三角形中位线的应用-课件

合集下载

三角形的中位线完整版课件

三角形的中位线完整版课件

已知:如图,在四边形ABCD中,E,G,分别是AB,CD,的中点.
A
E
P
D
B
G
C
若AD=BC,连结BD,P是 BD的中点,
连结EP,GP,若∠PEG=15°,则
∠PGE=
度.
分析 由已知可得EP与GP分别是△ABP与△BCD的中位线,
∴EP = ∥ 1 AD, PG= ∥ 1 AD.
2
2
又∵AD=BC
三角形中线,一个端点是边的中点,另一端点是三角形的顶点.
新知探究
4.5三3.角3垂 3形.4径圆的定心中理角位②②线
通过观察,测量等方法,你发现线段DE有哪些性质?
A
观察发现DE∥BC,度量发现 DE 1 BC . 2
三角形的中位线定理:
D
E
三角形的中位线平行于第三边,并且等于第三边的一半.
B
几何语言:
新知探究
4.5三角形的中位线
• 了解三角形中位线的概念 • 了解三角形中位线的性质 • 探索三角形中位线定理证明的方法 • 能由线段的中点联想到三角形中位线 • 探索三角形中位线性质的一些简单应用
4.5三角形的中位线
• 定义:连结三角形两边中点的线段 叫做三角形的中位线
• 任意画一个△ABC,分别取AB,AC的中点D,E,连结DE. A • 你还能画出几条三角形的中位线?
A
D
G
O
EM F
B
C
课堂小结
4.5三角3形.4圆的心中角位②线
三角形的中位线定理: 三角形的中位线平行于第三边,并且等于第三边的一半.
中位线定理经常用于: ① 证明平行关系; ② 线段大小的计算.
D
E

《三角形的中位线定理》课件

《三角形的中位线定理》课件
如图,有一块三角形的蛋糕,准备平均分 给四个小朋友,要求四人所分的形状大小相同,
请设计合理的解决方案.
三角形的中位线的定义
连接三角形两边中点的线段,叫做三角形的中位线。
A
D
B
F
E
你还能画出几条三角形的中位线?
C
三角形有三条中位线
三角形的中位线定义
理解三角形的中位线定义的两层含义 A
① 如果D、E分别为AB、AC的中点,D E
例题多变
• 1、若四边形ABCD是平行四边形,结论是否改变? • 2、矩形、菱形、正方形的中点四边形分别是什么图
形? • 3、一个四边形的中点四边形的形状取决于原四边形
的什么元素?结论是什么?
能力提升
• 如图所示,A、B两点被池塘隔开,如何根据 本节课所学知识,测量A、B两点距离呢?
B A
课堂小结:
A
E
H
D
F
G
C
B
例题讲解
例1:如图,点E、F、G、H分别是四边形ABCD的边AB、 BC、CD、DA的中点.
求证:四边形EFGH是平行四边形
A
H
E
B
F
解:如图,连接AC
D
∵点E、F分别是边AB、BC的中点
G
EF//1 AC
2
同理得:GH// 1 AC
2
C
GH//EF
∴四边形EFGH是平行四边形
结论:顺次连接四边形各边中点所得的四边形是什么图形?
则有:DE∥BC,
DE= 1
2
BC.
A
能试着证明
么?
D
E
B
C
结论:三角形的中位线平行于第三边,并且

三角形中位线公开课课件

三角形中位线公开课课件
总结词
中位线定理在求线段长度中的应用
详细描述
中位线定理还可以用来求线段的长度。具体来说,如果知道三角形的一边和它所对应的中位线的长度 ,就可以利用中位线定理来求出其他边的长度。这个定理在解决几何问题时非常有用,可以帮助我们 找到一些未知的长度。
03 三角形中位线的实际应用
在几何图形中的应用
三角形中位线定理
答案解析
基础练习题1解析
首先根据中位线的性质,我们知道DE平行 于BC且DE=0.5BC。由于DE平行于BC,根 据相似三角形的性质,我们可以得出△DEF 相似于△BCF。根据给定的BF:FC=1:3,我 们可以计算出DE:BC=1:6。因此,AC与CF 的长度比为6:1。
基础练习题2解析
同理于基础练习题1,我们可以根据中位线 的性质和相似三角形的性质得出DE:BC=1:4。 因此,AC与CF的长度比为4:1。
三角形中位线的其他性质
总结词
三角形中位线具有一些重要的性质,包括中位线与第三边的关系、中位线与三角形的高 的关系以及中位线与三角形的角平分线的关系等。
详细描述
三角形中位线具有许多重要的性质。其中,中位线与第三边的关系表明,中位线的长度 是第三边的一半。此外,中位线与三角形的高的关系表明,中位线平行于三角形的高, 并且等于高的一半。最后,中位线与三角形的角平分线的关系表明,中位线平行于角平
利用三角形中位线定理解决实际问题
在解决实际问题时,可以利用三角形中位线定理来找到解决问题的关键点,如测量、计算 等。
三角形中位线定理在实际问题中的应用举例
在测量河宽、计算建筑物的高度等实际问题中,可以利用三角形中位线定理来简化计算过 程。
三角形中位线定理在实际问题中的应用注意事项
在实际应用中,需要注意实际情况的限制条件,如测量角度、距离等误差的影响。

