中考总复习:几何初步及三角形--知识讲解(基础)

合集下载

初中中考三角形知识点总结

初中中考三角形知识点总结

初中中考三角形知识点总结一、三角形的定义三角形是平面上的一个图形,它由三条边和三个顶点组成。

三角形是一种基本的几何图形,也是平面几何中研究最多的图形之一。

二、三角形的分类根据三条边的长度,三角形可以分为等腰三角形、等边三角形和普通三角形。

1. 等腰三角形:两条边的长度相等的三角形。

2. 等边三角形:三条边的长度都相等的三角形。

3. 普通三角形:三条边的长度都不相等的三角形。

根据角的大小,三角形可以分为直角三角形、锐角三角形和钝角三角形。

1. 直角三角形:其中一个角是90度的三角形。

2. 锐角三角形:三个角都是锐角的三角形。

3. 钝角三角形:其中一个角是钝角的三角形。

三、三角形的性质1. 三角形的内角和恒为180度。

这是三角形的最基本的性质,也是很多三角形问题的关键。

2. 等腰三角形的性质(1) 两底角相等。

(2) 两边边相等。

3. 等边三角形的性质(1) 三个角均相等,每个角为60度。

(2) 三条边均相等。

4. 直角三角形的性质(1) 两个锐角的和等于90度。

(2) 三个角的和等于180度。

(3) 符合勾股定理:a²+b²=c²。

5. 三角形的外角和等于没有被包含的两个内角的和。

这个性质非常重要,经常和外角性质一起来进行三角形的运算。

6. 三角形的两边之和大于第三边,任意两边之差小于第三边。

这是三角形的一个重要性质,也是判断三角形是否存在的关键。

7. 经常包含的一些特殊的三角形关系(1) 在一个等腰三角形中,这个等腰三角形可以分成两个直角三角形。

(2) 30度和60度角的三角函数值,这种关系是初中数学中的重点内容。

四、初中中考三角形的运算1. 求三角形的周长和面积。

我们经常会遇到问周长或者面积的问题,对初中生来说,掌握好周长和面积的计算方法是非常重要的。

2. 利用三角形的性质进行求解。

在解三角形问题的时候,我们经常会利用三角形的性质,根据题目给出的条件进行运算。

3. 利用勾股定理求解。

三角形的知识点归纳总结

三角形的知识点归纳总结

三角形的知识点归纳总结三角形是平面几何中最基本的图形之一,它有着丰富的性质和知识点。

下面将对三角形的知识点进行归纳总结。

一、基本概念1. 三角形的定义:三角形是由三条线段组成的闭合图形,它的边由三个非共线的点确定。

2. 三角形的元素:三角形有三条边和三个顶点,三角形的三个内角和为180度。

3. 三角形的分类:根据边长和角度的不同,三角形可以分为等边三角形、等腰三角形、直角三角形、锐角三角形和钝角三角形等多种类型。

二、边长关系1. 三角形边长的关系:在任意三角形中,任意两边之和大于第三边,任意两边之差小于第三边。

2. 等边三角形:等边三角形的三边长度相等。

3. 等腰三角形:等腰三角形的两边长度相等,两个底角也相等。

4. 直角三角形:直角三角形有一个内角是90度,满足勾股定理。

5. 锐角三角形:锐角三角形的三个内角都小于90度。

6. 钝角三角形:钝角三角形的一个内角大于90度。

三、角度关系1. 三角形内角和定理:任意三角形的三个内角和为180度。

2. 等角三角形:等角三角形的三个内角相等。

3. 外角和定理:三角形的一个内角的外角和等于180度。

4. 锐角三角形的性质:锐角三角形的三个内角都是锐角,且最小的内角对应最小的边。

5. 钝角三角形的性质:钝角三角形的一个内角是钝角,且最大的内角对应最长的边。

四、重要定理1. 三角形的中线定理:三角形的三条中线交于一点,且这个点到三个顶点的距离相等,且等于中线的一半。

2. 三角形的高线定理:三角形的三条高线交于一点,且这个点到三个顶点的距离相等。

3. 三角形的角平分线定理:三角形的三条角平分线交于一点,且这个点到三个顶点的距离相等。

五、面积公式1. 三角形面积的计算:三角形的面积可以使用海伦公式或底边高公式进行计算。

