北师大版高三数学选修4-4教案:1.2极坐标系的的概念

合集下载

选修4-4 1.2 极坐标系

选修4-4 1.2 极坐标系
之间的距离可总结如下: P P2 2 1 2 cos(1 2 ) 1
2 1 2 2
o
x
思考:极坐标系中,点A的极坐标是(3, ) 6

11 (3, ) (1)点A关于极轴对称的点是_______________ 6 7 (3, ) (2)点A关于极点对称的点的极坐标是__________ 6 5 (3, ) (3)点A关于直线 = 的对称点的极坐标是_______ 6 2

M
题组二:在极坐标系里描出下列各点
A(3, 0) 4 D(5, ) 3 5 G(6, ) 3 B(6, 2 ) 5 E (3, ) 6 C (3, ) 2 F (4, )


2
5 6

4

E F O
C A B X
4 3
D
G
5 3
四、极坐标系下点与它的极坐标的 对应情况 P
[1]给定(,),就可以在极坐 标平面内确定唯一的一点M。 [2]给定平面上一点M,但却 有无数个极坐标与之对应。
从这向北 2000米。
请问:去菜 市场怎么走?
请分析上面这句话,他告诉了问路人 什么? 从 这 向 北 走 2 0 0 0 米 !
出发点
方向
距离
在生活中人们经常用方向和距离来 表示一点的位置。这种用方向和距离表 示平面上一点的位置的思想,就是极坐 标的基本思想。
一、极坐标系的建立:
在平面内取一个定点O,叫做极点。 引一条射线OX,叫做极轴。 再选定一个长度单位 和角度单位及它的正 方向(通常取逆时针 O 方向)。
如图:OM的长度为4, 4 请说出点M的极坐标的其 他表达式。 O X 思:这些极坐标之间有何异同? 极径相同,不同的是极角 思考:这些极角有何关系? 这些极角的始边相同,终边也相同。也 就是说它们是终边相同的角。

北师大版高中数学选修4-4课件高二理科同步课件:1.2.1极坐标系的概念随堂验收(共14张PPT)

北师大版高中数学选修4-4课件高二理科同步课件:1.2.1极坐标系的概念随堂验收(共14张PPT)

4
6.点M(1,θ)(θ∈[0,π])的轨迹是( ) A.射线 B.直线 C.圆 D.半圆 答案:D 解析:由于M(1,θ)满足ρ=|OM|=1,θ∈[0,π],故点M的轨迹是以
极点为圆心,半径为1的圆的上半部分,即半圆.
7.将极轴Ox绕极点顺时针方向旋转

6
得到射线OP,若在OP
上取点M,使|OM|=4,则ρ>0,θ∈[0,2π]时点M的极坐标为
(4,11 )
_____6___.
解析:ρ=|OM|=4,与OP终边相同的角为2kπk=1,θ= 161π,∴M(4,π)1.61

6
,k∈Z,令
8.点
M
(6,
5 6

)
到极轴所在直线的距离为_____3___.
5
解析:依题意,点M(6,
π=3.
5
π6)到极轴所在直线的距离为d=6×sin
6
D.(3, )
答案:A
解析:如图所示,
COx 3 ,| OC || OA | tan 2 3.
24 4
3
5.点M(ρ, ) (ρ≥0)的轨迹是( )
4 A.点 B.射线 C.直线 D.圆
答案:B


解析轨:迹由是于极动角点为M的(ρ,终边)4的,是极一角条θ射=,线ρ取,故一4选切B2, )
3
C.(2, 4 )
3
B.(2, 2 )
3
D.(2, 5 )
3
答案:D
解析:如图所示,
设点 P(2, 3关) 于极轴的对称点为P′,易得P′点的极坐标为 (2, 5 ).
3
3.下列点与极点O, M(2, 5 )三点共线的是

高二数学选修44教案01极坐标系

高二数学选修44教案01极坐标系

高中数学选修4-4教案1极坐标的概念教学目标:使学生理解极坐标系的概念;两点之间的距离。

教学重点:极坐标系、点的极坐标;应能熟练地根据坐标描点及求一个点的坐标、对称点的极坐标教学难点:点的极坐标不惟一是学习的难点.教学过程设计:极坐标系与直角坐标系,虽然是两种不同的描述点位置的方法,但它们的基本观念是一致的,即坐标的观念,即把坐标看成有序实数对。

极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的.一、问题引入教师对直角坐标系作简要回顾如下:建立直角坐标系,使几何问题代数化,将几何问题,由平面几何中的定性研究,转变为解析几何中的定量研究.解析几何的出发点是点用坐标表示,注意以下几点:①一个点的坐标是一对有序实数,点和它的坐标是一一对应的;②直角坐标系有三个要素:原点、单位、坐标轴的方向;③同一点在不同的坐标系中,坐标不同.回顾这些知识后提出问题(回顾知识要点是为了寻求新知识的生长点和突破口):除了直角坐标系,还有没有确定点的位置的方法?学生可能有多种回答,答案可能有以下几中:①用仿射坐标表示一个点,它与直角坐标系的主要区别是坐标轴的夹角不是90°;②用船在岛的南40°东的说法表示方向,再加一个船与岛的距离表示船的位置,这实际上是用方向角及距离表示位置;③把正北定为0°,90°是正西,180°是正南,270°是正东,利用一个角度及一个距离表示点的位置,这实际上是利用方位角表示一个点;④密位法:把一个周角分为6000份,一份称为1密位,其它与方位角表示点的方法相同,只是方向更细些.炮兵常用密位法表示方向.教师对学生回答的各种方法加以概括:一个点可以用不同的坐标系表示,但有两点是一致的,一是建立坐标系一般包括原点,长度单位,角度单位和方向,二是一对有序实数表示平面上一个点,可以通俗地说“平面上点的坐标是点坐落位置的标记,这个标记是一对有序实数”.由此可以转入新课的学习.这样作,教师在不断点拨中,逐步抽象出问题的本质,使学生联想思维水平层层递进,从多方面考虑问题,探求问题答案,达到殊途同归的目的.二、数学构建定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。

