江苏省苏州市2018届高三第一次模拟考试数学试卷(含答案)

合集下载

(完整word版)2018-2019高三第一次模拟试题文科数学

(完整word版)2018-2019高三第一次模拟试题文科数学

高三年级第一次模拟考试60分.在每小题给出的四个选项中,有且合 题目要畚考公式:样本败据x lt 鬲的标准差 尸¥门如一訝+他— 英叩丘为样車屮均数柱体的体积公式Y=*其中/为底!ftl 曲积・h 为海341(1)复数 I ~i = (A) 1+2i (B) 1-2i(C) 2-i (D) 2+i⑵函数的定义域为(A) (-1,2) (B) (0, 2] (C) (0, 2) (D) (-1,2] ⑶ 己知命题p :办I 砒+ llX ,则了为 锥体的体积公式v=*h 乩中$为底面面枳,h 为商 耶的親血祝*休枳公式$=4庆,評It 中月为球的半牲(A) (C)函数|;宀林匚阴的图象可以由函数'尸沁酬的图象 (A) 64 (B) 31 (C) 32 (D) 63(7) 已知某几何体的三视图如图所示,则其表面积为 (A)右+4观(B)「(C) 2 (D) 8一、选择题:本大题共12小题,毎小题5〕 分,共 只有一 项 符(B)(D)(A) (C)向左平移个单位得到JL个单位得到(B)向右平移3个单位得到 向左平移设变量x 、y 满足约束条件 ⑸ (A) 3 (B) 2 (C) 1 (D) 5(D)向右平移个单位得到g+2y —2 鼻(h[2x +工一7冬6则的最小值为(6)等比数列{an }的公比a>1,血,则-血+口 $+他"卜彌=(8) 算法如图,若输入 m=210,n= 119,则输出的n 为 (A) 2 (B) 3 (C) 7 (D) 11(9) 在 中,/恥C 权」,AB=2, AC=3,则 = (A) 10 (B)-10(C) -4 (D) 4(10) 点A 、B 、C D 均在同一球面上,其中 的体积为(11) 已知何m 2 '黑⑴-代2侧集合」「等于D |『工=对止卡(B)卜: (12) 抛物线 的焦点为F,点A 、B 、C 在此抛物线上,点A 坐标为(1,2).若点F 恰为 的重心,则直线 BC 的方程为 (A)龙卄一0 (B): tT '■(C)Ly=0 (D) | It \.■二、填空题:本大题共 4小题,每小题5分,共20分.(13) 班主任为了对本班学生的考试成绩进行分析,从全班 50名同学中按男生、女生用分层 抽样的方法随机地抽取一个容量为 10的样本进行分析•己知抽取的样本中男生人数为 6,则班内女生人数为 ________ .Lif ]町= :—(14) 函数.文+】(X 〉0)的值域是 _________ .(15) 在数列1禺1中,尙=1,如 厂% = 2门丨,则数列的通项 □」= _________ .—7 --- F ------(16) —P 尺的一个顶点P ( 7,12)在双曲线 产 3上,另外两顶点 F1、F2为该双曲线是正三角形,AD 丄平面 AD=2AB=6则该球(D)(C) 卜 j(—Ak 土(D)(A) (B) 15 (C)的左、右焦点,则屮八几的内心的横坐标为 __________ .三、解答题:本大题共 6小题,共70分.解答应写出文字说明、证明过程或演算步骤 (17) (本小题满分12分)在厶ABC 中,角A 、B C 的对边分别为a 、b 、c, A=2B,呦占」5 ' (I ) 求cosC 的值;[c\(II)求的值•(18) (本小题满分12分)某媒体对“男女同龄退休”这一公众关注的问题进行了民意调查, 右表是在某单位得到的数据(人数)•(I )能否有90%以上的把握认为对这一问题的看法与性别有关?(II)从反对“男女同龄退休”的甲、 乙等6名男士中选出2人进行陈述,求甲、乙至少有- 人被选出的概率.反对 合计|男 5 6 H 1 女II1 3 "14 合计 16925(19) (本小题满分12分)如图,在三棱柱.A 尅匚 "Q 中,CC1丄底面ABC 底面是边长为2的正三角形,M N 、G 分别是棱CC1 AB, BC 的中点. (I ) 求证:CN//平面AMB1 (II)若X 严2迄,求证:平面AMG.