三 三边都不相等的三角形 角 等腰 底边和腰不相等的等腰三角形 形 三角形 等边三角形
4.三角形两边之和 大于 第三边,两边之差小于第
三边.
三角形的有关概念 1.(5分)如图所示,三角形的个数为( B )
A.4个
B.5个
C.6个
D.7个
2.(5分)如图,用符号表示以点B为顶点的三角
三、解答题(共36分) 15.(8分)某木材市场上木棒规格与价格如下表: 规格 1m 2m 3m 4m 5m 6m
价格(元/根) 10
15
20
25
30
35
小明的爷爷要做一个三角形的木架养鱼用,现有两根 长度为3 m和5 m的木棒,还需要到某木材市场上购买一 根. (1)有几种规格的木棒可供小明的爷爷选择? (2)在能做成三角架的情况下,选择哪一种规格的木棒 最省钱?
形:△BDF、△BDA、△BEA、△BCA .
3.(5分)如图,在△ACE中,∠CEA的
对边是 AC .
三角形按边分类 4.(5分)下列叙述中正确的是( C )
A.三角形可分为等腰三角形和等边三角形
B.等腰三角形是等边三角形
C.等边三角形是特殊的等腰三角形
D.三角形可分为三边都不相等三角形和三边都相 等的三角形
人教版八年级上册11.1《与三角形有关的线段》说课稿

3.技术工具:网络资源、在线学习平台等,提供丰富的学习资料,拓展学生的学习视野。
它们在教学中的作用主要有:
1.直观展示几何图形和性质,降低学生的理解难度。
2.提供丰富的学习资源,满足学生的个性化学习需求。
3.创设生动、有趣的学习情境,激发学生的学习兴趣。
人教版八年级上册11.1《与三角形有关的线段》说课稿
一、教材分析
(一)内容概述
本节课选自人教版八年级上册11.1《与三角形有关的线段》,它是整个课程体系中几何部分的重要内容,主要介绍了三角形的中线、高线、角平分线等基本概念及其性质。这部分内容是对三角形知识的深入探究,旨在帮助学生巩固对三角形基本概念的理解,并为后续学习相似三角形、解直角三角形等知识打下基础。
(二)新知讲授
在新知讲授阶段,我将采用以下步骤逐步呈现知识点,引导学生深入理解:
1.通过动态PPT或几何画板展示三角形的中线、高线、角平分线的定义和性质,让学生直观地理解这些概念。
2.结合实际例题,讲解中线、高线、角平分线的判定方法和应用,让学生在具体情境中掌握知识。
3.分步骤演示如何准确地画出三角形的中线、高线、角平分线,并指导学生进行动手操作,加深对知识点的理解。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.基础练习:布置一些基本的画图题目,如画出给定三角形的中线、高线、角平分线,让学生独立完成。
2.提高练习:设计一些综合性的题目,让学生运用所学知识解决实际问题,如求三角形的面积、判断三角形的类型等。
3.小组合作活动:组织小组讨论,让学生共同探究与三角形有关的线段在生活中的应用,培养学生的团队合作能力和创新思维。
初中数学人教版八年级上册 第十一章 11.1与三角形有关的线段

初中数学人教版八年级上册第十一章11.1与三角形有关的线段一、单选题(共9题;共18分)1.下面四个图形中,线段BE是△ABC的高的图是()A. B.C. D.2.下例图形中,具有稳定性的是()A. B. C. D.3.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A. 2cm,3cm,6cmB. 1cm,2cm,3cmC. 3cm,3cm,7cmD. 3cm,4cm,5cm4.长度分别为a,2,4的三条线段能组成一个三角形,则a的值可能是( ).A. 1B. 2C. 3D. 65.已知等腰三角形一边长为4,另一边长为6,则等腰三角形的周长为()A. 14B. 16C. 10D. 14或166.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点, 且△ABC的面积是32,则图中阴影部分面积等于()A. 16B. 8C. 4D. 27.如图,在△ABC中,AD为BC边上的中线,DE为△ABD中AB边上的中线,△ABC的面积为6,则△ADE 的面积是()A. 1B. 32C. 2 D. 528.若一个三角形三个内角的度数之比为3:4:5,则这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形9.如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30∘,∠C=100∘,如图2.则下列说法正确的是()A. 点在上B. 点在的中点处C. 点在上,且距点较近,距点较远D. 点在上,且距点较近,距点较远二、填空题(共7题;共8分)10.三角形三条中线交于一点,这个点叫做三角形的________.11.若三角形的两边长是5 和2 ,且第三边的长度是偶数,则第三边长可能是________.12.三角形具有稳定性,要使一个四边形框架稳定不变形,至少需要钉________根木条.13.如图,AD是△ABC的中线,若AB:AC=3:4,则S△ABD:S△ACD=________.14.如图,在△ABC中(AB>BC),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,则AC=________,AB=________.15.在△ABC中,若AB=5,AC=3.则中线AD的长的取值范围是________。
