6.1_平方根(新人教版七年级下数学课件)

合集下载

6.1_平方根(新人教版七年级下数学课件) (1)

6.1_平方根(新人教版七年级下数学课件) (1)

学以致用
计算:
(1) 196
解:196 14
(2) 121
解: 121 11
(3) 0.81
解:0.81 0.9
9 (4) 25 9 3 解: 25 5
2.已知:|x+2y|+ 3x 7 (5 y z) 0
2
求x-3y+4z的值. 解:由题意得:x+2y=0 3x-7=0 5y+z=0 7
2
探究活动
观察右图,每个小正方形的 边长均为1,我们可以得到小 正方形的面积为1. . (1)图中阴影正方形的面积 是多少?它的边长是多少? (2)估计 2 的值在哪两个 整数之间? .
2
课本47页1、2、3题 练习册:平方根
再 见!
(1) 0.01的平方根是 ( B ) (A)0.1 (B)±0.1 (C)0.0001 (D)±0.0001 (2)∵ (0.3) = 0.09
2

( C

(A)0.09 是 0.3的平方根. (C)0.3 是0.09 的平方根.
(B)0.09是0.3的3倍. (D)0.3不是0.09的平方根.
平方根的表示方法、读法
(4)
4 16, 而 4 2 4 2 16,
2
2
4 的平方根是 4, 即
(5) (6)
4
2
4。
0的平方根是0。
1 3 1 3 9 2 , 2 的平方根是 , 4 2 4 4 2
已知底数、指数,求幂。

2
a
已知幂、指数,求底数。
乘方运算
乘方的逆运算
请认清:

6.1 平方根 课件 2023-2024学年人教版数学七年级下册

6.1 平方根  课件 2023-2024学年人教版数学七年级下册
∴1.4 < < 1.5.
②∵1.412 = 1.9881,1.422 = 2.0164,
而 1.9881 < 2 < 2.0164,
∴1.41 <
< 1.42.
③∵1.4142 = 1.999396,1.4152 = 2.002225,
而 1.999396 < 2 < 2.002225,
∴1.414 <
解:∵|a+7|≥0, − − ≥0,
∴a+7=0,且2a-3b-4=0,
解得a=-7,b=-6.
∴ − = =13.
练习
1.下列说法正确的是 ( A )
A.25是625的算术平方根
B.±4是16的算术平方根
C.-6是(-6)2的算术平方根
D.0.01是0.1的算术平方根
1
1
4
2
0.36
0.6
表一:已知一个正数,求这个正数的平方.
表二:已知一个正数的平方,求这个正数.
表一和表二
中的两种运
算有什么关
系?
探究新知
填表:
正方形的面积/dm2
1
9
16
36
正方形的边长/dm
1
3
4
6
实际上是已知一个正数的平方,
求这个正数的问题.




知识归纳
算术平方根的概念
(1) 一般地,如果一个正数x的平方等于a,即x2=a,那么
关系?你从中得出什么结论?
知识归纳
平方根的概念、开平方
(1)一般地,如果一个数的平方等于 a,那么这个数叫做
a 的平方根或二次方根.
●这就是说 x2 = a,那么 x 叫做 a 的平方根.

人教版初中数学七年级下册6.1.3《平方根》课件(共15张PPT)_2

人教版初中数学七年级下册6.1.3《平方根》课件(共15张PPT)_2
0的平方根是( 0 );
负数有平方根吗?
负数( 没有 )平方根.
探究二、平方根的表示方法
ɑ(ɑ≥0)的平方根表示为:
a
aa0
根号 被开方数
读作正、负根号ɑ
则:16的平方根可以写作: 16=±4
3 表示:__3_的__平__方__根_____
请你区别:( ɑ ≥0 )
α, α
aa0
, α分别表示什么意义?
(1)100 (2) 9
16
(3)0.25
解 (1)10210,0100的平方根是10 ;
(2)
3
2
9
,
4 16
9 16
的平方根是
3 4
;
(3)0.520.25, 0.25的平方根是 0.5.
归纳平方根的性质
aa0
正数的平方根有什么特点?
正数的平方根有( 两 )个,它们互为相反数;
0的平方根是多少?
x2
aa0
a
输出入x
输出入a
平方根的定义:
aa0
一般地,如果一个数的平方等于a,那么这 个数叫做a的平方根或二次方根.这就是说,
如果 x2 a,那么x 叫做a的平方根
探究一、平方根与开平方
x2
a
aa0
x2
a
输入x
输出a 输出x
输入a
平方
互为逆 运算
开平方
例题解析
aa0
例4 求下列各数的平方根
aa0
6.1 平方根
(第二课时)
学习目标
aa0
1、掌握平方根的概念与性质. 2、会通过开平方运算求一个非负数的平方根. 3、理解平方与开平方互为逆运算.