数学北师大版选修4-4学案:1-2-1+2极坐标系的概念 点的极坐标与直角坐标的互化 含解析 精品

数学北师大版选修4-4学案:1-2-1+2极坐标系的概念 点的极坐标与直角坐标的互化 含解析 精品

§2 极坐标系 2.1 极坐标系的概念2.2 点的极坐标与直角坐标的互化1.掌握极坐标的概念,弄清极坐标的结构(建立极坐标的四要素).2.理解广义极坐标下点的极坐标(ρ,θ)与点之间的多对一的对应关系.3.已知一点的极坐标,能在极坐标系中描点,能进行点的极坐标与直角坐标的互化.1.极坐标系的概念 (1)极坐标系的建立.如图,在平面内取一个定点O ,叫作____,从点O 引一条射线Ox ,叫作____,选定一个________和__的正方向(通常取逆时针方向).这样就确定了一个平面极坐标系,简称为________.(2)点的极坐标的规定.①如图,对于平面内任意一点M ,用ρ表示线段OM 的长,θ表示以Ox 为始边、OM 为终边的角,ρ叫作点M 的____,θ叫作点M 的____,有序实数对(ρ,θ)叫作点M 的______,记作M ______.当点M 在极点时,它的极径ρ=__,极角θ可以取______.②为了研究问题方便,极径ρ也允许取负值.当ρ<0时,点M (ρ,θ)的位置可以按下列规则确定:作射线OP ,使∠xOP =θ,在OP 的__________上取一点M ,使|OM |=|ρ|,这样点M 的坐标就是(ρ,θ),如下图:【做一做1-1】在极坐标系中,与点π36⎛⎫ ⎪⎝⎭,重合的点是( ). A .⎝ ⎛⎭⎪⎫3,136π B .⎝⎛⎭⎪⎫3,-π6C .⎝ ⎛⎭⎪⎫3,176πD .⎝⎛⎭⎪⎫3,-56π【做一做1-2】在极坐标系中,与(ρ,θ)关于极轴对称的点是( ). A .(ρ,θ) B .(ρ,-θ) C .(ρ,θ+π) D .(ρ,π-θ) 2.点的极坐标与直角坐标的互化 (1)互化的前提条件.如图,建立一个平面直角坐标系,把平面直角坐标系的原点作为____,x 轴的正半轴作为____,建立极坐标系,并且两种坐标系中取相同的________.(2)互化公式.如上图,设M 是平面内的任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ).如果限定ρ取正值,θ∈[0,2π),那么除____外,平面内点的直角坐标与极坐标之间就是一一对应的.①点M 的极坐标(ρ,θ)化为直角坐标(x ,y )的公式是⎩⎪⎨⎪⎧x = ,y = .②点M 的直角坐标(x ,y )化为极坐标(ρ,θ)的公式是⎩⎪⎨⎪⎧ρ2= ,tan θ= .【做一做2-1】点M 的极坐标为⎝ ⎛⎭⎪⎫5,23π,化成直角坐标形式是__________.【做一做2-2】点A 的极坐标为⎝⎛⎭⎪⎫-2,-π3,化成直角坐标形式是__________. 【做一做2-3】点P 的直角坐标为(6,2),化成极径是正值,极角在0到2π之间的极坐标为__________.1.建立极坐标系的意义 剖析:我们已经知道,确定平面内一个点的位置时,有时是依靠水平距离与垂直距离(即“长度”与“长度”,这就是直角坐标系的基本思想)这两个量来刻画,有时却是依靠距离与方位角(即“长度”与“角度”,这就是极坐标系的基本思想)这两个量来刻画.在生活中,如在台风预报、地震预报、测量、航空、航海中,甚至更贴近我们生活的如我们听到的声音,不但有高低之分,还有方向之分,我们能够辨别出声源的相对位置,这些都要用距离和方向来确定一点的位置.有些复杂的曲线,比如说环绕一点作旋转运动的点的轨迹,用直角坐标表示,形式极其复杂,但用极坐标表示,就变得十分简单且便于处理.在应用上有重要价值的等速螺线,它的直角坐标x 与y 之间的关系很难确定,可是它的极坐标ρ与θ却有一个简单的一次函数关系,我们将在后一节的内容中学习极坐标形式下的一些简单曲线方程.总之,使用极坐标是人们生产生活的需要.平面内建立直角坐标系是人们公认的最容易接受并且被经常采用的方法,但它并不是确定点的位置的唯一方法.2.极坐标系下点与它的极坐标对应情况剖析:(1)给定点(ρ,θ),就可以在极坐标平面内确定唯一的一个点M ;(2)给定平面上一点M ,却有无数个极坐标与之对应.原因在于极角有无数个.答案:1.(1)极点 极轴 单位长度 角 极坐标系(2)①极径 极角 极坐标 (ρ,θ) 0 任意值 ②反向延长线【做一做1-1】A 当k ∈Z 时,(ρ,θ),(ρ,θ+2k π),(-ρ,θ+(2k +1)π)表示同一个点.因为13π6=π6+2π,所以点⎝ ⎛⎭⎪⎫3,π6与⎝ ⎛⎭⎪⎫3,13π6表示同一个点,即重合. 【做一做1-2】B 极径为ρ,极角为θ,θ关于极轴对称的角为负角-θ,故所求的点为(ρ,-θ).2.(1)极点 极轴 单位长度 (2)原点 ①ρcos θ ρsin θ ②x 2+y 2y x(x ≠0) 【做一做2-1】⎝ ⎛⎭⎪⎫-52,532 x =5cos 23π=-52,y =5sin 23π=532.所以点M 的直角坐标为⎝ ⎛⎭⎪⎫-52,532.【做一做2-2】(-1,3) 因为点A 的极坐标又可以写成⎝⎛⎭⎪⎫2,2π3,所以x =ρcos θ=2cos 2π3=2×⎝ ⎛⎭⎪⎫-12=-1, y =ρsin θ=2sin2π3=2×32= 3. 所以点A 的直角坐标为(-1,3).【做一做2-3】⎝ ⎛⎭⎪⎫22,π6 ρ=62+22=22,tan θ=26=33,又点P 在第一象限,得θ=π6,因此点P 的极坐标是⎝ ⎛⎭⎪⎫22,π6.题型一 极坐标系中点的表示【例1】已知点M 的极坐标为⎝⎛⎭⎪⎫5,π3,下列给出的四个坐标中能表示点M 的坐标的是( ).A .⎝ ⎛⎭⎪⎫5,-π3B .⎝ ⎛⎭⎪⎫5,43πC .⎝ ⎛⎭⎪⎫5,-23πD .⎝⎛⎭⎪⎫5,-53π 反思:在极坐标系中,极坐标(ρ,θ)与(ρ,θ+2k π)(k ∈Z )表示同一个点.特别注意,极点O 的坐标为(0,θ)(其中θ可以取任意值).这与直角坐标系中的点与有序实数对一一对应的关系不同,极坐标平面内的点的极坐标可以有无数多种表示.题型二 对称性问题【例2】在极坐标系中,点A 的极坐标为⎝⎛⎭⎪⎫3,π6.(限定ρ>0,0≤θ<2π)(1)点A 关于极轴对称的点的极坐标是__________; (2)点A 关于极点对称的点的极坐标是__________;(3)点A 关于直线θ=π2对称的点的极坐标是__________.反思:在极坐标系中,点(ρ,θ)关于极轴所在直线对称的点的极坐标为(ρ,2k π-θ)(k ∈Z ),关于直线θ=π2对称的点的极坐标为(ρ,2k π+π-θ)(k ∈Z ),关于极点对称的点的极坐标为(ρ,θ+π+2k π)(k ∈Z ).题型三 点的极坐标与直角坐标的互化【例3】(1)把点M 的极坐标⎝⎛⎭⎪⎫8,2π3化成直角坐标;(2)把点P 的直角坐标(6,-2)化成极坐标(ρ>0,0≤θ<2π).分析:本题考查的是直角坐标与极坐标的互化公式的应用.反思:由直角坐标化成极坐标时,算出tan θ=-33,仅根据0≤θ<2π,只能得出θ=5π6或θ=11π6,要确定极角,需再根据点所在的象限来判断.答案:【例1】D 与点M 终边相同的极坐标可以表示为⎝⎛⎭⎪⎫5,2k π+π3(k ∈Z ),即极径相等,极角相差2π的整数倍.根据选项,当k =-1时,2k π+π3=-2π+π3=-53π,即⎝ ⎛⎭⎪⎫5,-53π能表示点M . 【例2】(1)⎝ ⎛⎭⎪⎫3,11π6 (2)⎝ ⎛⎭⎪⎫3,7π6 (3)⎝⎛⎭⎪⎫3,5π6 通过作图可求解.【例3】解:(1)x =8cos 2π3=-4,y =8sin 2π3=43,因此点M 的直角坐标是(-4,43).(2)ρ=62+-22=22,tan θ=-26=-33,又因为点P 在第四象限,故θ=11π6.因此点P 的极坐标为⎝ ⎛⎭⎪⎫22,11π6.1在极坐标系中与点A(3,π3-)关于极轴所在的直线对称的点的极坐标是( ). A .2π33⎛⎫ ⎪⎝⎭, B .π33⎛⎫ ⎪⎝⎭, C .4π33⎛⎫ ⎪⎝⎭, D .5π36⎛⎫ ⎪⎝⎭,2在极坐标系中,确定点π26M ⎛⎫- ⎪⎝⎭,的位置,下面方法正确的是( ).A .作射线OP ,使π6xOP ∠=,再在射线OP 上取点M ,使|OM |=2B .作射线OP ,使π6xOP ∠=,再在射线OP 的反向延长线上取点M ,使|OM |=2C .作射线OP ,使7π6xOP ∠=,再在射线OP 的反向延长线上取点M ,使|OM |=2D .作射线OP ,使π6xOP ∠=-,再在射线OP 上取点M ,使|OM |=23点M 的极坐标为π4,4⎛⎫- ⎪⎝⎭,化为直角坐标为__________.4将下列各点由直角坐标化为极径ρ是正值,极角在0到2π之间的极坐标.(1);(2)(2--,.答案: 1.B 极坐标系中的点(ρ,θ)关于极轴所在直线的对称点的极坐标为(ρ,2k π-θ)(k ∈Z ),利用这个规律即可判断之.与点A ⎝ ⎛⎭⎪⎫3,-π3关于极轴所在直线的对称的点的极坐标可以表示为⎝⎛⎭⎪⎫3,2k π+π3(k ∈Z ),这时只有选项B 满足条件.2.B 本题涉及到极径为负值时的坐标表示.当ρ<0时,表示点(ρ,θ)的方法如下:作射线OP ,使∠xOP =θ.在OP 反向延长线上取一点M ,使|OM |=|ρ|,故B 项正确.3.(22,-22) x =ρcos θ=4cos ⎝ ⎛⎭⎪⎫-π4=4×22=22, y =ρsin θ=4sin ⎝ ⎛⎭⎪⎫-π4=4×⎝ ⎛⎭⎪⎫-22=-22,∴M (22,-22). 4.解:(1)ρ=32+32=23,tan θ=yx =33, 又点(3,3)在第一象限,所以θ=π6.所以点(3,3)的极坐标为⎝ ⎛⎭⎪⎫23,π6. (2)ρ=-22+-232=4,tan θ=y x =-23-2=3,又点(-2,-23)在第三象限,所以θ=4π3.所以点(-2,-23)的极坐标为⎝ ⎛⎭⎪⎫4,4π3.。