人教版八年级数学上册与三角形有关的线段复习及习题11.1解析答案教案

11.1小节复习及习题11.1练习指导备课人:备课日期:年月日较大的三角形,然后把三个小三角形合成的三角形,即按从小到大依次找出,做到不重复不遗漏。
2.长为10,7,5,3的四根木条,选其中三根组成三角形,有几种选法?为什么?【提示】先选两根较短的木条作为三角形的两边并计算它们的和,再根据“三角形任意两边的和大于第三边”考虑选第三根木条。
本题只有5+3>7一种符合,故只有一种选法。
3.对于下面每个三角形,过顶点A画出中线、角平分线和高。
【提示】图(1)为等腰三角形,所画中线、角平分线和高重合;图(2)是直角三角形,高就是直角边AB;图(3)是钝角三角形,所画的高在CB的延长线上。
4.如图,在△ABC中,AE是中线,AD是角平分线,AF是高。
填空:(1)BE= =21;(2)∠BAD= =21;(3)∠AFB= =90°;(4)S△ABC= .【提示】(1)(2)(3)小题根据三角形的中线、角平分线、高的定义解答,(4)小题根据三角形的面积公式解答。
AB CE D F5.选择题。
下列图形中有稳定性的是( )A.正方形B.长方形C.直角三角形D.平行四边形【解析】三角形具有稳定性,四边形不具有稳定性。
故选C. 综合运用6.一个等腰三角形的一边长为6cm ,周长为20cm ,求其它两边的长.【提示】分两种情况解答:①6cm 的边为底边;②6cm 的边为腰.7.(1)已知等腰三角形的一边长等于5,一边长等于6,求它的周长.(2)已知等腰三角形的一边长等于4,一边长等于9,求它的周长.【提示】分两种情况解答:①第一条边为底,第二条边为腰;②第一条边为腰,第二条边为底。
注意判断是否能围成三角形。
8.如图,在△ABC 中,AB=2,BC=4,△ABC 的高AD 与CE 的比是多少?【提示】:利用三角形的面积公式9.如图,AD 是△ABC 的角平分线,DE//AC ,DE 交AB 于点E ,DF//AB ,DF 交AC 于点F.图中∠1与∠2有什么关系?为什么?【提示】利用“两直线平行,内错角相等”,得出∠1=∠DAC ,∠2=∠DAE ,再利用角平分线的性质得出∠1=∠2。
人教版八年级上册数学教学设计《11.1 与三角形有关的线段》

人教版八年级上册数学教学设计《11.1 与三角形有关的线段》一. 教材分析本节课的主题是“与三角形有关的线段”,这是人教版八年级上册数学的一个重要内容。
本节课主要让学生了解并掌握三角形的中线、角平分线、高线等概念,以及它们之间的关系。
通过对这些线段的性质和作用的学习,培养学生空间想象能力和逻辑思维能力,为学生进一步学习几何知识打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,如三角形的内角和、三角形的分类等。
但学生对三角形的中线、角平分线、高线等概念及性质可能较为陌生,因此,教师在教学中要注重引导学生从已知知识出发,探索新知识,培养学生自主学习的能力。
三. 教学目标1.知识与技能:让学生掌握三角形的中线、角平分线、高线的概念,理解它们之间的关系。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的合作意识,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:三角形的中线、角平分线、高线的概念及性质。
2.难点:三角形的中线、角平分线、高线之间的相互关系。
五. 教学方法1.情境教学法:通过设置问题情境,引导学生观察、操作、猜想、验证,激发学生的学习兴趣。
2.合作学习法:学生进行小组讨论,培养学生合作意识,提高学生解决问题的能力。
3.启发式教学法:教师引导学生从已知知识出发,探索新知识,培养学生的自主学习能力。
六. 教学准备1.教具:三角板、直尺、圆规、多媒体设备等。
2.学具:学生每人一份三角板、直尺、圆规等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师利用多媒体展示三角形的中线、角平分线、高线的图片,引导学生观察并思考这些线段的特征。