人教版七年级下册数学课件 :6.1平方根(共84张PPT)

人教版七年级下册数学课件 :6.1平方根(共84张PPT)

6.1 平方根/
算术平方根估算数值
例1 估算 19 -3的值 ( A )
A.在1和2之间
B.在2和3之间
C.在3和4之间
D.在4和5之间
解析:因为42<19<52,所以4< 19 <5,所以1< 19 -3<2. 故选A.
总结:估计一个有理数的算术平方根的近似值,必须先判断 这个有理数位于哪两个数的平方之间.
总结:几个非负数的和为0,则每个数均为0,初中阶段学过 的非负数有绝对值、偶次幂及一个数的算术平方根.
巩固练习
6.1 平方根/
4.求下列各式中字母的值. (1)若|a+3|=0 ,则a= -3 ;
(2)若 (m-7)2=0 ,则m= 7 ; (3)若 a 5 0,则a= 5 ;
(4)若 a 3 b 4 0 ,则代数式(a b)2019 =_-
x2
1
4
x 1 1 0.5 42
故每块地板砖的边长是0.5 m.
课堂检测
拓广探索题
6.1 平方根/
已知:|x+2y|+ 求x-3y+4z的值. 解:由题意得:
3x - 7 +(5y + z )2 = 0
3x 7 0, x 2 y 0,5y z 0,
解得 x 7 , y 7 , z 35 ,
素养目标
6.1 平方根/
3. 了解开方与乘方互为逆运算,会用平方运算求 某些非负数的算术平方根.
2. 会求一些数的算术平方根,并用算术平方根符 号表示.
1. 了解算术平方根的概念,会表示正数的算术 平方根,并了解算术平方根的非负性.
探究新知 知识点1

算数平方根-七年级数学下册课件(人教版)

算数平方根-七年级数学下册课件(人教版)


0.0001 0.01 .
能力提升:
1
1
7.已知 2a+1 的算术平方根是 0,b-a 的算术平方根是 ,求 ab 的算术平方根.
2
2
解: 因为 0=0, 2a+1=0,所以 2a+1=0,
1
解得 a=- .
2
因为
1
2
1
= ,所以
4
1 1
= .
4 2
1
1
因为 b-a= ,所以 b-a= .
2
Hale Waihona Puke 496478
= .
(3) 由于 0.012=0.0001,因此 0.0001 = 0.01 .
被开方数越大,对应的算术平方根也越大.
新知探究
知识点2:算术平方根的性质
合作与交流:
1.一个正数的算术平方根有几个?
一个正数的算术平方根有1个
2.0的算术平方有几个?
0的算术平方根有一个,是0.
3.-1有算术平方根吗?负数有算术平方根?
所以 + 2 = 4,
解得 = 2,
所以 2 + 5 = 2 × 2 + 5 = 9.
课堂小结
概念





双重非负性
一般地,如果一个正数 x 的平方
等于 a,即 x2=a,那么这个正数
x 叫做 a 的算术平方根.
a ≥0
≥0
应用
几个非负数的和为0,则
每个数均为0.
当堂检测
基础练习:1.数 4 的算术平方根是( A
8
问题1: (1)因为_____
8
8
即 64 =______.

6.1.1 算术平方根(第一课时)(课件)七年级数学下册(人教版)

6.1.1 算术平方根(第一课时)(课件)七年级数学下册(人教版)

−0.3 2 =0.3.
迁移应用
1.计算:(1) 9 =_____;


(4) (−6)2 =_____;
(2) 0.25=_____;
.
(3)﹣

64
=______;

49


(5) 36+ 16- 25=_____.
2.已知 + 4=3,则x=______.

3.若单项式2xmy3与3xym+n是同类项,则 2 + 的值为______.
解:因为(x-2)2+ + 1+|z-3|=0,
(x-2)2≥0, + 1≥0,|z-3|≥0,
所以(x-2)2=0, + 1=0,|z-3|=0.
所以x-2=0,y+1=0,z-3=0.
所以x=2,y=-1,z=3.
所以(x+3y)z=[2+3×(-1)]3=(-1)3=-1.
迁移应用
所以|3x-3|=0, − 2 =0.
所以3x-3=0,y-2=0,即x=1,y=2.
所以x+4y=1+4×2=9.
因为 9=3,所以x+4y的算术平方根为+ + 3=0,求a(b+c)的值.
解:因为(a+1)2+|b-2|+ + 3=0,
所以a+1=0,b-2=0,c+3=0,

4.若4是3x-2的算术平方根,则x的值是______.