高中数学 北师大选修4-4 1.2极坐标系

高中数学 北师大选修4-4  1.2极坐标系

点,设点A(4, ),B(5, 5),
3
6
则△OAB的面积是__5____,
A
|AB|= 41 20 。3
O
x
B
(2)在极坐标系中,与点 (3, ) 关
3
于极轴所在直线对称点的极坐标是_;
3,
3
(3)在极坐标系中,若等边△ABC的
两个顶点A(2, ), B(2, 5 ) ,则顶点C的
坐标是____4 __。4
A、(5, 10 ) B、(5, 2 ) C、(5, )
3
3
3
D(5, 8 )
3
2.已知三点的极坐标为 A(2, ),B( 2, 3 ),
O(0,0) ,则 ABO 为( D )2
4
A、正三角形
B、直角三角形
C、锐角等腰三角形 D、等腰直角三角形
三、极坐标与直角坐标的互化 公式
直化极: 2 x2 y2 , tan y ( x 0)
引一条射线OX,叫做极轴。
再选定一个长度单位
和角度单位及它的正 方向(通常取逆时针
方向)。
O X
这样就建立了一个极坐标系。
二、极坐标系内一点的极坐标的规定
对于平面上任意一点
M,用 表示线段OM的
长度,用 表示从OX到
M
OM 的角度, 叫做点M
的极径, 叫做点M的极
角,有序数对(,)就
叫做M的极坐标。
, 关于极轴所在直线对称的点为 ,
,
关于极点对称的点为 ,
2、已知极坐标系中两点
P(3,
)
Q如(2何, 求), 线段|PQ|的长?
6
2
| PQ | 19
推广:极坐标系内两点 P(1,1), Q(2 ,2 )