2. 海伦公式:设三角形的边长为a、b、c,半周长为s,则三角形的面积S等于sqrt(s(s-a)(s-b)(s-c))。

3. 底边高公式:设三角形的底边长为b,高为h,则三角形的面积S等于1/2 * b * h。

中考重点三角形的认识与性质

中考重点三角形的认识与性质

中考重点三角形的认识与性质中考重点:三角形的认识与性质简介:三角形是几何学中最基本的图形之一,在中考数学考试中,对于三角形的认识与性质掌握是至关重要的。

本文将介绍三角形的基本知识,包括三角形的定义、分类、重要性质以及与常见图形的关系,帮助考生进行复习和备考。

一、三角形的定义和分类三角形是由三条线段组成的图形,在几何学中具有重要的地位。

根据边长和角度的不同,三角形可以进行如下分类:1.按边长分类:(1)等边三角形:三条边的长度相等。

等边三角形的内角也相等,每个角都是60°。

(2)等腰三角形:两条边的长度相等。

等腰三角形的底角相等,两个底角的角度和等于顶角的角度。

2.按角度分类:(1)直角三角形:其中一个角为直角(90°),其他两个角加起来等于90°。

(2)钝角三角形:其中一个角为钝角(大于90°)。

(3)锐角三角形:所有角都是锐角(小于90°)。

二、三角形的重要性质三角形作为几何学中的基本图形,具有一些重要的性质。

在中考中,考生需要了解并掌握以下性质:1.内角和的性质:(1)三角形的内角和等于180°。

这个性质在解答与三角形相关的习题时经常使用,可以帮助求解未知角度。

2.角的分类:(1)锐角三角形的三个内角都是锐角;(2)直角三角形有一个直角,其他两个角是锐角;(3)钝角三角形有一个钝角,其他两个角是锐角。

3.边的关系:(1)两边之和大于第三边。

即对于三角形的任意两边,两边之和大于第三边,否则无法构成三角形;(2)两边之差小于第三边。

即对于三角形的任意两边,两边之差小于第三边。

三、三角形与常见图形的关系三角形与其他几何图形之间存在一些联系和关系,了解这些关系可以帮助考生更好地理解和运用三角形的性质。

1.三角形与四边形的关系:(1)三角形是最简单的四边形,它是四边形的一种特殊情况。

(2)若一个四边形的对角线相等且交点处的角是直角,则这个四边形是一个矩形,也是一个等腰梯形。

几何题初三知识点归纳总结

几何题初三知识点归纳总结

几何题初三知识点归纳总结几何是数学中的一个重要分支,研究空间、形体和其性质的科学。

在初中阶段,几何作为数学的一个主要组成部分,扮演着提高学生空间想象力、推理能力和解决实际问题的重要角色。

以下是几何题初三知识点的归纳总结。

一、平面图形初三几何中最基础而重要的知识点是平面图形,主要有以下几种形状:1. 三角形三角形是由三条边和三个顶点构成的图形。

根据角度的不同,可分为等边三角形、等腰三角形和一般三角形。

2. 矩形矩形是一个有四条边的图形,四个角都是直角,并且相对的边长相等。

3. 正方形正方形是一种特殊的矩形,所有边长均相等,并且每个角都是直角。

4. 平行四边形平行四边形有两组对边互相平行,对边长度相等。

二、立体图形除了平面图形,初三几何还包括立体图形的知识点,主要有以下几种形状:1. 立方体立方体是一个有六个相等的正方形面的立体图形。

2. 圆柱体圆柱体是一个有两个相等的平行圆底面,并用一直线与两底面连接的立体图形。

3. 圆锥体圆锥体是一个有一个圆底面,并用一直线连接圆心和侧面上的点的立体图形。

4. 球体球体是一个所有点到心距离都相等的立体图形。

三、相似形与全等形1. 相似形相似形是指形状相同但大小不同的图形,各边之间的比值相等。

2. 全等形全等形是指形状和大小完全相同的图形,各边之间对应的边长相等,对应角度相等。

四、平面几何的运算1. 长度的计算计算平面图形边长的方法,如三角形的周长、矩形的周长等。

2. 面积的计算计算平面图形面积的方法,如三角形的面积、矩形的面积等。

五、空间几何的运算1. 体积的计算计算立体图形体积的方法,如立方体的体积、圆柱体的体积等。