三角形中位线定理课件

三角形中位线定理课件
三角形中位线定理的应用
在几何学、代数和三角学等领域,三角形中位线定理被广泛应用于证明和计算 。
三角形中位线定理的历史
该定理最早可追溯到古希腊数学家欧几里得,后来被其他数学家不断完善和证 明。
02
三角形中位线定理的证明
证明方法一:通过相似三角形证明
总结词
利用相似三角形的性质,通过一系列推导证明中位线定理。
VS
建筑学中的应用
在建筑设计或施工时,可以利用三角形中 位线定理来确保结构的稳定性和安全性。 例如,在桥梁或高层建筑的设计中,可以 利用该定理来分析结构的受力情况。
04
三角形中位线定理的拓展
三角形中位线定理的推广
三角形中位线定理的逆定理
如果一条线段平行于三角形的一边,并且通过三角形的另一边的 中点,那么这条线段就是三角形的中位线。
THANKS
感谢观看
在多边形中的应用
对于任意多边形,如果一条线段平行于一边,并且等于另一边的一半,那么这条线段就是多边形的中 位线。
中位线定理与其他几何定理的关系
与平行线性质定理的关系
三角形中位线定理的应用需要平行线的性质 定理来证明线段平行。
与勾股定理的关系
在直角三角形中,中位线定理可以与勾股定 理结合使用,以证明某些几何关系。
证明方法三:通过向量证明
总结词
利用向量的性质和运算规则,通过向量的表示和推导证明中位线定理。
详细描述
首先,利用向量的表示方法,我们可以将三角形的边表示为向量。然后,通过向量的加法和数乘运算,以及向量 的模长和夹角计算,我们可以推导出中位线定理。这种方法需要熟悉向量的性质和运算规则,但可以提供一种全 新的证明角度。
三角形中位线定理ppt课件
目录

三角形的中位线直角三角形斜边上的中线ppt课件

三角形的中位线直角三角形斜边上的中线ppt课件

精讲案·学易 栏目索引
解 (1)证明:∵D、E分别是AB、AC的中点,F是BC延长线上的一点, ∴ED是Rt△ABC的中位线,∴ED∥FC,∴BC=2DE, 又EF∥DC,∴四边形CDEF是平行四边形. (2)由(1)可知DC=EF,DE=CF, ∵DC是Rt△ABC斜边AB上的中线, ∴AB=2DC,∴四边形DCFE的周长=AB+BC, ∵四边形DCFE的周长为25 cm,AC的长为5 cm, ∴BC=25-AB, ∵在Rt△ABC中,∠ACB=90°, ∴AB2=BC2+AC2,即AB2=(25-AB)2+52,解得AB=13 cm.
证明 连接CG,∵AD=AE,F是DE的中点, ∴AF是等腰△ADE底边DE上的中线, ∴AF⊥DE,同理CG⊥AB, ∴△ACF与△ACG均是直角三角形, ∵H是AC的中点,∴HF、GH分别是△ACF与△ACG斜边上的中线, ∴FH=GH=12 AC,∴△HFG是等腰三角形, ∴∠HFG=∠FGH.
3
精讲案·学易 栏目索引
命题思路 本题主要考查三角形的中位线的性质、直角三角形斜边上的中 线的性质. 失分警示 判断DF是△ABE的中位线是本题的解题关键.
精讲案·学易 栏目索引
实战预测 2.(2018大庆)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连 接CD,过E作EF∥DC交BC的延长线于F. (1)证明:四边形CDEF是平行四边形; (2)若四边形CDEF的周长是25 cm,AC的长为5 cm,求线段AB的长度.
定义:三角形两边中点之间的线段叫做三角形的中位线
性质
图形语言
文字语言
符号语言
三角形的中位线平行并且等于第 ∵DE是△ABC的中位线,∴DE∥B