2018版数学课堂讲义北师大版选修4-4讲义:第一讲 坐标

2018版数学课堂讲义北师大版选修4-4讲义:第一讲 坐标

§2 极坐标系 2.1 极坐标系的概念2.2 点的极坐标与直角坐标的互化1.极坐标系的概念(1)极坐标系的建立:如图在平面内取一个定点O ,叫作极点,从O 点引一条射线Ox ,叫作极轴,选定一个单位长度和角的正方向(通常取逆时针方向).这样就确定了一个平面极坐标系,简称为极坐标系. (2)极坐标系内一点的极坐标的规定:对于平面内任意一点M ,用ρ表示线段OM 的长,θ表示以Ox 为始边、OM 为终边的角度,ρ叫作点M 的极径,θ叫作点M 的极角,有序实数对(ρ,θ)叫作点M 的极坐标,记作M (ρ,θ). 当点M 在极点时,它的极径ρ=0,极角θ可以取任意值. 2.极坐标和直角坐标的互化(1)互化的前提条件:①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合;③两种坐标系取相同的长度单位. (2)互化公式:⎩⎨⎧x =ρcos θ,y =ρsin θ;⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0). 【思维导图】【知能要点】 1.极坐标系的四要素. 2.点的极坐标的写法. 3.极坐标和直角坐标的互化.题型一 极坐标系的概念与点的极坐标1.极坐标系的概念极坐标系的建立有四个要素:①极点;②极轴;③单位长度;④角度单位和它的正方向.四者缺一不可.极坐标系就是用长度和角度来确定平面内点的位置. 2.点的极坐标每一个有序实数对(ρ,θ)确定一个点的位置.其中,ρ是点M 的极径,θ是点M 的极角.平面上给定一点,可以写出这个点的无数多个极坐标.根据点的极坐标(ρ,θ)的定义,对于给定的点(ρ,θ)有无数个极坐标,可分为两类,一类为(ρ,θ+2k π) (k ∈Z ),另一类为(-ρ,θ+2k π+π) (k ∈Z ).在极坐标(ρ,θ)中,一般限定ρ≥0.当ρ=0时,就与极点重合,此时θ不确定.给定点的极坐标(ρ,θ),就唯一地确定了平面上的一个点.但是,平面上的一个点的极坐标并不是唯一的,它有无穷多种形式.由此可见,平面上的点与它的极坐标不是一一对应关系.这是极坐标与直角坐标的不同之处.如果限定ρ>0,0≤θ<2π,则除极点外,平面上的点就与它的极坐标构成一一对应的关系. 【例1】 写出图中A 、B 、C 、D 、E 、F 、G 各点的极坐标(ρ>0,0≤θ<2π).解 对每个点我们先看它的极径的长,再确定它的极角,因此这些点的极坐标为 A ⎝ ⎛⎭⎪⎫7,π6,B ⎝ ⎛⎭⎪⎫4,3π4,C ⎝ ⎛⎭⎪⎫5,7π6,D ⎝ ⎛⎭⎪⎫6,7π4,E (9,0),F (3,π),G ⎝ ⎛⎭⎪⎫9,3π2. 【反思感悟】 (1)写点的极坐标要注意顺序:极径ρ在前,极角θ在后,不能把顺序搞错了.(2)点的极坐标是不唯一的,但若限制ρ>0,0≤θ<2π,则除极点外,点的极坐标是唯一确定的.1.写出下列各点的极坐标.解 A (4,0),B ⎝ ⎛⎭⎪⎫1,π3,C ⎝ ⎛⎭⎪⎫3,23π,D ⎝ ⎛⎭⎪⎫4,1312π,E ⎝ ⎛⎭⎪⎫2,54π,F ⎝ ⎛⎭⎪⎫3,32π,G ⎝ ⎛⎭⎪⎫4,53π.【例2】 在极坐标系中,作出下列各点:A ⎝ ⎛⎭⎪⎫2,π6,B (6,-120°),C ⎝ ⎛⎭⎪⎫1,π3,D ⎝ ⎛⎭⎪⎫4,-3π4,E (4,0),F (2.5,180°). 解 各点描点如图所示.【反思感悟】 知道点的极坐标(ρ,θ),我们可以先根据极角θ确定方向(射线),然后根据ρ来确定距离,进而描出(ρ,θ)的对应点.2.在极坐标系中,写出点A ,B ,C 的极坐标,并标出点D ⎝ ⎛⎭⎪⎫3,π6,E ⎝ ⎛⎭⎪⎫4,5π6,F ⎝ ⎛⎭⎪⎫2,5π3所在的位置.解 由图可得点A ,B ,C 的极坐标分别为(1,0),⎝ ⎛⎭⎪⎫3,π2,⎝ ⎛⎭⎪⎫5,5π4.点D ,E ,F 的位置如上图所示.【例3】 在极坐标中,若等边△ABC 的两个顶点是A ⎝ ⎛⎭⎪⎫2,π4,B ⎝ ⎛⎭⎪⎫2,5π4,那么顶点C 的坐标可能是( ) A.⎝ ⎛⎭⎪⎫4,3π4 B.⎝ ⎛⎭⎪⎫23,3π4C.(23,π)D.(3,π)解析 如图所示,由题设可知A 、B 两点关于极点O 对称,即O 是AB 的中点.又|AB |=4,△ABC 为正三角形,|OC |=23,∠AOC =π2,C对应的极角θ=π4+π2=3π4或θ=π4-π2=-π4,即C 点极坐标为⎝ ⎛⎭⎪⎫23,3π4或⎝ ⎛⎭⎪⎫23,-π4.答案 B【反思感悟】 在找点的极坐标时,把图形画出来,可以帮助我们解决问题,从图形中很容易找到极角和极径.这一点跟直角坐标系中的方法是一致的,数形结合.3.点M 的极坐标是⎝ ⎛⎭⎪⎫-2,-π6,它关于直线θ=π2的对称点坐标是( ) A.⎝ ⎛⎭⎪⎫2,11π6 B.⎝ ⎛⎭⎪⎫-2,7π6 C.⎝ ⎛⎭⎪⎫2,-π6D.⎝ ⎛⎭⎪⎫-2,-11π6解析 当ρ<0时,我们找它的极角应按反向延长线上去找.描点⎝ ⎛⎭⎪⎫-2,-π6时,先找到角-π6的终边.又因为ρ=-2<0,所以再沿反向延长线上找到离极点2个单位的点即是点⎝ ⎛⎭⎪⎫-2,-π6.直线θ=π2,就是由极角为π2的那些点的集合.故M ⎝ ⎛⎭⎪⎫-2,-π6关于直线θ=π2的对称点为M ′⎝ ⎛⎭⎪⎫2,π6,但是选择支没有这样的坐标.又因为M ′⎝ ⎛⎭⎪⎫2,π6的坐标还可以写成M ′⎝ ⎛⎭⎪⎫-2,7π6,故选B.答案 B题型二 两点间的距离公式一般地,设A (ρ1,θ1),B (ρ2,θ2),由余弦定理可得到两点间的距离公式|AB |=ρ21+ρ22-2ρ1ρ2cos (θ1-θ2).