迁移应用
5.求下列各数的算术平方根:
121
(2) ;
100
(1)0.64;

6.1 平方根(第3课时) 初中数学人教版七年级下册教学课件1

6.1 平方根(第3课时) 初中数学人教版七年级下册教学课件1

一般地,如果一个数的平方等于 a,那么这个数叫做 a 的平方根或二次方根. 这就是说,如果 x2=a,那么 x 叫做 a 的平方根. 例如,3 和 -3 是 9 的平方根,简记为 ±3 是 9 的平方根.
已知一个数,求它的平方的运算,叫做平方运算.
平方
+1
-1
1
+2
-2
4
+3
-3
9
反之,已知一个数的平方,求这个数的运算叫什么?
(2)2459; 解:±
2459=±57.
(3)21245; 解:± 22154=±85.
(4) 49.
解:∵ 49=7, ∴ 49的平方根为± 7.
7.若x-3是4的平方根,则x的值为( C )
A.2 B.±2 C.1或5 D.16
8.m的平方根是n+1和n-5,那么mn=__1_8_.
9.下列各数有没有平方根?如果有,求出它的平方根;
1

4
导入新知
填空: (1) 32= 9 ,(-3)2=
9;
(3) 0.82 = 0.64 ,(-0.8)2 = 0.64 .
反过来,如果已知一个数的平方,怎样求 这个数呢?
新知 平方根的定义及性质 思考 如果一个数的平方等于 9,这个数是多少?
完成下列表格.
x2
1
16
36
49
x 1或-1 4或-4 6或-6 7或-7
+1
-1
1
+2
-2
4
+3
-3
9
求一个数 a 的平方根的运算,叫做开平方.平方与开平方 互为逆运算.
解:(1) 因为 (±10)2 = 100,所以 100 的平方根是 ±10; (3)因为 (±0.5)2 = 0.25,所以 0.25 的平方根是 ±0.5.

6.1.1 平方根 课件 2023-2024学年人教版七年级数学下册

6.1.1 平方根 课件 2023-2024学年人教版七年级数学下册

a 是什么数? a 是非负数,即 a 0或 a 0 .
a dm2
-4 有意义吗?你能得出什么结论?
a dm
-4 没有意义 . 结 非负数的算术平方根是非负数, 论 负数没有算术平方根.
归纳
小结
基本条件:a≥0 , a ≥0
a
即算术平方根的双重非负性.
数的角度: a 是一个非负数.
关系的角度: a 的平方是 a; a 是 a 的算术平方根.
解:(1)依次按键 3 1 3 6 = ,
显示:56.
3136 56. 准确数
不同品牌的计算器, 按键顺序有所不同.
例 2 用计算器求下列各式的值:
(1) 3136 ; (2) 2(精确到0.001).
解:(2)依次按键 2 = ,
显示:1.414213562.
2 1.414. 近似数
计算器上显示的
1.414 213 562是 2 的近似值.
对应训练
现在你能计算第一宇宙速 度和第二宇宙速度了吗?
已知:v12 =gR,v22 =2gR,g ≈ 9.8 m/s,2 R ≈ 6.4×106 m. 求v1,v2的值(用科学计数法把结果写成a×10n的形式, 其中a保留小数点后一位).
已知:v12 =gR,v22 =2gR,g ≈ 9.8 m/s2,R ≈ 6.4×106 m求. v1,v2的值(用科学计数法把结果写成a×10n的形 式,其中a保留小数点后一位).
3. (1)若一个数的算术平方根是 13 ,则这个数 是___1_3___.
(2)① 16 =___4__, 16的算术平方根是___2___;
② ( - 5)2 =___5___,( - 5)2 的算术平方根是 ___5___,(-5)2的算术平方根是____5___.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知底数、指数,求幂。

2
a
已知幂、指数,求底数。
乘方运算
乘方的逆运算
请认清:
底数
X =
2
指数
a

a是x的平方幂 ,
x是a的平方根。
一般地,如果一个数的平方等于a,那 么这个数叫做a的平方根,也叫做a 的二次方根。
X =
2
a
x是a的平方根。
请同学们概括一个数的平方根的性质:
3
2
=( 9 )
判断下列说法是否正确:
(1)-9的平方根是-3; ( × )
负数没有平方根
(2)49的平方根是7 ;
2
(
× )
7
2
(3)(-2) 的平方根是±2 ;( √ ) 2 4 (4)-1 是 1的平方根; ( √ ) (5)若X = 16
2
则X = 4