三角形的中位线PPT课件

三角形的中位线PPT课件

一地,能明确指出概念含义或特征的句子,称 为定义.
请给它们下定义
直角三角形: 有一个角为直角的三角形叫直 角三角形.
锐 角:
大于00且小于900的 角叫锐角.
圆周角:
顶点在圆上,两边与圆相交 的角叫圆周角.
你能举出一些老师在教学上重点提 示的一些不确切的定义吗?
注意!
定义的严密性
看下面的句子: (1)对顶角相等 (2)内错角相等 (3)如果两直线被第三直线所截,那么同位角相等 (4)3<2 (5)三角形的内角和等于1800 (6)x>2 能判断真假吗?哪能是正确的?哪些是错误的?
如图: D、E分别是AB、AC边的中点, DE就是△ABC的中位线。
A
一个三角形共有几条中位线? D
E
答:三条
B
F
C
三角形的中位线与三角形的中线有
什么区别? A
A
D
E
B
CB
F
C
中位线是两个中点的连线,而中线是一个
顶点和对边中点的连线。
三角形的中位线定理:三角形的中位线 平行于第三边,并且等于第三边的一半。
两个角相等,那么这两个角
B
C
所对的边也相等。题设是:
结论是:
添加“如果”、“那么”后,命题的 意义 不能改变,改写的句子要完整,语句
要通顺,使命题的题设和结论更明朗, 易于分辨,改写过程中,要适当增加 词语,切不可生搬硬套。
小考卷2
一、把下面的命题改写成“如果……那 么……”的形式。 1、两直线平行,同旁内角互补。 2、同圆的半径相等。 3、有两个角相等的两个三角形相似。 4、等角的补角相等。 5、圆是轴对称图形,又是中心对称图形。
命题
如果……

三角形的中位线ppt课件

三角形的中位线ppt课件
3 三角形的中位线
第六章 平行四边形
学习目标
1.理解三角形中位线的概念,掌握三角形中位线定理的内容; 2.经历探索,猜想,证明三角形的中位线定理的过程,进一步发展 推理论证的能力. 重点:探索并证明三角形中位线定理.
新知探究 你能将一个三角形分成四个全等的三角形吗?你能通过剪拼的方式 将一个三角形拼成一个与其面积相等的平行四边形吗?
课堂小结
1.三角形中位线定理: 连接三角形两边中点的线段平行于第三边,且等于第三边的一半. 2.我们既可以用三角形知识研究平行四边形的问题,又可以用平行四边形 知识研究三角形的问题.
谢谢观看
新知探究
①△ABC中,连接每两边的中点,看上去就得到了四个全等的三角形. ②将△ADE绕点E按顺时针方向旋转180°到△CFE的位置,这样就得到 了一个与△ABC面积相等的平行四边形.
新知探究
我们在研究平行四边形时,经常采用把平行四边形转化为三角形的问题,
能否用平行四边形研究三角形呢?
如图,△ABC中,D,E分别是边AB,AC 的中点,连接DE.
在△ABC中,
∵D,E分别是边AB,AC的中点,
∴DE∥BC,且DE=
1 2
BC
.Hale Waihona Puke ADEB
C
知识训练 1.如图,在△ABC中,∠C=90°,AC=8,CB=6,D,E,F分别是BC, AC,AB的中点,则四边形AEDF的周长为____1_8___;Rt△ABC的中位线 分别是___D_E_,__D__F__;斜边上的中线是___C_F___,其长为___5___.
像DE这样,连接三角形两边中点的线段叫做三角形的中位线.
看一看,量一量,猜一猜:
A
DE与BC之间有什么位置关系和数量关系?