【例4】 已知A 、B 两点的极坐标分别是⎝ ⎛⎭⎪⎫2,π3,⎝ ⎛⎭⎪⎫4,5π6,求A 、B 两点间的距离和△AOB 的面积.解 求两点间的距离可用如下公式: |AB |=4+16-2×2×4×cos ⎝ ⎛⎭⎪⎫5π6-π3=20=2 5.S △AOB =12|ρ1ρ2sin(θ1-θ2)|=12⎪⎪⎪⎪⎪⎪2×4×sin ⎝ ⎛⎭⎪⎫5π6-π3=12×2×4=4.【反思感悟】 求两点间距离可以直接套用公式,求三角形面积时可以结合公式S =12·ab sin θ考虑.4.若△ABC 的三个顶点为A ⎝ ⎛⎭⎪⎫5,5π2,B ⎝ ⎛⎭⎪⎫8,5π6,C ⎝ ⎛⎭⎪⎫3,7π6,判定△ABC 的形状.解 AB =25+64-2×8×5cos 5π3=49=7,BC =9+64-2×8×3×cos π3=7, AC =25+9-2·3·5cos 4π3=7,∴△ABC 为等边三角形.题型三 极坐标与直角坐标的互化我们把极轴与平面直角坐标系xOy 的正半轴重合,且两种坐标系取相同的长度单位,设P (x ,y )是平面上的任一点,如图所示,则⎩⎨⎧x =ρcos θ,y =ρsin θ.① 从①可得⎩⎪⎨⎪⎧ρ=x 2+y 2,tan θ=yx (x ≠0) ② ①与②是平面直角坐标系与极坐标系中同一点的直角坐标(x ,y )与极坐标(ρ,θ)之间的换算公式.【例5】 (1)把点M 的极坐标⎝ ⎛⎭⎪⎫-5,π6化成直角坐标;(2)把点N 的直角坐标(-3,-1)化成极坐标. 解 (1)x =-5cos π6=-523,y =-5sin π6=-52. ∴点M 的直角坐标是⎝ ⎛⎭⎪⎫-523,-52.(2)ρ=(-3)2+(-1)2=2,tan θ=-1-3=33.又∵点N 在第三象限,ρ>0.∴最小正角θ=76π. 故点N 的极坐标是⎝ ⎛⎭⎪⎫2,76π.【反思感悟】 把极坐标化成直角坐标,直接代入公式即可;把直角坐标化为极坐标,通常有不同的表示法(极角相差2π的整数倍),一般只要取θ∈[0,2π),ρ>0即可.5.若以极点为原点,极轴为x 轴正半轴建立直角坐标系. (1)已知点A 的极坐标为⎝ ⎛⎭⎪⎫4,5π3,求它的直角坐标;(2)已知点B 和点C 的直角坐标为(2,-2)和(0,-15),求它们的极坐标.(ρ>0,0≤θ<2π)解 (1)x =4cos 5π3=2,y =4sin 5π3=-2 3. ∴直角坐标为(2,-23).(2)ρ1=4+4=22,sin θ1=-222=-22,cos θ1=222=22,∴θ1=7π4,∴(2,-2)的极坐标为⎝ ⎛⎭⎪⎫22,7π4,ρ2=15,sin θ2=-1,cos θ2=0,∴θ2=3π2,∴(0,-15)的极坐标为⎝ ⎛⎭⎪⎫15,3π21.在极轴上与点⎝ ⎛⎭⎪⎫42,π4的距离为5的点的坐标是________. 解析 设所求点的坐标为(ρ,0),则 ρ2+(42)2-2×42ρcos π4=5.即ρ2-8ρ+7=0,解得ρ=1或ρ=7.∴所求点的坐标为(1,0)或(7,0). 答案 (1,0)或(7,0)2.在直角坐标系中,已知点A (-3,33),B (33,3). 将A 、B 两点的直角坐标化为极坐标.解 直接根据互化公式,可得A 的极坐标为⎝ ⎛⎭⎪⎫6,23π,B 的极坐标为⎝ ⎛⎭⎪⎫6,π6.3.某大学校园的部分平面示意图如图所示.用点O 、A 、B 、C 、D 、E 、F 分别表示校门,器材室,公寓,教学楼,图书馆,车库,花园,建立适当的极坐标系,写出各点的极坐标.(限定ρ≥0,0≤θ<2π且极点为(0,0))解 以点O 为极点,OA 所在的射线为极轴Ox (单位长度为1 m),建立极坐标系,如图所示.由|OB |=600 m ,∠AOB =30°,∠OAB =90°,得|AB |=300 m ,|OA |=3003m ,同样求得|OD |=2|OF |=3002,所以各点的极坐标分别为O (0,0),A (3003,0),B ⎝ ⎛⎭⎪⎫600,π6,C ⎝ ⎛⎭⎪⎫300,π2,D ⎝ ⎛⎭⎪⎫3002,3π4,E (300,π),F ⎝ ⎛⎭⎪⎫1502,3π4. 4.已知点Q (ρ,θ),分别按下列条件求出点P 的极坐标. (1)点P 是点Q 关于极点O 的对称点; (2)点P 是点Q 关于直线θ=π2的对称点.解 (1)由于P 、Q 关于极点对称,得它们的极径|OP |=|OQ |,极角相差(2k +1)π(k ∈Z ).所以,点P 的极坐标为(ρ,(2k +1)π+θ)或(-ρ,2k π+θ)(k ∈Z ). (2)由P 、Q 关于直线θ=π2对称,得它们的极径|OP |=|OQ |,点P 的极角θ′满足θ′=π-θ+2k π(k ∈Z ),所以点P 的坐标为(ρ,(2k +1)π-θ)或(-ρ,2k π-θ)(k ∈Z ).[P 10练习]在极坐标中,点(ρ,θ)与点(-ρ,π-θ)有什么关系?答 关于极轴对称.设M 点坐标为(ρ,θ),为直观,以极点为原点,以x 轴的正方向与极轴建立直角坐标系,不难看出与M 点关于y 轴对称的点M 1的坐标为(ρ,π-θ)M 1关于极点对称的点M 2的坐标为(-ρ,π-θ) 则M 2与M 关于极轴对称,如图所示. 【规律方法总结】1.建立极坐标系可以确定点的位置和直角坐标不同,平面内一个点的极坐标有无数种表示.规定ρ>0,0≤θ<2π,则除极点外,平面内的点和极坐标一一对应.2.利用极坐标可以刻画点的位置,有时比直角坐标方便,在台风预报、测量、航空、航海中主要采用这种方法.3.以直角坐标系的原点为极点,x 轴的正半轴为极轴,并且取相同的长度单位,平面内一点的直角坐标和极坐标可以进行互化.