极坐标系教案

合集下载

初中数学教案极坐标系

初中数学教案极坐标系

初中数学教案极坐标系初中数学教案一、教学目标通过本节课的学习,学生将能够:1. 理解极坐标系的概念和基本性质;2. 掌握极坐标系中各种图形的绘制方法;3. 运用极坐标系解决实际问题。

二、教学重点和难点1. 教学重点:极坐标系的概念和性质;2. 教学难点:运用极坐标系解决实际问题。

三、教学准备1. 教师准备:- 准备幻灯片或黑板,用于黑板上的绘图;- 准备一些实际问题,用于课堂练习。

2. 学生准备:- 课本、笔记本等学习用具。

四、教学过程导入:1. 教师简要介绍极坐标系的概念,并引导学生回顾直角坐标系的相关知识。

新知呈现:2. 教师通过幻灯片或黑板绘制极坐标系,并解释极坐标系的构造及基本性质。

3. 教师通过实例引导学生理解极坐标系中极角和极径的概念,并解释其表示方法。

示范演示:4. 教师通过绘制圆和其他图形的示范,讲解使用极坐标系绘制图形的方法。

实践演练:5. 学生进行小组活动,按照教师的要求,绘制指定的图形,并在小组内互相讨论、交流。

巩固提高:6. 教师出示一些实际问题,并引导学生运用极坐标系解决问题。

7. 学生进行个人练习,完成课后习题。

拓展延伸:8. 教师引导学生进一步探究极坐标系中其他图形的绘制方法,如椭圆、双曲线等。

五、教学总结本节课我们学习了极坐标系的概念和基本性质,掌握了绘制各种图形的方法,并运用极坐标系解决了一些实际问题。

通过本节课的学习,我们对数学中的极坐标系有了更深入的了解。

六、课后作业1. 完成课后习题;2. 思考:极坐标系在现实生活中有哪些应用?七、板书设计- 极坐标系的构造及基本性质- 极角和极径的概念及表示方法- 绘制图形的方法八、教学反思本节课采用了多种教学方法,如导入、示范演示、实践演练等,帮助学生更好地理解和掌握极坐标系的相关知识。

同时,通过实际问题的引入,培养了学生解决问题的能力。

教学过程中,学生积极参与,课堂氛围较好。

但在讲解极坐标系的性质时,可以增加一些示例图形,以便学生更好地理解。

极坐标系优秀教学设计

极坐标系优秀教学设计

极坐标系【教学目标】知识目标:掌握极坐标和直角坐标的互化关系式能力目标:会实现极坐标和直角坐标之间的互化德育目标:通过观察、探索、发现的创造性过程,培养创新意识。

【教学重点】对极坐标和直角坐标的互化关系式的理解【教学难点】互化关系式的掌握【教学模式】启发、诱导发现教学。

【教学准备】多媒体、实物投影仪【教学过程】一、复习引入:情境1:若点作平移变动时,则点的位置采用直角坐标系描述比较方便;情境2:若点作旋转变动时,则点的位置采用极坐标系描述比较方便问题1:如何进行极坐标与直角坐标的互化?问题2:平面内的一个点的直角坐标是)3,1(,这个点如何用极坐标表示?学生回顾理解极坐标的建立及极径和极角的几何意义正确画出点的位置,标出极径和极角,借助几何意义归结到三角形中求解二、讲解新课:直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且在两坐标系中取相同的长度单位。

平面内任意一点P 的指教坐标与极坐标分别为),(y x 和),(θρ,则由三角函数的定义可以得到如下两组公式:{θρθρsin cos ==y x { x y y x =+=θρtan 222说明上述公式即为极坐标与直角坐标的互化公式通常情况下,将点的直角坐标化为极坐标时,取ρ≥0,0≤θ≤π2。

互化公式的三个前提条件1. 极点与直角坐标系的原点重合;2. 极轴与直角坐标系的x 轴的正半轴重合;3. 两种坐标系的单位长度相同。

三、举例应用:例1.(1)把点M 的极坐标)32,8(π化成直角坐标 (2)把点P 的直角坐标)2,6(-化成极坐标变式训练在极坐标系中,已知),6,2(),6,2(ππ-B A 求A ,B 两点的距离例2.若以极点为原点,极轴为x 轴正半轴,建立直角坐标系。