2. 表面积的计算计算立体图形表面积的方法,如立方体的表面积、圆柱体的表面积等。

以上是初三几何题知识点的简要归纳总结。

通过学习和掌握这些几何知识点,可以帮助学生培养空间想象力和推理能力,提高解决实际问题的能力。

在解答几何题时,需要注意题目的要求,运用所学知识进行分析和推导,巩固几何知识点的同时,也提高了数学解题能力的水平。

中考数学三角形知识点总结

中考数学三角形知识点总结

中考数学三角形知识点总结在中考数学中,三角形是一个重要的基础概念。

掌握三角形的性质和相关知识点,能够帮助学生更好地理解和解决与三角形相关的问题。

本文将对中考数学中常见的三角形知识点进行总结,包括三角形的分类、重要的定理以及相关的计算技巧。

【1】三角形的分类根据三角形的边长和角度的不同,可以将三角形分为以下几类:1.1 等边三角形:三条边都相等的三角形,每个角均为60度。

1.2 等腰三角形:两边相等的三角形,两个底角也相等。

1.3 直角三角形:一个角为90度的三角形,其他两个角的和为90度。

1.4 钝角三角形:一个角大于90度的三角形。

1.5 锐角三角形:三个角均小于90度的三角形。

【2】三角形的性质和定理2.1 三角形内角和定理:一个三角形的三个角的和为180度。

2.2 三角形外角定理:一个三角形的外角等于其不相邻的两个内角的和。

2.3 三角形的边长关系定理:2.3.1 已知两边之差和两边之和,求两边的关系:若两边之差等于已知数a,两边之和等于已知数b,则两边的关系为:较长的边 = (a + b) / 2较短的边 = (b - a) / 22.3.2 已知两边之积和面积,求两边的关系:若两边之积等于已知数a,三角形面积等于已知数S,则两边的关系为:较长的边 = 2S / a较短的边 = a / (2S)2.4 直角三角形的性质和定理:2.4.1 勾股定理:直角三角形斜边的平方等于两直角边的平方和。

2.4.2 定理1:直角三角形的斜边最长。

2.4.3 定理2:直角三角形斜边和直角边搭起的两个直角三角形,斜边较长的直角三角形面积较大。

【3】三角形的计算技巧3.1 三角形周长的计算:三角形的周长等于三边之和。

3.2 三角形面积的计算:根据三角形的面积公式,可以通过底边和高来计算三角形的面积。

3.3 相似三角形的性质:相似三角形具有对应角相等和对应边成比例的性质,可以利用这些性质进行求解。

3.4 利用三角形的边长比例进行计算:根据已知条件,可以建立各边之间的比例关系,从而求解未知边长。

初中数学几何的总结知识点

初中数学几何的总结知识点

初中数学几何的总结知识点一、几何基本概念1. 点、线、面的基本概念2. 线段、射线、角的基本概念3. 有向线段,边界二、角的性质1. 同位角、余角、邻补角、对顶角2. 锐角、直角、钝角、平角3. 角的度量、角的度分秒制三、相交线和平行线1. 同位角相等2. 对顶角相等3. 垂直线、垂直平行线的判定4. 平行线的性质:平行线性质的等价命题、平行线的性质四、三角形1. 三角形的分类2. 三角形内角和定理3. 三角形的边对角和定理4. 三角形的外角和定理5. 三角形的相似性质6. 相似三角形的判定、相似三角形的性质7. 角平分线定理、中位线定理五、全等三角形1. 全等三角形的对应角、对应边性质2. 全等三角形的判定六、直角三角形1. 勾股定理2. 直角三角形的性质和判定七、平行四边形1. 平行四边形的性质2. 矩形、正方形、菱形、长方形的性质3. 平行四边形的判定八、多边形1. 多边形的命名和分类2. 多边形内角和定理3. 多边形外角和定理4. 等边多边形的性质5. 正多边形的性质九、圆1. 圆的基本概念2. 圆的性质3. 圆周角和圆心角4. 弧长和面积5. 切线和切点6. 相交弦定理7. 立体几何体的基本概念8. 空间直角坐标系与距离十、空间图形1. 空间的基本概念2. 空间图形的基本元素3. 空间图形的分类4. 体积的计算5. 柱、锥、台、球的表面积和体积以上是初中数学几何的基本知识点,同学们要在平时多加强练习,掌握这些知识点,从而提高数学水平。