一、选择题1.点P 的直角坐标为(-2,2),那么它的极坐标可表示为( ) A.⎝ ⎛⎭⎪⎫2,π4 B.⎝ ⎛⎭⎪⎫2,3π4 C.⎝ ⎛⎭⎪⎫2,5π4 D.⎝⎛⎭⎪⎫2,7π4解析 直接利用极坐标与直角坐标的互化公式. 答案 B2.已知A ,B 的极坐标分别是⎝ ⎛⎭⎪⎫3,π4和⎝ ⎛⎭⎪⎫-3,π12,则A 和B 之间的距离等于( )A.32+62B.32-62C.36+322D.36-322解析 极坐标系中两点A (ρ1,θ1),B (ρ2,θ2)的距离|AB |=ρ21+ρ22-2ρ1ρ2cos (θ1-θ2).答案 C3.在极坐标平面内,点M ⎝ ⎛⎭⎪⎫π3,200π,N ⎝ ⎛⎭⎪⎫-π3,201π,G ⎝ ⎛⎭⎪⎫-π3,-200π,H ⎝ ⎛⎭⎪⎫2π+π3,200π中互相重合的两个点是( ) A.M 和N B.M 和G C.M 和HD.N 和H解析 把极坐标写成最简形式M ⎝ ⎛⎭⎪⎫π3,0,N ⎝ ⎛⎭⎪⎫π3,0,G ⎝ ⎛⎭⎪⎫π3,π,H ⎝ ⎛⎭⎪⎫2π+π3,0,故M 、N 是相互重合的点. 答案 A4.在极坐标系中,点A ⎝ ⎛⎭⎪⎫22,π6,B ⎝ ⎛⎭⎪⎫22,2π3,则线段AB 中点的极坐标为( )A.⎝ ⎛⎭⎪⎫12,5π12 B.⎝ ⎛⎭⎪⎫1,5π12 C.⎝ ⎛⎭⎪⎫22,5π12D.⎝ ⎛⎭⎪⎫22,π3 解析 由点A ⎝ ⎛⎭⎪⎫22,π6,B ⎝ ⎛⎭⎪⎫22,2π3知,∠AOB =π2,于是△AOB 为等腰直角三角形,所以|AB |=22×2=1, 设线段AB 的中点为C ,则|OC |=12,极径OC 与极轴所成的角为5π12, 所以线段AB 中点C 的极坐标为⎝ ⎛⎭⎪⎫12,5π12.答案 A5.一个三角形的一个顶点在极点,其他两个顶点的极坐标分别为P 1(-5,109°),P 2(4,49°),则这个三角形P 1OP 2的面积为( ) A.5 3B.10 3C.52 3D.10解析 点P 1的坐标可写为(5,-71°),则∠P 1OP 2=120°,S △P 1OP 2=12×4×5sin 120°=5 3.答案 A二、填空题6.在极坐标系中,已知点A ⎝ ⎛⎭⎪⎫1,34π,B ⎝ ⎛⎭⎪⎫2,π4,则A 、B 两点间的距离为________. 解析 利用极坐标系中两点间距离公式.答案 57.在极坐标系中,点P (ρ,θ)与Q (-ρ,π-θ)的位置关系是________.解析 Q 的极坐标可写成(ρ,-θ),故与P (ρ,θ)关于极轴对称.答案 关于极轴对称8.直线l 过点A ⎝ ⎛⎭⎪⎫3,π3,B ⎝ ⎛⎭⎪⎫3,π6,则直线l 与极轴夹角等于________. 解析 A 、B 的直角坐标为⎝ ⎛⎭⎪⎫32,332,⎝ ⎛⎭⎪⎫332,32, k =-1,倾斜角为3π4,故直线与极轴的夹角为π4.答案 π49.极坐标系中,点A 的极坐标是⎝ ⎛⎭⎪⎫3,π6,则 (1)点A 关于极轴对称的点是________;(2)点A 关于极点对称的点的极坐标是________;(3)点A 关于直线θ=π2的对称点的极坐标是________.(规定ρ>0,θ∈[0,2π))解析 如图所示,在对称的过程中极径的长度始终没有变化,主要在于极角的变化.另外,我们要注意:极角是以x 轴正向为始边,按照逆时针方向得到的.答案 (1)⎝ ⎛⎭⎪⎫3,11π6 (2)⎝ ⎛⎭⎪⎫3,7π6 (3)⎝ ⎛⎭⎪⎫3,5π6 三、解答题10.在极坐标系中,(1)求A ⎝ ⎛⎭⎪⎫5,7π36,B ⎝ ⎛⎭⎪⎫12,43π36两点间的距离;(2)已知点P 的极坐标为(ρ,θ),其中ρ=1,θ∈R ,求满足上述条件的点P 的位置.解 (1)A ,B 在过极点且与极轴成7π36的直线上,它们位于极点的两侧,∴|AB |=5+12=17.(2)由于点P 的极径恒为ρ=1,且θ∈R ,因此,点P 在以1为半径,极点为圆心的圆上.11.设有一颗彗星,围绕地球沿一抛物线轨道运行,地球恰好位于该抛物线轨道的焦点处,当此彗星离地球为30(万千米)时,经过地球和彗星的直线与抛物线的轴的夹角为30°,试建立适当的极坐标系,写出彗星此时的极坐标.解 如图所示,建立极坐标系,使极点O 位于抛物线的焦点处,极轴Ox 过抛物线的对称轴,由题设可得下列两种情形:(1)当θ=30°时,ρ=30(万千米);(2)当θ=150°时,ρ=30(万千米);(3)当θ=210°时,ρ=30(万千米);(4)当θ=330°时,ρ=30(万千米).彗星此时的极坐标有四种情形:⎝ ⎛⎭⎪⎫30,π6,⎝ ⎛⎭⎪⎫30,5π6,⎝ ⎛⎭⎪⎫30,7π6,⎝ ⎛⎭⎪⎫30,11π6. 12.在极坐标系中,已知三点P ⎝ ⎛⎭⎪⎫4,π6,Q ⎝ ⎛⎭⎪⎫42,-π4,R (6,2π). (1)将P 、Q 、R 三点的极坐标化为直角坐标;(2)求△PQR 的面积.解 (1)P (23,2),Q (4,-4),R (6,0).(2)直线PQ 的方程为y +4=6(x -4)23-4, 与x 轴的交点坐标为⎝ ⎛⎭⎪⎫43+43,0,S △PQR =14-4 3. 13.已知点P 的直角坐标按伸缩变换⎩⎨⎧x ′=2x ,y ′=3y变换为点P ′(6,-3),限定ρ>0,0≤θ<2π时,求点P 的极坐标.解 设点P 的直角坐标为(x ,y ),由题意得⎩⎨⎧6=2x ,-3=3y ,解得⎩⎨⎧x =3,y =-3,∴点P 的直角坐标为(3,-3).ρ=32+(-3)2=23,tan θ=-33, ∵0≤θ<2π,点P 在第四象限,∴θ=11π6,∴点P 的极坐标为⎝ ⎛⎭⎪⎫23,11π6.。