已知A 的极坐标),35,4(π求它的直角坐标, 已知点B 和点C 的直角坐标为)15,0()2,2(--和 求它们的极坐标。

ρ(>0,0≤θ<2π)变式训练把下列个点的直角坐标化为极坐标(限定ρ>0,0≤θ<π2))4,3(),4,3(),2,0(),1,1(----D C B A例3.在极坐标系中,已知两点)32,6(),6,6(ππB A 。

(完整word版)《极坐标系》教学设计

(完整word版)《极坐标系》教学设计

(完整word版)《极坐标系》教学设计极坐标系是一种描述平面上点坐标的系统,它以距离和角度作为坐标表示。

在数学和物理学中,极坐标系被广泛应用于描述旋转对称的问题或者平面上点的位置。

本文将从极坐标系的基本概念、转换公式以及应用领域等方面进行介绍。

一、基本概念1. 极坐标系的定义极坐标系是一种平面坐标系,它由极轴、极点和极角组成。

极轴是从极点出发的直线,极角是从极轴开始逆时针旋转的角度。

而极点是坐标系的原点,通常表示为O。

极坐标系中,每个点的位置由极径和极角来确定。

2. 极径和极角极径是从极点到点P的距离,用r表示。

极角是从极轴到OP的角度,用θ表示。

在数学上,极径通常用非负数表示,而极角可以是任意实数。

3. 笛卡尔坐标系与极坐标系的转换极坐标系与笛卡尔坐标系是两种常用的坐标系。

它们之间可以通过一组转换公式相互转换。

在极坐标系中,点P的笛卡尔坐标表示为(x, y),而点P在极坐标系中的坐标表示为(r, θ)。

转换公式如下:x = r * cos(θ)y = r * cos(θ)这两个公式可以实现从笛卡尔坐标系到极坐标系的转换,也可以实现从极坐标系到笛卡尔坐标系的转换。

二、转换公式的推导1. 从笛卡尔坐标系到极坐标系的转换假设点P在笛卡尔坐标系中的坐标为(x, y),点P在极坐标系中的坐标为(r, θ)。

由于极径r是点P到极点O的距离,可以根据勾股定理得到r的表达式:r = sqrt(x^2 + y^2)又因为点P与x轴的夹角就是点P在极坐标系中的极角θ,可以应用反正切函数得到θ的表达式:θ = arctan(y / x)2. 从极坐标系到笛卡尔坐标系的转换假设点P在笛卡尔坐标系中的坐标为(x, y),点P在极坐标系中的坐标为(r, θ)。

可以根据三角函数的定义得到x和y的表达式:x = r * cos(θ)y = r * sin(θ)这两个转换公式可以方便地实现极坐标系和笛卡尔坐标系之间的转换。

三、应用领域极坐标系在数学和物理学中被广泛应用于描述旋转对称的问题或者平面上点的位置。

极坐标系优秀PPT教案

极坐标系优秀PPT教案

π 4
练一练
题组2:在极坐标系里描出下列各点
A(3, 0) B(6, 2 ) C (3, )
2
D(5, 4 )
3
E(3, 5 )
6
F (4, )
G(6, 5 )
3
解析: 2
5
6
C
E
F
A O
B X
4
D
3
G 5 3
新课讲解
四、1、负极径的定义
说明:一般情况下,极径都是正值;在某些必要情 况下,极径也可以取负值,
引一条射线Ox,叫做极轴,
再选定一个长度单位和角度单 O 位及它的正方向 通常取逆时针
x
方向 ,
这样就建立了一个极坐标系,
新课讲解
二、极坐标系内一点的极坐标的规定:
对于平面上任意一点M,用 表示线段OM的长度,用 表
示从Ox到OM 的角度, 叫做
点M的极径, 叫做点M的极角, 有序数对 , 就叫做M的极坐 标,
2 在平面直角坐标系上,平面上所有点的集合与全体有序实数对 x , y 的集合建立一一对应;
3 在空间直角坐标系上,空间上所有点的集合与全体三元有序实数对 x , y , z 的集合建立一一对应;
复习回顾
直角坐标系

平面直角

坐标系
R
x,y
空间直角 坐标系
x,y,z
复习回顾
建立坐标系是为了确定点的位置,由此,在所创建的坐标系中, 应满足: 任意一点都存在一个坐标与之对应;反之,依据一个点的坐标 就能确定这个点的位置; 而确定点的位置即为求出此点在设定的坐标系中的坐标,
O
M x
特别强调:表示线段OM的长度,即点M到极点O的距