初三三角形的知识点归纳

初三三角形的知识点归纳

初三三角形的知识点归纳一、三角形的定义和性质三角形是由三条线段组成的闭合图形,它有许多重要的性质和定义。

以下是三角形的一些基本知识点:1.三角形的定义三角形是由三条线段组成的闭合图形,它的边界由三个顶点连接而成。

2.三角形的分类根据边的长度和角的大小,三角形可以分为以下几类:等边三角形、等腰三角形、直角三角形、一般三角形等。

3.三角形内角和外角的性质三角形的内角和为180度,外角与其对应的内角之和也为180度。

4.三角形的高和重心三角形的高是从顶点到底边的垂直距离,重心是三条中线的交点,它将三角形分成三个面积相等的小三角形。

二、三角形的重要定理和公式三角形有许多重要的定理和公式,它们有助于我们求解三角形的各种问题。

以下是一些常用的定理和公式:1.三角形的面积公式三角形的面积可以用底边和高、两边和夹角的正弦、余弦、正切等函数关系来计算。

2.三角形的相似定理如果两个三角形的对应角相等,那么它们的对应边的比例也相等,这个性质被称为三角形的相似定理。

3.直角三角形的勾股定理直角三角形中,斜边的平方等于两条直角边的平方和,这个定理被称为勾股定理。

4.三角形的角平分线定理三角形中,角的平分线从顶点出发,平分对应角,并且与对边相交于一点。

5.三角形的中线定理三角形的三条中线交于一点,且这个交点到三个顶点的距离等于中线长度的二分之一。

三、三角形的应用三角形的知识点在实际中有许多应用。

以下是一些常见的三角形应用场景:1.三角测量三角形的知识在测量中有很多应用,比如利用三角形的正弦、余弦、正切函数求解难以测量的距离或高度。

2.建筑设计在建筑设计中,三角形的知识可以帮助设计师计算建筑物的高度、角度和斜率等。

3.地理测量地理测量中经常使用三角形的知识来计算地球上两点之间的距离、方位角等。

4.卫星定位卫星定位系统如G PS利用三角测量的原理来确定地理位置和导航方向。

结语初三的三角形知识点归纳了三角形的定义和性质、重要定理和公式以及应用场景。

中考几何复习第二讲(三角形的基础知识)

中考几何复习第二讲(三角形的基础知识)

几何复习第二讲:三角形的基础1.三边关系:两边之和大于第三边,两边之差小于第三边。

(1)有长度为3,5,7,9四条线段,从中任取三条线段能够组成三角形的概率是。

应用:将军饮马(2)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.①求这条抛物线所对应的函数关系式;②在抛物线的对称轴直线x=1上找到一点M,使△ACM周长最小,请求出此时点M的坐标与△ACM周长最小值.(结果保留根号)(3)如图,已知⊙O的直径MN=1,点A在圆上,且∠AMN的度数为30°,点B是弧AN 的中点,点P在直径MN上运动,求BP+AP的最小值.变式:(4)如图,在直角坐标系内有两个点A(-1,-1),B(2,3),若M为x轴上一点,且使MB-MA最大,求M点的坐标,并说明理由.2.内、外角关系(1)如图,求∠1,∠2,∠3,∠4,∠5,∠6这六个角的度数和。