3.操练(10分钟)教师学生进行小组讨论,让学生通过实际操作,探索三角形的中线、角平分线、高线之间的关系。
人教版八年级数学上册同步练习11.1与三角形有关的线段(word版,含答案解析)

11.1 与三角形有关的线段一、选择题(共10小题;共50分)1. 三角形按边可分为( )A. 等腰三角形、直角三角形、锐角三角形B. 直角三角形、不等边三角形C. 等腰三角形、不等边三角形D. 等腰三角形、等边三角形2. 已知a,b,c是△ABC的三边长,且(a+b+c)(a−b)=0,则△ABC一定是( )A. 等腰三角形B. 直角三角形C. 等边三角形D. 以上答案都不对3. 若钝角三角形ABC中,∠A=27∘,则下列哪个选项不可能是∠B的度数( )A. 37∘B. 57∘C. 77∘D. 97∘4. 根据定义,三角形的角平分线,中线和高线都是( )A. 直线B. 线段C. 射线D. 以上都对5. 在△ABC中,如果∠B−∠A=90∘,那么△ABC是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 无法确定6. 已知某三角形第一条边长为(2a−b)cm,第二条边比第一条边长(a+b)cm,第三条边比第一条边的2倍少(a−b)cm,则这个三角形的周长为( )A. 3a cmB. (3a−b)cmC. (5a−b)cmD. (8a−2b)cm7. 如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A. A,C两点之问B. E,G两点之间C. B,F两点之间D. G,H两点之间8. 人字梯中间一般会设计一“拉杆”,这样做的道理是( )A. 两点之间,线段最短B. 垂线段最短C. 两直线平行,内错角相等D. 三角形具有稳定性9. 如图,在Rt△ABC中,∠C=90∘,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A. 4B. 5C. 6D. 710. 已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是( )A. 13cmB. 6cmC. 5cmD. 4cm二、填空题(共6小题;共48分)11. 如果知道三角形的一边之长和这边上的高,三角形确定.(填“能”或“不能”)12. 三角形按边分类:三角形{三边都不等的三角形等腰三角形{ 的等腰三角形 的三角形13. 如图,在锐角三角形ABC中,AD⊥BC于点D,E是BC上一点,连接AE.图中:(1)锐角三角形有个;(2)直角三角形有个;(3)钝角三角形有个.14. 等腰三角形的、、三线合一.15. 如果等腰三角形的底边和一腰长分别为12cm,15cm.那么这个三角形的周长为cm.16. 如图,用六根木条钉成一个六边形框架ABCDEF,要使框架稳固且不活动,则至少还需要添加根木条.三、解答题(共4小题;共52分)17. 图中有几个不同的三角形?用符号表示这些三角形.18. 用9根同样的火柴棒在桌面上摆一个三角形(应首尾相接,不允许火柴棒折断,但允许将几根火柴棒连成一根作为一条线段,火柴要全部用完),你能摆出哪几种不同形状的三角形?19. 已知△ABC中两个内角的度数,判断△ABC的类型:(1)∠A=30∘,∠B=40∘.(2)∠B=32∘,∠C=58∘.(3)∠A=60∘,∠C=50∘.20. 为使五边形木架(用5根木条钉成)不变形,哥哥准备如图①那样再钉上两根木条,弟弟准备如图②那样再钉上两根木条,哪种方法能使木架不变形?为什么?答案第一部分1. C2. A3. C 【解析】∵钝角三角形△ABC中,∠A=27∘,∴∠B+∠C=180∘−27∘=153∘,又∵△ABC为钝角三角形,有两种可能情形如下:① ∠C>90∘,∴∠B<153∘−90∘=63∘,∴选项A,B合理;② ∠B>90∘,∴选项D合理,∴∠B不可能为77∘.4. B 【解析】三角形的角平分线,中线和高线都是线段.5. C6. D7. B8. D 【解析】人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性.故选:D.9. D10. B第二部分11. 不能【解析】画出简图比较容易判定.如图,知道三角形的一边之长和这边上的高,三角形不能确定.12. 底边和腰不相等,等边13. 2,3,114. 顶角平分线,底边上的中线,底边上的高15. 4216. 3第三部分17. △ABE,△BCE,△CDE,△ABC,△BCD.18. 三种(3,3,3;3,4,2;1,4,4).19. (1)钝角三角形.(2)直角三角形.(3)锐角三角形.20. 两种方法都能使木架不变形.在图①中,△ABE,△BDE,△BCD的形状和大小不变.在图②中,△ABE,△ABC的形状和大小不变,故点D相对△ABE,△ABC的位置也不变.。