《角形的中位线》课件

《角形的中位线》课件

实例应用
练习题解析
训练学生运用中位线的定义和性 质解决实际问题的能力。
应用题
中位线在桥梁工程中的应用,引 导学生探究中位线在实际工程中 的价值。
现实生活中的应用
中位线在地图绘制、建筑设计和 工业生产等方面都有广泛的应用。
总结
重要性
中位线在几何学、物理学和工程学中都有重要的应用,值得我们深入学习和探讨。
实际应用
中位线不仅有学科内部的应用,也在现实生活中有很多实际应用。
学习心得与建议
学生需要理解中位线的定义和性质,并能熟练应用,建议多做题练习。
参考资料
数学民间教育
这是一份高质量的数学自学资 料,详细介绍了中位线的定义 和性质,也有练习题和答案供 参考。
课堂笔记
这份课堂笔记提供了关于中位 线的详细笔记,并包含了许多 有用的练习题和答案。
《角形的中位线》PPT课 件
角形的中位线是一个重要的数学概念,它有广泛的应用,如何理解和使用角 形的中位线是我们今天的主题。
什么是角形的中位线?
定义:
连接角的两边中点的线段叫做角的中位线。
性质:
角的两条中位线相交于顶角的垂直平分线上,并且互相平分。
举例:
我们可以通过画图的方式帮助学生更好地理解中位线的概念。
网络资源
网络资源包括各种学习资料和 练习题,可以帮助学生更深入 地了解中位线的应用。
三角形的中位线
定义
对于三角形ABC,从顶点到对边 中点的线段叫做三角形ABC的中 位线。
交点性质
三角形中位线的三条交点称为三 角形ABC的重心,与顶点距离成 比例,重心在三角形重心线上。
平行性质
三角形中位线互相平分,并且平 分线段。
四边形的中线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第23章 图形的相似
专题课堂(八)三角形中位线的应用
类型: (1)三角形中线的应用;
(2)三角形中位线的应用;
(3)三角形重心的应用.
【例1】(1)如图①,在四边形ADBC中,AB与CD相交于点O, AB=CD,E,F分别是BC,AD的中点,连结EF,分别交DC,AB 于点M,N,判断△OMN的形状,请直接写出结论;

17、一个人即使已登上顶峰,也仍要 自强不 息。2021/2/272021/2/272021/2/272021/2/27
谢谢观赏
You made my day!
我们,还在路上……

14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年2月27日星期 六2021/2/272021/2/272021/2/27

15、最具挑战性的挑战莫过于提升自 我。。2021年2月2021/2/272021/2/272021/2/272/27/2021

16、业余生活要有意义,不要越轨。2021/2/272021/2/27Februar y 27, 2021

12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/2/272021/2/272021/2/27Satur day, February 27, 2021

13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/2/272021/2/272021/2/272021/2/272/27/2021
解:菱形

9、有时候读书是一种巧妙地避开思考 的方法 。2021/2/272021/2/27Saturday, February 27, 2021

10、阅读一切好书如同和过去最杰出 的人谈 话。2021/2/272021/2/272021/2/272/27/2021 12:20:34 PM
•பைடு நூலகம்
11、越是没有本领的就越加自命不凡 。2021/2/272021/2/272021/2/27Feb-2127-Feb-21
[对应练习] 1.如图所示,点 G 是△ABC 的重心,CG 的延长线交 AB 于点 D,GA =5 cm,GC=4 cm,GB=3 cm,将△ADG 绕点 D 旋转 180°得到△BDE,
则 DE=__2__cm,△ABC 的面积=1_8___cm2.
2.如图,△ABC 的周长为 26,点 D,E 都在边 BC 上,∠ABC 的平分 线垂直于 AE,垂足为 Q,∠ACB 的平分线垂直于 AD,垂足为 P,若 BC=
(2)如图②,在△ABC中,AC>AB,D点在AC上,AB=CD,E ,F分别是BC,AD的中点,连结EF并延长,与BA的延长线交于点 G,若∠EFC=60°,连结GD,判断△AGD的形状并证明.
分析:已知三角形的边的中点,常取另一边的中点,构造三角形 的中位线.
解:(1)等腰三角形 (2)△AGD 是直角三角形,连结 BD,取 BD 的中点 H,连结 HF,HE,
10,则 PQ 的长为( C )
3
5
A.2
B.2
C.3
D.4
3.如图,在△ABC中,D是△ABC的重心,S△DEF=2,则 △AEC的面积为_1_2__.
4.如图所示,已知△ABC是锐角三角形,分别以AB,AC为边 向外侧作两个等边△ABM和△CAN,连结MN,D,E,F,G分别 是MB,BC,CN,MN的中点,试判断四边形DEFG的形状,并说 明理由.
∵F 是 AD 的中点,∴HF∥AB,HF=12AB,同理,HE∥CD,HE=12CD, ∵AB=CD,∴HF=HE,∵∠EFC=60°,∴∠HEF=60°,∴∠HEF= ∠HFE=60°,∴∠DHE=∠HFE=60°,∠EFC=∠AFG=60°,∴∠ AFG=∠DHE=60°,∴△AGF 是等边三角形,∴AF=FG,∵AF=FD, ∴GF=FD,∴∠FGD=∠FDG=30°,∴∠AGD=90°,即△AGD 是直 角三角形
相关文档
最新文档