极坐标系的概念教学设计

极坐标系的概念教学设计

极坐标系的概念教学设计一、教学目标:1.了解极坐标系的概念和基本性质;2.掌握如何在直角坐标系和极坐标系之间进行转换;3.掌握在极坐标系下表示点的方法;4.能够用极坐标系描述简单图形。

二、教学重点与难点:1.教学重点:极坐标系的概念和基本性质;2.教学难点:在极坐标系下表示点的方法。

三、教学准备:1.教师准备:PPT、投影仪、白板、黑板笔;2.学生准备:直角坐标系与极坐标系的相关知识。

四、教学过程:Step 1 引入新课 (10分钟)1.引导学生回顾直角坐标系的概念和性质;2.提问:在直角坐标系中,我们如何用两个坐标值x和y来定位一个点?是否能用其他方式来表示点的位置?3.出示极坐标系的图形,引导学生思考极坐标系的概念。

Step 2 极坐标系的概念与性质 (15分钟)1.解释极坐标系的概念:极坐标系是由极轴和极角组成的,极轴是用来表示点到极点的距离的半直线,极角是用来表示点到极点的半直线与固定半直线的夹角;2.引导学生分析极坐标系的性质:极坐标系是二维坐标系,极轴是从极点出发的一条非负半直线,极角的范围是[0,2π),极坐标系中,每一个点都有唯一的极坐标。

Step 3 直角坐标系与极坐标系的转换 (20分钟)1.提示学生极坐标系直角坐标系的转换方法:- x = r * cosθ- y = r * sinθ2.在白板上画出一个示例图形,并引导学生进行转换练习。

Step 4 极坐标系中点的表示方法 (20分钟)1.解释如何用极坐标表示平面上的点:极坐标的标记方式是(r,θ),其中,r表示点到极点的距离,θ表示点与固定半直线的夹角;2.在黑板上画出一个示例图形,引导学生练习用极坐标表示点的方法。

Step 5 极坐标系的应用 (20分钟)1.示范用极坐标系描述简单图形;2.引导学生进行实际练习。

Step 6 小结与课堂练习 (15分钟)1.积极小结本课的内容:回顾极坐标系的概念和性质,直角坐标系与极坐标系的转换,极坐标系中点的表示方法,以及极坐标系的应用;2.针对性布置相关课后习题。

极坐标系教案

极坐标系教案

重点 极坐标系中点与坐标对应
难点 理解极坐标系意义
关键 类比直角坐标系
环节
教学内容
手段 学案导学 教学过程
双边活动设计
设计意图
知识 再现 引入
新知 探究
1、 平面直角坐标系中任意角的画法
复习角的相关知
2、特殊角的角度、弧度转换及三角函数值: 识
思考:
思考 :1、有什么 方法可以给咱们 班同学学的位置
1、 极坐标系的建立:
建立了一个极坐标系。 (其中 O 称为极点,射线 OX 称为极轴。)
总结并填写学案
温故而知新,为新 课学习做最充分的 准备 引导学生体会用极 坐标的建立及表示 方法
认识极坐标的含义
教学过程
双边活动设计
设计意图
知识 应用
2、极坐标系内一点的极坐标的规定
对于平面上任意一点 M,用 表示线段 OM
授课 教师 课题
代小剑 1.2.1 极坐标系的概念
教龄
3年
日期
2012.4.3
班级
高二.三班
课程 目标 教学 目标
能在极坐标系中用极坐标刻画点的位置,体会在极坐标和平面直角坐标系中刻画 点的位置的区别 知识与技能 :理解极坐标的概念,了解点在极坐标中的对称 过程与方法 :经历类比学习极坐标系的过程,体会类比思想 情感、态度与价值 观 :培养创新意识。
极坐标。
(1) P 是点 Q 关于极点 O 的对称点;
课堂
(2)
P 是点 Q 关于直线 的对称点; 2
练习 (3) P 是点 Q 关于极轴的对称点。
小结 课堂练习见学案
作业 练习册:题型一、二、四
1.2.2 极坐标系定义
板书 设计 1、任意角和特殊角