(2)下列四组比值是三个角的度数之比。

①2:3:5 ②1:3:5 ③4:5:6 ④2:3:4其中可能是三角形不共顶点的三个外角的度数比的有。

3.重要线段:中线、高线、角平分线、中位线中线(连结一边中点与所对顶点的线段):倍长(1)如图,在△ABC中,AC=7,中线AD=5,则AB边的取值范围是?(2)如图,在△ABC中,AD交BC于点D,点E是BC中点,EF∥AD交CA的延长线于点F,交EF于点G,若BG=CF,求证:AD为△ABC的角平分线.中位线(连结三角形两边中点的直线)平行且等于第三边的一半(1)如图,已知M、N、P、Q分别为AB、BD、CD、AC的中点,求证:四边形MNPQ是平行四边形.(2)已知:如图,四边形ABCD中,AB=CD,E、F分别为BC、AD的中点,BA、EF的延长线交于点M,CD、EF的延长线交于点N.求证:∠AME=∠DNE.(3)如图,在△ABC 中,CA=CB ,AB=6,CD=4,E 是高线CD 的中点,以CE 为半径作⊙C ,点G 是⊙C 上的一个动点,P 是AG 中点,DP 的最大值为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考总复习:几何初步及三角形—知识讲解(基础)【考纲要求】1.了解直线、射线、线段的概念和性质以及表示方法,掌握三者之间的区别和联系,会解决与线段有关的实际问题;2.了解角的概念和表示方法,会把角进行分类以及进行角的度量和计算;3.掌握相交线、平行线的定义,理解所形成的各种角的特点、性质和判定;4.了解命题的定义、结构、表达形式和分类,会简单的证明有关命题;5.了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高,了解三角形的稳定性.【知识网络】【考点梳理】考点一、直线、射线和线段1.直线代数中学习的数轴和一张纸对折后的折痕等都是直线,直线可以向两方无限延伸.(直线的概念是一个描述性的定义,便于理解直线的意义).要点诠释:1).直线的两种表示方法:(1)用表示直线上的任意两点的大写字母来表示这条直线,如直线AB,其中A、B是表示直线上两点的字母;(2)用一个小写字母表示直线,如直线a.2).直线和点的两种位置关系(1)点在直线上(或说直线经过某点);(2)点在直线外(或说直线不经过某点).3).直线的性质:过两点有且只有一条直线(即两点确定一条直线).2.射线直线上一点和它一旁的部分叫做射线.射线只向一方无限延伸.要点诠释:(1)用表示射线的端点和射线上任意一点的大写字母来表示这条射线,如射线OA,其中O是端点,A是射线上一点;(2)用一个小写字母表示射线,如射线a.3.线段直线上两点和它们之间的部分叫做线段,两个点叫做线段的端点.要点诠释:1).线段的表示方法:(1)用表示两个端点的大写字母表示,如线段AB,A、B是表示端点的字母;(2)用一个小写字母表示,如线段a.2).线段的性质:所有连接两点的线中,线段最短(即两点之间,线段最短).3).线段的中点:线段上一点把线段分成相等的两条线段,这个点叫做线段的中点.4).两点的距离:连接两点间的线段的长度,叫做两点的距离.考点二、角1.角的概念:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,两条射线分别叫做角的边.(2)定义二:一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角.射线旋转时经过的平面部分是角的内部,射线的端点是角的顶点,射线旋转的初始位置和终止位置分别是角的两条边.要点诠释:1).角的表示方法:(1)用三个大写字母来表示,注意将顶点字母写在中间,如∠AOB;(2)用一个大写字母来表示,注意顶点处只有一个角用此法,如∠A;(3)用一个数字或希腊字母来表示,如∠1,∠.2).角的分类:(1)按大小分类:锐角----小于直角的角(0°<<90°);直角----平角的一半或90°的角(=90°);钝角----大于直角而小于平角的角(90°<<180°);(2)平角:一条射线绕着端点旋转,当终止位置与起始位置成一条直线时,所成的角叫做平角,平角等于180°.(3)周角:一条射线绕着端点旋转,当终止位置又回到起始位置时,所成的角叫做周角,周角等于360°.