2018年高中数学北师大版选修4-4课件:极坐标系及极坐标与直角坐标的互化

2018年高中数学北师大版选修4-4课件:极坐标系及极坐标与直角坐标的互化

题型一 极坐标系的概念与点的极坐标
1.极坐标系的概念 极坐标系的建立有四个要素:①极点;②极轴;③单位长 度;④角度单位和它的正方向.四者缺一不可. 极坐标系就是用长度和角度来确定平面内点的位置. 2.点的极坐标:每一个有序实数对(ρ,θ)确定一个点的位
置.其中,ρ是点M的极径,θ是点M的极角.
平面上给定一点,可以写出这个点的无数多个极坐标.根
据点的极坐标(ρ,θ)的定义,对于给定的点(ρ,θ)有无数 个极坐标,可分为两类,一类为(ρ,θ+2kπ) (k∈Z),另 一类为(-ρ,θ+2kπ+π) (k∈Z).
在极坐标(ρ,θ)中,一般限定ρ≥0.当ρ=0时,就与极点重
合,此时θ不确定.给定点的极坐标(ρ,θ),就唯一地确 定了平面上的一个点.但是,平面上的一个点的极坐标并

各点描点如图所示
【反思感悟】 知道点的极坐标(ρ,θ),我们可以先根据极
角θ确定方向(射线),然后根据ρ来确定距离,进而描出(ρ,
θቤተ መጻሕፍቲ ባይዱ的对应点.
2. 在极坐标系中,写出点 A , B , C 的极坐标,并标出点 π 5π 5π D3, ,E4, , F 所在的位置. 2, 6 6 3
§2 极坐标系
1.极坐标系的概念 (1)极坐标系的建立:如图在平面内 极点 ,从O点 取一个定点O,叫作_____ 引一条射线Ox,叫作_____ 极轴 ,选定一 个单位长度和角的正方向(通常取逆 平面极坐标系 ,简称为 时针方向).这样就确定了一个______________ 极坐标系 . _________ (2)极坐标系内一点的极坐标的规定:对于平面内任意一点 线段OM的长 以Ox为始边、OM M,用ρ表示_____________ ,θ表示_________________ 为终边的角度 极径 ,θ叫作点M的_____, _____________,ρ叫作点M的_____ 极角 极坐标 有序实数对 (ρ,θ)叫作点M的_______,记作 _________.