× ) )
(6)7的平方根是±49.
( ×
(3)除了10以外还有什么数的平方也是100吗?
10
填空:
3
2
=( 9 )
2
(- 3 ) = ( 9 )
1 2 ( ) =( 2 1 2 ( ) =( 2
2
( ±3 ) = 9
2
1 ) 4 1 ) 4
1 2 1 ( ± ) = 4 2 2 ( 0) =0
( ) =- 4
2
0 =( 0 )
什么叫乘方?什么叫幂?
小结 和 归纳
1.本节课引入了新的运算------开方运算,开 方和乘方互为逆运算,从而完备了初等代数中 六种基本代数运算(加、减、乘、除、乘方、 开方),这对代数内容学习有着重要的意义。 2.本节主要学习了:①平方根的概念; ②平方 根的性质:一个正数有两个平方根,它们互 为相反数,0的平方根是0,负数没有平方根; ③平方根的表示方法;④求一个数的平方根 的运算—开平方,应分清平方运算与开平方 运算的区别与联系. 3.算术平方根的定义及表示方法
回顾 与 思考 ☞
1、我们已经学习过哪些运算?它们中互 为逆运算的是? 答:加法、减法、乘法、除法、乘方 五种运算。 加法与减法互逆;乘法与除法互逆。
2、乘方有没有逆运算?
7米
7米

(图一)
?Байду номын сангаас
100米2
(图二)
2
(1)图一的正方形的面积为_____; 49米
10米 (2)图二的正方形的边长为_____;
(5)(-4 )2的算术平方根是 4 (6)算术平方根等于它本身的是 0或1
36=_ _ 1.44=_ _ 1 2 =_ _ 25=_ _ 4
学以致用
计算:
(1) 196
解:196 14
(2) 121
解: 121 11
(3) 0.81
解:0.81 0.9
9 (4) 25 9 3 解: 25 5
9的平方根: 9
3
3
9的正的平方根: 9 9的负的平方根:
9 3
25 表示25的正的平方根。
7 表示7的平方根。
0的平方根:0 0
开平方: 求一个数a(a≥0)的平方根的运算,叫做开平 方,开平方运算是已知指数和幂,求底数。 ?是不是所有的数都能进行开平方运算 ? 不是,只有正数和零才能进行开平方运算。
7
思考:81 的平方根是多少?
学以致用
判断下列各数有没有平方根,若有,求其平方根。若没有, 说明为什么。 25 2 (1) 0.81 (2) 36 (3) -100 (4) (-4) 1 ( 5) 0 ( 6) 2 (7) 10
42 解: (1) ∵ 0.9 0.81 0. 9, 即 0.81 0.9 ∴0.81的平方根是 2 25 25 5 5 (2) ∵ ∴ 36 的平方根是 ,即 6 6 36 25 5 36 6 (3)∵ -100 是负数,∴ -100 没有平方根;
2
探究活动
观察右图,每个小正方形的 边长均为1,我们可以得到小 正方形的面积为1. . (1)图中阴影正方形的面积 是多少?它的边长是多少? (2)估计 2 的值在哪两个 整数之间? .
2
课本47页1、2、3题 练习册:平方根
再 见!
由于平方与开平方互为逆运算,因此可以通过 平方运算来求一个数的平方根,也可以通过平方运 算来检验一个数是不是另一个数的平方根。
随堂练习1
1、检验下面各题中前面的数是不是后面的数的平方根。
(1)±12 ,
(3)10
2
144
4
是 是
(2)±0.2 , 0.04 是
(4)14 ,256
,10
不是
2、选择题
1 3 即 2 。 4 2
2
(7)
10


2
10, 10的平方根是 10。
算术平方根的完整定义
正数a的正的平方根叫做 a的算术平方根,0的平方根 也叫做0的算术平方根。
探索 和 交流
(1)9的算术平方根是 3 (2) 9 的算术平方根是
3
( 9 3)
(3)0.01的算术平方根是 0.1 (4)10 的算术平方根是 10
2
得出:
(-3 ) = ( 9 ) 1 2 1 ( 2) =( 4 ) 1 2 1 (- ) =( ) 4 2 2 0 =( 0 )
( ±3 ) = 9
2
1 2 1 (± ) = 4 2 2 ( 0 ) =0
( 不存在 ) =-4
2
一个正数有两个平方根,它们互为相反数; 零有一个平方根,它是零本身; 负数没有平方根。
(1) 0.01的平方根是 ( B ) (A)0.1 (B)±0.1 (C)0.0001 (D)±0.0001 (2)∵ (0.3) = 0.09
2

( C

(A)0.09 是 0.3的平方根. (C)0.3 是0.09 的平方根.
(B)0.09是0.3的3倍. (D)0.3不是0.09的平方根.
练习2:
(4)
4 16, 而 4 2 4 2 16,
2
2
4 的平方根是 4, 即
(5) (6)
4
2
4。
0的平方根是0。
1 3 1 3 9 2 , 2 的平方根是 , 4 2 4 4 2
一般地,如果一个数的平方等于a,那 么这个数叫做a的平方根,也叫做a的 二次方根。
X a
2
a0
平方根的表示方法、读法
根号
a
(a是非负数)
被开方数
一个正数a的正平方根,用“ a”表示,(读作“根号a”)。
a的负平方根,用“ a”表示,(读作“负根号a”)。
合起来,一个正数a的平方根就用“ a”表示,(读作“正、负根号a”)。
相关文档
最新文档