(4)互为余角:如果两个角的和是一个直角(90°),那么这两个角叫做互为余角.(5)互为补角:如果两个角的和是一个平角(180°),那么这两个角叫做互为补角. 3).角的度量:(1)度量单位:度、分、秒;(2)角度单位间的换算:1°=60′,1′=60″(即:1度=60分,1分=60秒);(3)1平角=180°,1周角=360°,1直角=90°.4).角的性质:同角或等角的余角相等,同角或等角的补角相等.2.角的平分线:如果一条射线把一个角分成两个相等的角,那么这条射线叫做这个角的平分线.考点三、相交线1.对顶角(1)定义:如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.(2)性质:对顶角相等.2.邻补角(1)定义:有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.(2)性质:邻补角互补.3.垂线(1)定义:当两条直线相交所得的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,它们的交点叫做垂足.垂直用符号“⊥”来表示.要点诠释:①过一点有且只有一条直线与已知直线垂直.②连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.(2)点到直线的距离定义:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离. 4.同位角、内错角、同旁内角(1)基本概念:两条直线(如a、b)被第三条直线(如c)所截,构成八个角,简称三线八角,如图所示:∠1和∠8、∠2和∠7、∠3和∠6、∠4和∠5是同位角;∠1和∠6、∠2和∠5是内错角;∠1和∠5、∠2和∠6是同旁内角.(2)特点:同位角、内错角、同旁内角都是由三条直线相交构成的两个角.两个角的一条边在同一直线(截线)上,另一条边分别在两条直线(被截线)上.考点四、平行线1.平行线定义:在同一平面内,不相交的两条直线叫做平行线.平行用符号“∥”来表示,.如直线a 与b平行,记作a∥b.在几何证明中,“∥”的左、右两边也可能是射线或线段.2.平行公理及推论:(1)经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c.3.性质:(1)平行线永远不相交;(2)两直线平行,同位角相等;(3)两直线平行,内错角相等;(4)两直线平行,同旁内角互补;(5)如果两条平行线中的一条垂直于某直线,那么另一条也垂直于这条直线,可用符号表示为:若b∥c,b⊥a,则c⊥a.4.判定方法:(1)定义;(2)平行公理的的推论;(3)同位角相等,两直线平行;(4)内错角相等,两直线平行;(5)同旁内角互补,两直线平行;(6)垂直于同一条直线的两条直线平行.考点五、命题、定理、证明1.命题:(1)定义:判断一件事情的语句叫命题.(2)命题的结构:题设+结论=命题;(3)命题的表达形式:如果……那么……;若……则……;(4)命题的分类:真命题和假命题;(5)逆命题:原命题的题设是逆命题的结论,原命题的结论是逆命题的题设.2.公理、定理:(1)公理:人们在长期实践中总结出来的能作为判断其他命题真假依据的真命题叫做公理.(2)定理:经过推理证实的真命题叫做定理.3.证明:用推理的方法证实命题正确性的过程叫做证明.考点六、三角形的概念及其性质1.三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三角形的分类(1)按边分类:(2)按角分类:3.三角形的内角和外角(1)三角形的内角和等于180°.(2)三角形的任意一个外角等于和它不相邻的两个内角之和;三角形的一个外角大于任何一个和它不相邻的内角.4.三角形三边之间的关系三角形任意两边之和大于第三边,任意两边之差小于第三边.5.三角形内角与对边对应关系在同一个三角形内,大边对大角,大角对大边;在同一三角形中,等边对等角,等角对等边.6.三角形具有稳定性.7. 三角形中的四条特殊的线段是:高线、角平分线、中线、中位线.要点诠释:三角形的中位线:连结三角形两边中点的线段是三角形的中位线.中位线定理:三角形的中位线平行于第三边且等于第三边的一半.【典型例题】类型一、直线、射线及线段1.