高中数学北师大版选修4-4+2.1极坐标系的概念导学案教案

高中数学北师大版选修4-4+2.1极坐标系的概念导学案教案

O引一条射线四、课堂小结你今天主要学习了什么?都有哪些收获?课堂检测内容1.在下面的极坐标系里描出下列各点:(3,0)(6,2)(3,)2A B Cππ,,455 (5,)(3,)(4,)(6,) 363D E F Gππππ,,,2、第18页A组 1精美句子1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

4、成功与失败种子,如果害怕埋没,那它永远不能发芽。

鲜花,如果害怕凋谢,那它永远不能开放。

矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。

蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。

航船,如果害怕风浪,那它永远不能到达彼岸。

5、墙角的花,当你孤芳自赏时,天地便小了。

井底的蛙,当你自我欢唱时,视野便窄了。

笼中的鸟,当你安于供养时,自由便没了。

山中的石!当你背靠群峰时,意志就坚了。

水中的萍!当你随波逐流后,根基就没了。

空中的鸟!当你展翅蓝天中,宇宙就大了。

空中的雁!当你离开队伍时,危险就大了。

地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二课时极坐标系的的概念
一、教学目的:
知识目标:理解极坐标的概念
能力目标:能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别.
德育目标:通过观察、探索、发现的创造性过程,培养创新意识。

二、重难点:教学重点:理解极坐标的意义
教学难点:能够在极坐标系中用极坐标确定点位置
三、教学方法:启发、诱导发现教学.
四、教学过程:
(一)、复习引入:
情境1:军舰巡逻在海面上,发现前方有一群水雷,如何确
定它们的位置以便将它们引爆?
情境2:如图为某校园的平面示意图,假设某同学在教学楼
处。

(1)他向东偏60°方向走120M后到达什么位置?该位
置唯一确定吗?
(2)如果有人打听体育馆和办公楼的位置,他应如何描述?
问题1:为了简便地表示上述问题中点的位置,应创建怎样的坐标系呢?
问题2:如何刻画这些点的位置?
这一思考,能让学生结合自己熟悉的背景,体会在某些情况下用距离与角度来刻画点的位置的方便性,为引入极坐标提供思维基础.
(二)、讲解新课:
从情镜2中探索出:在生活中人们经常用方向和
距离来表示一点的位置。

这种用方向和距离表示平面上
一点的位置的思想,就是极坐标的基本思想。

1、极坐标系的建立:
在平面上取一个定点O,自点O引一条射线OX,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),
这样就建立了一个极坐标系。

(其中O 称为极点,射线OX 称为极轴。


2、极坐标系内一点的极坐标的规定
对于平面上任意一点M ,用 ρ 表示线段OM
的长度,用 θ 表示从OX 到OM 的角度,ρ 叫做
点M 的极径, θ叫做点M 的极角,有序数对(ρ,
θ)就叫做M 的极坐标。

特别强调:由极径的意义可知ρ≥0;当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)建立一一对应的关系 .们约定,极点的极坐标是极径ρ=0,极角是任意角.
3、负极径的规定:在极坐标系中,极径ρ允许取负值,极角θ也可以去任意的正角或负角,当ρ<0时,点M (ρ,θ)位于极角终边的反向延长线上,且OM=ρ。

M (ρ,θ)也可以表示为))12(,()2,(πθρπθρ++-+k k 或 )(z k ∈
(三)、应用导练
例1 写出下图中各点的极坐标(见教材P10页)
A (4,0)
B (2,2π)
C (6,43π )
D (4, -43π )
E (6,0-120 )
F (-6,π3)
G (-3,3π2)
反思归纳:(1)、平面上一点的极坐标是否唯一?(2)、若不唯一,那有多少种表示方法?(3)、坐标不唯一是由谁引起的?(4)、不同的极坐标是否可以写出统一表达式。

约定:极点的极坐标是ρ=0,θ可以取任意角。

变式训练 :在极坐标系里描出下列各点
A (3,0)
B (6,2π)
C (3,2
π)D (5,34π)E (3,65π)F (4,π)G (6,3
5π) 例2 在极坐标系中,
(1) 已知两点P (5,
45π),Q )4
,1(π,求线段PQ 的长度; 答案:6 (2) 已知M 的极坐标为(5,θ)且θ=3π,写出符合条件的点A 的极坐标:ρ>0, -2π<θ<0
解:当ρ>0时,点A(5,3
π)的极坐标的一般形式为(5,π32Кπ+)(K ∈Z )令-2π<π32Кπ+<0,解得k=-1, ∴θ=
3
π -2π=-35π,∴点A 的坐标为(5,-35π). 变
式训练:1、若ABC ∆的的三个顶点为.),6
7,3(),65,8(),25,5(判断三角形的形状πππC B A 答案:正三角形。

2、若A 、B 两点的极坐标为),(),,(2211θρθρ求AB 的长以及AOB ∆的面积。

(O 为极点) 例3 已知Q (ρ,θ),分别按下列条件求出点P 的极坐标。

(1)、P 是点Q 关于极点O 的对称点;(2)、P 是点Q 关于直线2πθ=
的对称点;(3)、P 是点Q 关
于极轴的对称点。

答案:(1)(-ρ,2k π+θ);(2)(ρ,2k π+π-θ);(3)(ρ ,2k π+2π-θ)。

3、在极坐标系中,如果等边ABC ∆的两个顶点是),4
5,2(),4,2(B A π求第三个顶点C 的坐标。

(四)、巩固与练习:课本P10页练习题2
(五)、小结:本节课学习了以下内容:1.如何建立极坐标系。

2.极坐标系的基本要素是:极点、极轴、极角和度单位3.极坐标中的点与坐标的对应关系。

(六)、作业:课本P18页A 组1、2 P25页B 组3
五、教学反思:。

相关文档
最新文档