人教版数学 八年级上册11.1与三角形有关的线段 练习 (含答案)

11.1与三角形有关的线段一.选择题1.已知三角形两边的长分别为1cm、5cm,则第三边的长可以为()A.3cm B.4cm C.5cm D.6cm2.下列各组图形中,表示AD是△ABC中BC边的高的图形为()A.B.C.D.3.如图,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F,下列关于高的说法中正确的是()A.△ABC中,AD是BC边上的高B.△ABC中,GC是BC边上的高C.△GBC中,CF是BC边上的高D.△GBC中,GC是BG边上的高4.下列说法正确的是()A.三角形的角平分线是射线B.过三角形的顶点,且过对边中点的直线是三角形的一条中线C.锐角三角形的三条高交于一点D.三角形的高、中线、角平分线一定在三角形的内部5.若AD是△ABC的中线,则下列结论正确的是()A.AD⊥BC B.BD=CD C.∠BAD=∠CAD D.AD=BC 6.下列各组长度的三条线段能组成三角形的是()A.4cm,5cm,9cm B.4cm,4cm,8cmC.5cm,6cm,7cm D.3cm,5cm,10cm7.如果a、b、c分别是三角形的三条边,那么化简|a﹣c+b|+|b+c﹣a|的结果是()A.﹣2c B.2b C.2a﹣2c D.b﹣c8.如图,在△ABC中,AB=2020,AC=2018,AD为中线,则△ABD与△ACD的周长之差为()A.1B.2C.3D.49.如图,△ABC的BC边上的高是()A.BE B.AF C.CD D.CF10.设三角形三边之长分别为3,8,1﹣2a,则a的取值范围为()A.3<a<6B.﹣5<a<﹣2C.﹣2<a<5D.a<﹣5或a>2二.填空题11.如图,根据“两点之间线段最短”,可以判定AC+BC AB(填“>”“<”或“=”).12.从长度分别为3cm,4cm,5cm,6cm,9cm的线段中任意取3条,能构成的三角形个数为.13.△ABC的两边长分别是2和7,且第三边为奇数,则第三边长为.14.如图,AD是△ABC的一条中线,若BD=3,则BC=.15.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形个.三.解答题16.在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.17.已知a=m2+n2,b=m2,c=mn,且m>n>0.(1)比较a,b,c的大小;(2)请说明以a,b,c为边长的三角形一定存在.18.如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上,三角形BDE与四边形ACDE的周长相等.(1)求线段AE的长.(2)若图中所有线段长度的和是53cm,求BC+DE的值.参考答案一.选择题1.解:设第三边的长为xcm,则5﹣1<x<1+5,即4<x<6.故选:C.2.解:△ABC的高AD是过顶点A与BC垂直的线段,只有D选项符合.故选:D.3.解:∵AD⊥BC于点D,∴△ABC中,AD是BC边上的高,故A选项正确,B选项错误;∵CF⊥AB于点F,∴△GBC中,CF是BG边上的高,故C选项错误,D选项错误.故选:A.4.解:A.三角形的角平分线是线段,故A不符合题意;B.三角形的中线是线段,故B不符合题意;C.锐角三角形的三条高交于一点说法正确,故C符合题意;D.锐角三角形的三条高都在三角形内部;直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部.故D不符合题意;故选:C.5.解:∵AD是△ABC的中线,∴BD=DC,故选:B.6.解:根据三角形的三边关系,A、4+5=9,不能组成三角形,不符合题意;B、4+4=8,不能够组成三角形,不符合题意;C、5+6>7,能组成三角形,符合题意;D、3+5=8<10,不能组成三角形,不符合题意.故选:C.7.解:∵a、b、c分别是三角形的三条边,∴a﹣c+b>0,b+c﹣a>0,∴|a﹣c+b|+|b+c﹣a|=a﹣c+b+b+c﹣a=2b.故选:B.8.解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2020﹣2018=2,故选:B.9.解:△ABC的BC边上的高是AF,故选:B.10.解:由题意得:8﹣3<1﹣2a<8+3,解得:﹣5<a<﹣2,故选:B.二.填空题11.