极坐标 教案

极坐标教案教案标题:极坐标教案一、教学目标1. 了解极坐标的概念和基本性质;2. 掌握极坐标下点的表示方法;3. 学会在极坐标下进行坐标变换和图形绘制;4. 能够应用极坐标解决实际问题。

二、教学重点和难点重点:极坐标的基本概念和性质,点的极坐标表示方法,极坐标下的坐标变换和图形绘制。

难点:极坐标与直角坐标系的转换,极坐标下的曲线方程的表示和理解。

三、教学过程1. 导入新知识通过展示极坐标系和直角坐标系的对比,引导学生了解极坐标的概念和基本特点。

2. 讲解极坐标的表示方法介绍极坐标下点的表示方法,包括极径和极角的概念,以及极坐标与直角坐标系之间的转换关系。

3. 案例分析通过具体的案例分析,引导学生掌握极坐标下的坐标变换和图形绘制方法,例如绘制简单的极坐标曲线和解决相关实际问题。

4. 练习与讨论设计一些练习题目,让学生在课堂上进行练习,并进行讨论和答疑,加深对极坐标的理解和掌握。

5. 拓展应用引导学生将极坐标应用到实际问题中,例如极坐标下的坐标变换和图形绘制在工程、物理等领域的应用。

6. 总结反思对本节课的内容进行总结,强调极坐标的重要性和应用价值,鼓励学生多加练习和思考。

四、教学资源1. 极坐标系和直角坐标系的对比图;2. 相关极坐标的案例分析题目;3. 极坐标下的图形绘制工具。

五、作业布置布置相关练习题目,巩固学生对极坐标的理解和掌握。

六、教学反思根据学生的学习情况和反馈,及时调整教学策略,不断完善教学内容和方法,提高教学效果。

七、教学评价通过课堂练习、作业完成情况和学生的表现,对学生的学习情况进行评价,并及时进行指导和辅导。

极坐标系教学设计与教学反思

极坐标系教学设计与教学反思教学设计:极坐标系一、教学目标1.了解和掌握极坐标系的基本概念和表示方式。

2.能够将直角坐标系转化为极坐标系。

3.通过练习和实例分析,掌握极坐标系的应用。

二、教学重点和难点重点:极坐标系的基本概念和表示方式。

难点:将直角坐标系转化为极坐标系。

三、教学过程1.导入(5分钟)通过问题启发学生思考:在绘图中,有时我们需要将坐标点表示为距离原点的距离和与x轴正方向的夹角。

你认为这种表示方式叫什么?用什么坐标系表示?2.引入(10分钟)通过PPT介绍极坐标系的概念和表示方式,让学生对极坐标系有一个初步的了解。

3.讲解(15分钟)以直角坐标系转化为极坐标系为例,详细讲解转化的步骤和方法。

同时结合图表和实例,让学生更清晰地理解。

4.示范(10分钟)通过示范练习,让学生跟随教师一起练习将直角坐标系转化为极坐标系。

教师先做一个示范,然后指导学生进行练习。

5.练习(15分钟)学生在作业本上完成一系列的练习题,巩固对极坐标系的认识和掌握。

6.拓展(10分钟)通过实例分析,引导学生思考极坐标系的应用。

如在极坐标系中,如何表示点的对称关系、如何表示点的共线关系等。

7.课堂小结(5分钟)对本节课的要点进行总结,回答学生提出的问题,澄清疑惑。

四、教学反思1.本节课的教学设计的目标明确,突出了极坐标系的基本概念和表示方式。

通过引入问题和实例分析,能够激发学生的学习兴趣,帮助他们更好地理解极坐标系的概念。

2.在讲解过程中,我使用了PPT和图表来让学生更直观地了解极坐标系,帮助他们形成正确的概念。

同时,我在讲解过程中也加入了实例分析和示范练习,让学生能够操作和应用所学的知识。

3.本节课的教学过程中,我注重学生的参与和互动。

通过引导学生思考问题和解答问题,帮助他们更深入地理解和掌握极坐标系。

同时,通过练习和作业,巩固学生的学习成果。

4.但是,在教学中我发现一些问题。

有些学生对概念理解不够清晰,可能需要更多的实例分析和练习。

教案:极坐标系

极坐标系教学目标知识与技能:1.认识极坐标,能在极坐标系中用极坐标刻画点的位置;2.体会极坐标系与平面直角坐标系的区别,能进行极坐标和直角坐标间的互化。

过程与方法:1.通过观看图片,让学生直观感受引进极坐标的必要性;2.运用类比方法,经历极坐标的建立过程;3.通过学生动手描点,得出极坐标的多值性。