数轴上有两点A、B分别表示实数a、b,则线段AB的长度是( )A.a-bB.a+bC.│a-b│D.│a+b│【思路点拨】根据数轴上两点之间的距离公式即可解决问题.【答案】C.【解析】本类题目注意线段长度是非负数,若有字母注意使用绝对值.根据题意,画图.数轴上两点间的距离公式为:│a-b│或│b-a│.【总结升华】解决本例类型的题目应结合图形,即数形结合,这样做起来简捷.2.有一段火车路线,含这段铁路的首尾两站在内共有5个车站(如图),图中共有几条线段?在这段线路上往返行车,需印制几种车票(每种车票要印出上车站与下车站)?【思路点拨】先求得单程的车票数,再求出往返的车票数即可.【答案与解析】线段有10条;车票需要2×10=20种.【总结升华】在直线上确定线段的条数公式为: (其中n为直线上点的个数).在求从一个顶点引出的n条射线所形成的小于平角的角的个数也可用此公式.举一反三:【变式】如图,点A、B、C在直线上,则图中共有______条线段.【答案】3.类型二、角3.如图,已知∠COE=∠BOD=∠AOC=90°,则图中互余的角有______对,互补的角有______对.【思路点拨】先要确定等角,再根据角的性质进行判断.【答案与解析】互余的角有:∠COD和∠DOE、∠COD和∠BOC、∠AOB和∠DOE、∠AOB和∠BOC,共4对;互补的角有:∠EOD和∠AOD、∠BOC和∠AOD、∠AOB和∠BOE、∠COD和∠BOE、∠AOC和∠COE、∠AOC和∠BOD、∠COE和∠BOD,共7对.【总结升华】在本题目中,当图中的角比较多时,就将图形的角进行归类,找出每种相等的角,按照同角或等角的余角相等,同角或等角的补角相等的性质解决问题,注意要不重不漏.举一反三:【变式】【高清课堂:几何初步及三角形专题一 2】【答案】70°.类型三、相交线与平行线4.如图,若AB∥CD,则∠A、∠E、∠D之间的关系是( ).A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°C.∠A+∠E-∠D=180°D.∠A+∠E+∠D=270°【思路点拨】通过观察图形,可作出一条辅助线即平行线,从而把问题化难为易.【答案】C.【解析】如图,过E作EF∥AB,则也平行于CD,∴∠A+∠AEF=180°∠FED=∠D ∴∠A+∠AEF=∠A+∠AED-∠D=180°,故选C.【总结升华】本题考点:平行线的性质.举一反三:【变式】(1)两平行直线被第三条直线所截,同位角的平分线( )A.互相重合B.互相平行C.互相垂直D.相交【答案】B.类型四、三角形5.三角形的三边分别为3,1-2a,8,则a的取值范围是( )A.-6<a<-3 B.-5<a<-2 C.2<a<5 D.a<-5或a>-2 【思路点拨】本题考查了三角形的三边关系.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.【答案】B.【解析】根据三角形三边关系得:8-3<1-2a<8+3,解得-5<a<-2,应选B.【总结升华】涉及到三角形三边关系时,尽可能简化运算,注意运算的准确性.举一反三:【变式】已知a,b,c为△ABC的三条边,化简得_________. 【答案】∵a,b,c为△ABC的三条边∴a-b-c<0, b-a-c<0∴=(b+c-a)+(a+c-b)=2c.6. 下列命题:(1)等边三角形也是等腰三角形;(2)三角形的外角等于两个内角的和;(3)三角形中最大的内角不能小于60°;(4)锐角三角形中,任意两内角之和必大于90°,其中错误的个数是( )A.0 个B.1个C.2个D.3个【思路点拨】认真阅读各小题提供的已知条件,依据三角形的分类方法,然后根据三角形内角和为180°进行分析解答.【答案】B.【解析】(2)中应强调三角形的外角等于不相邻的两个内角的和;三角形中最大的内角若小于60°,则三个角的和就小于180°,不符合三角形内角和定理,故(3)正确;(4)三角形中,任意两内角之和若不大于90°,则另一个内角就大于或等于90°,就不能是锐角三角形.所以只有(2)错,故选B.【总结升华】本题的解题关键是要理解定义,掌握每种三角形中角的度数的确定.举一反三:【变式】【高清课堂:几何初步及三角形专题二 3】【答案】15°.。

相关文档
最新文档