解:如图,根据“两点之间线段最短”,可以判定AC+BC>AB,故答案为:>.12.解:其中的任意三条组合有:3cm、4cm、5cm;3cm、4cm、6cm;3cm、4cm、9cm;3cm、5cm、6cm;3cm、5cm、9cm;3cm、6cm、9cm;4cm、5cm、6cm;4cm、5cm、9cm;4cm、6cm、9cm;5cm、6cm、9cm十种情况.根据三角形的三边关系,其中的3cm、4cm、5cm;3cm、4cm、6cm;3cm、5cm、6cm;4cm、5cm、6cm;4cm、6cm、9cm;5cm、6cm、9cm能搭成三角形.故答案为:6.13.解:∵7﹣2=5,7+2=9,∴5<第三边<9,∵第三边为奇数,∴第三边长为7.故答案为:7.14.解:∵AD是△ABC的一条中线,BD=3,∴BC=2BD=2×3=6.故答案为:6.15.解:第n个图形中,三角形的个数是1+4(n﹣1)=4n﹣3.所以当n=6时,原式=21,故答案为:21.三.解答题16.解:∵在△ABC中,AB=3,AC=7,∴第三边BC的取值范围是:4<BC<10,∴符合条件的偶数是6或8,∴当BC=6时,△ABC的周长为:3+6+7=16;当BC=8时,△ABC的周长为:3+7+8=18.∴△ABC的周长为16或18.17.解:(1)∵a=m2+n2,b=m2,c=mn,且m>n>0,∴m2+n2>m2>mn,∴a>b>c;(2)∵m>n>0,∴mn>n2,∴m2+mn>m2+n2,∴a,b,c为边长的三角形一定存在.18.解:(1)∵三角形BDE与四边形ACDE的周长相等,∴BD+DE+BE=AC+AE+CD+DE,∵BD=DC,∴BE=AE+AC,设AE=x cm,则BE=(10﹣x)cm,由题意得,10﹣x=x+6.解得,x=2,∴AE=2cm;(2)图中共有8条线段,它们的和为:AE+EB+AB+AC+DE+BD+CD+BC=2AB+AC+2BC+DE,由题意得,2AB+AC+2BC+DE=53,∴2BC+DE=53﹣(2AB+AC)=53﹣(2×10+6)=27,∴BC+DE=(cm).。
人教版八年级数学上册教学设计11.1 与三角形有关的线段

人教版八年级数学上册教学设计11.1 与三角形有关的线段一. 教材分析人教版八年级数学上册第11.1节“与三角形有关的线段”,主要包括三角形的两边之和大于第三边、三角形的两边之差小于第三边以及三角形的高的概念。
这些内容是学生进一步学习三角形性质的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析八年级的学生已经学习了平面几何的基本概念和性质,对图形的认识有一定的基础。
但是,对于三角形的高的概念和性质,以及如何运用三角形的性质解决实际问题,学生可能还比较陌生。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出三角形的性质,并通过大量的实例来加深学生对三角形性质的理解。
三. 教学目标1.理解三角形的两边之和大于第三边、两边之差小于第三边的性质。
2.掌握三角形的高的概念,能画出一个三角形的所有高。
3.会运用三角形的性质解决一些实际问题。
四. 教学重难点1.教学重点:三角形的两边之和大于第三边、两边之差小于第三边的性质,三角形的高的概念。
2.教学难点:如何运用三角形的性质解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出三角形的性质。
2.利用多媒体课件,生动形象地展示三角形的性质,帮助学生直观理解。
3.通过大量的练习,巩固学生对三角形性质的理解。
4.采用小组合作的学习方式,培养学生的团队合作能力。
六. 教学准备1.多媒体课件七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些实际问题,如:在平面上有三个点,如何判断这三个点能否构成一个三角形?引导学生从实际问题中感受到三角形性质的重要性。
2.呈现(10分钟)介绍三角形的两边之和大于第三边、两边之差小于第三边的性质,并通过多媒体课件展示相应的图形,帮助学生直观理解。
3.操练(10分钟)让学生在纸上画出一个任意的三角形,然后用尺子量出三角形的三条边的长度,验证三角形的两边之和大于第三边、两边之差小于第三边的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章三角形
11.1与三角形有关的线段(附答案)
专题一三角形个数的确定
1.如图,图中三角形的个数为()
A.2 B.18 C.19 D.20
2.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形__________个.