情感、态度与价值观:1.培养学生的类比思想,培养探究,研讨,综合自学应用能力;2.培养学生分析问题,解决问题的能力。

重点难点重点:能用极坐标刻画点的位置,能进行极坐标与直角坐标的互化。

难点:理解用极坐标刻画点的位置的基本思想;点与极坐标之间的对应关系的认识教学过程一、导入平面直角坐标系是最常用的一种坐标系,但不是唯一的一种坐标系。

有时可以用方向和距离表示点的位置。

这种用方向和距离表示平面上一点的位置的思想,就是极坐标的基本思想。

二、探究新知1.极坐标系的概念(1)概念:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常用弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。

(2)点的极坐标的规定:如图:设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ;有序实数对( ,ρθ)叫做点M 的极坐标,记为(,)M ρθ; 一般地,不做特殊说明时,我们认为0,ρθ≥∈R 。

(3)极坐标系下点与它的极坐标的对应情况:在同一极坐标系中描点⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛πππππππ2-6446426464,,,,,,,,这些点有什么关系?你能从中体会直角坐标与极坐标在刻画点的位置时的区别吗?从以下方面探究:① 平面上一点的极坐标是否唯一?② 若不惟一,那有多少种表示方法?③ 坐标不惟一是由谁引起的?④同一点不同的极坐标是否可以写出统一表达式?X 结论:1)给定(ρ,θ),在极坐标平面内确定惟一的一点M ;2)给定平面上一点M ,但却有无数个极坐标与之对应;原因在于:极角有无数个;3)一般地,极坐标(ρ,θ)与(ρ,θ+2k π) 表示同一个点;4)特别地,极点O 的坐标为(0,θ)(θ∈R);5)如果限定ρ>0,0≤θ<2π,那么除极点外,平面内的点和极坐标就可以一一对应了。

《极坐标系》教案新人教A版选修

数学:1.2《极坐标系》教案(新人教A版选修4-4)极坐标系【基础知识导学】1.极坐标系和点的极坐标极点、极轴、长度单位、角度单位和它的方向构成极坐标系的四要素,缺一不可。

规定:当点M在极点时,它的极坐标可以取任意值。

2.平面直角坐标与极坐标的区别在平面直角坐标系内,点与有序实数对(x,y)是一一对应的,可是在极坐标系中,虽然一个有序实数对只能与一个点P对应,但一个点P却可以与无数多个有序实数对对应,极坐标系中的点与有序实数对极坐标不是一一对应的。

3.极坐标系中,点M的极坐标统一表达式。

4.如果规定,那么除极点外,平面内的点可用唯一的极坐标表示,同时,极坐标表示的点也是唯一确定的。

5.极坐标与直角坐标的互化(1)互化的前提:①极点与直角坐标的原点重合;②极轴与X轴的正方向重合;③两种坐标系中取相同的长度单位。

(2)互化公式,。

【知识迷航指南】【例1】在极坐标系中,描出点,并写出点M的统一极坐标。

【点评】点的统一极坐标表示式为,如果允许,还可以表示为。

【例2】已知两点的极坐标,则|AB|=______,AB与极轴正方向所成的角为________.解:根据极坐标的定义可得|AO|=|BO|=3,∠AOB=600,即?AOB为等边三角形,所以|AB|=|AO|=|BO|=3, ∠ACX=【点评】在极坐标系中我们没有定义两点间的距离,我们只要画出图形便可以得到结果.【例3】化下列方程为直角坐标方程,并说明表示的曲线.(1),((2)【解】(1)根据极坐标的定义,因为,所以方程表示直线. (2)因为方程给定的不恒为0,用同乘方程的两边得:化为直角坐标方程为即,这是以(1,)为圆心,半径为的圆.【点评】①若没有这一条件,则方程表示一条射线.②极坐标方程化为直角坐标方程,方程两边同乘,使之出现2是常用的方法.【解题能力测试】1.已知点的极坐标分别为,,,,求它们的直角坐标。

1.已知点的直角坐标分别为,求它们的极坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《极坐标系》教学设计方案
教学目标
知识与技能
1.认识极坐标,能在极坐标系中用极坐标刻画点的位置;
2.体会极坐标系与平面直角坐标系的区别,能进行极坐标和直角坐标间的互化。

过程与方法
1.通过观看图片,让学生直观感受引进极坐标的必要性;
2.运用类比方法,经历极坐标的建立过程;
3.通过学生动手描点,得出极坐标的多值性。

情感、态度与价值观
1.培养学生的类比思想,培养探究,研讨,综合自学应用能力;
2.培养学生分析问题,解决问题的能力。

重点难点
重点:能用极坐标刻画点的位置,能进行极坐标与直角坐标的互化。

难点:理解用极坐标刻画点的位置的基本思想;点与极坐标之间的对应关系的认识
教学过程
一、新课导入
1.平面直角坐标系是最常用的一种坐标系,但不是唯一的一种坐标系。

有时用别的坐
标系比较方便。

还有什么坐标系呢?我们先看下面的问题:
(投影图片,让学生直观感受引进极坐标的必要性。


2.在以上问题中,位置是用什么方法确定的?
3.在生活中人们经常用方向和距离来表示一点的位置:如台风预报、地震预报、测量、
航空、航海等。

这种用方向和距离表示平面上一点的位置的思想,就是极坐标的基本思想。

二、探究新知
问题:类比建立平面直角坐标系的过程,怎样建立极坐标系?
(学生思考,抽生回答,并补充,最后教师总结。


1.极坐标系的概念
(1)概念:
在平面内取一个定点O,叫做极点;
自极点O引一条射线Ox,叫做极轴;
再选定一个长度单位,一个角度单位(通常用弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。

(2)点的极坐标的规定:
如图:设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ;有序实数对( ,ρθ)叫做点M 的极坐标,记为(,)M ρθ; 一般地,不做特殊说明时,我们认为0,ρθ≥∈R 。

(3)极坐标系下点与它的极坐标的对应情况:
问题:在同一极坐标系中描点
这些点有什么关系?你能从中体会直角坐标与极坐标在刻画点的位置时的区别吗? 从以下方面探究:
① 平面上一点的极坐标是否唯一? ② 若不惟一,那有多少种表示方法? ③ 坐标不惟一是由谁引起的?
④同一点不同的极坐标是否可以写出统一表达式? 结论:
1)给定(ρ,θ),在极坐标平面内确定惟一的一点M ;
2)给定平面上一点M ,但却有无数个极坐标与之对应;原因在于:极角有无数个; 3)一般地,极坐标(ρ,θ)与(ρ,θ+2k π) 表示同一个点; 4)特别地,极点O 的坐标为(0,θ)(θ∈R); 5)如果限定ρ>0,0≤θ<2π,那么除极点外,平面内的点和极坐标就可以一一对应了。

2.极坐标和直角坐标的互化
问题:平面内的一个点既可以用直角坐标表示,也可以用极坐标表示,那么,这两种
坐标之间有什么关系呢?(学生思考,并回答)
(1)互化的前提:
①极点与直角坐标的原点重合;
②极轴与X 轴的正方向重合;
③两种坐标系中取相同的长度单位。

(2)互化公式:
设M 是平面内任意一点,它的直角坐标是(x,y),极坐标是(ρ,θ)。

则极坐标与直角坐标的互化公式为:

⎭⎫
⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛πππππππ2-6446426464,,,,,,,
X
⎩⎨
⎧==θ
ρθρsin cos y x , ⎪⎩⎪

⎧≠=+=0,tan 222x x y y x θρ。

三、运用新知(投影)
学生自学课本例题,教师解决有关问题。

四、巩固练习(投影)
1.写出图中各点的极坐标;
2.在极坐标系中描出下列各点;
() ⎝

⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫

⎛356653345,
23)2,6(0,3πππππ,,,,,,,,F E D C B A
3.直角坐标与极坐标的互化: (1)已知点的极坐标,求它的直角坐标。

(2)已知点的直角坐标,求它的极坐标。

五、课堂小结
1.极坐标系的概念(三个方面理解);
2.极坐标与直角坐标的互化前提及公式。

六、布置作业
1.课本P12页 4,5题;
2.预习下一节内容。

七、板书设计

⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛32243ππ,,,B A ()()
⎪⎪⎭
⎫ ⎝

-
--35032233,,,,,E D C。

相关文档
最新文档