3.阅读材料,并填表:
在△ABC中,有一点P1,当P1、A、B、C没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图).当△ABC内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样?
专题二根据三角形的三边不等关系确定未知字母的范围
4.三角形的三边分别为3,1-2a,8,则a的取值范围是()
A.-6<a<-3 B.-5<a<-2 C.2<a<5 D.a<-5或a>-2
5. 在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,如果b=4,则这样的三角形共有______个.
6.若三角形的三边长分别是2、x、8,且x是不等式
2
2
x+
>
12
3
x
-
-的正整数解,试求第
三边x的长.
状元笔记
【知识要点】
1.三角形的三边关系
三角形两边的和大于第三边,两边的差小于第三边.
2.三角形三条重要线段
(1)高:从三角形的顶点向对边所在的直线作垂线,顶点与垂足之间的线段叫做三角形的高.
(2)中线:连接三角形的顶点与对边中点的线段叫做三角形的中线.
(3)角平分线:三角形内角的平分线与对边相交,顶点与交点之间的线段叫做三角形的角平分线.
3.三角形的稳定性
三角形具有稳定性.
【温馨提示】
1.以“是否有边相等”,可以将三角形分为两类:三边都不相等的三角形和等腰三角形.而不是分为三类:三边都不相等的三角形、等腰三角形、等边三角形,等边三角形是等腰三角形的一种.
2.三角形的高、中线、角平分线都是线段,而不是直线或射线.
【方法技巧】
1.根据三角形的三边关系判定三条线段能否组成三角形时,要看两条较短边之和是否大于最长边.
2.三角形的中线将三角形分成两个同底等高的三角形,这两个三角形面积相等.
参考答案:
1.D 解析:线段AB上有5个点,线段AB与点C组成5×(5-1)÷2=10个三角形;同样,线段DE上也有5个点,线段DE与点C组成5×(5-1)÷2=10个三角形,图中三角形的个数为20个.故选D.
2.21 解析:根据前边的具体数据,再结合图形,不难发现:后边的总比前边多4,若把第一个图形中三角形的个数看作是1=4-3,则第n个图形中,三角形的个数是4n-3.所以当n=6时,原式=21.
3=1×2+1;当△ABC内有2个点时,构成不重叠的三角形的个数是5=2×2+1;参考上面数据可知,三角形的个数与点的个数之间的关系是:三角形内有n个点时,三角形内互不重叠的小三角形的个数是2n+1,故当有3个点时,三角形的个数是3×2+1=7;当有1007个点时,三角形的个数是1007×2+1=2015.
4.B 解析:根据题意,得8-3<1-2a<8+3,即5<1-2a<11,解得-5<a<-2.故选B.
5.10 解析:∵在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,∴c<a+b.∵b=4,∴a=1,2,3,4.a=1时,c=4;a=2时,c=4或5;a=3时,c=4,5,6;a=4时,c=4,5,6,7.∴这样的三角形共有1+2+3+4=10个.
6.解:原不等式可化为3(x+2)>-2(1-2x),解得x<8.
∵x是它的正整数解,
∴x可取1,2,3,5,6,7.
再根据三角形三边关系,得6<x<10,
∴x=7.。