(20) (本小题满分12 分)X'设函数:「—L(I )当a=0时,求曲线在点(1, f(1))处的切线 方程;P(K 2^k) 0.25 Od U 0J0 kL323 2.072 2.706__ ,讯耐一比严 ____(a+附:(II )讨论f(x)的单调性•(21) (本小题满分12分)中心在原点0,焦点F1、F2在x 轴上的椭圆E 经过点C(2, 2),且 ―二◎土::(I) 求椭圆E 的方程;(II) 垂直于0C 的直线I 与椭圆E 交于A B 两点,当以AB 为直径的圆P 与y 轴相切时,求 直线I 的方程和圆P 的方程•请考生在第(22)、( 23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分 •作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑 •(22) (本小题满分10分)选修4-1:几何证明选讲如图,AB 是圆0的直径,以B 为圆心的圆B 与圆0的一个交点为P.过点A 作直线交圆Q 于 点交圆B 于点M N. (I )求证:QM=QNi110(II)设圆0的半径为2,圆B 的半径为1,当AM= 时,求MN 的长.(23) (本小题满分10分)选修4-4:坐标系与参数 方程 以直角坐标系的原点 O 为极点,x 轴正半轴为极轴,.已知直线I 的参数方程为 (t 为参数,(I )求曲线C 的直角坐标方程;(II)设直线I 与曲线C 相交于A B 两点,当a 变化时,求|AB|的最小值.(24) (本小题满分10分)选修4-5:不等式选讲 设曲线C 的极坐标方程为2cos 0 L朋& *并在两种坐标系中取相同的长度单位(I) 求不等式的解集S;(II) 若关于x不等式应总=1我=;『;:纂釧有解,求参数t的取值范围(18) 解: 由此可知,有90%的把握认为对这一问题的看法与性别有关.…5分(H)记反对“男女同龄退休”的6男士为ai , i = 1, 2,…,6,其中甲、乙分别为a2,从中选出2人的不同情形为: a1a2, a1a3, a1a4, a1a5, a1a6, a2a3, a2a4, a2a5 , a2a6, a3a4, a3a5, a3a6 , a4a5, a4a6, a5a6,…9分共15种可能,其中甲、乙至少有1人的情形有9种,93 所求概率为P = .…12分(19)解:(I)设 AB1的中点为 P ,连结NP 、MP1 1•/ CM^ — A1 , NP^— A1 , • CM^ NP,2 2文科数学参考答案 一、 选择题: A 卷: ADCDC B 卷: BCDAB 二、 填空题: (13) 20 三、 解答题: (17)解:DACB ADDCAB(14) BB CA(-1,1)(15) n2(16) 1(I): B =(0,亍),••• cosB = 1— s in 2B =•/ A = 2B ,「.4si nA = 2si nBcosB = , cosA = cos2B = 1 — 2si n2B = 5 , ••• cosC = cos[ —(A + B)] = — cos(A + B) = si nAsi nB — cosAcosB =— 2.525 'sinC =1 — cos2C=11 .525 ,根据由正弦定理,c si nC 11b sinB 5…12分(I) K2= 25 X (5 X 3— 6 X11)216 X 9X 11 X 142.932 > 2.706 a1 ,• CNPK是平行四边形,• CN// MP•/ CN平面AMB1 MP平面AMB1 • CN//平面AMB1 …4分(n)v cc 仏平面 ABC •••平面 CC1B1E L 平面 ABC , •/ AG 丄 BC, • AGL 平面 CC1B1B • B1M L AG •/ CC1 丄平面 ABC 平面 A1B1C1 //平面 ABC •- CC L AC, CC1 丄 B1C1 ,在 Rt △ MCA 中 , AM k CM 即 AC2= 6. 同理,B1M=6.•/ BB1/ CC1, • BB1 丄平面 ABC •- BB1 丄 AB, • AB1= B1B2+ AB2= C1C2+ AB2= 2.3 , • AM2+ B1M2= AB2, • B1ML AM 又 AG A AM= A , • B1ML 平面 AMG (20)解:, , x2 x(x — 2) (I)当 a = 0 时,f(x) = , f (x)=—亠exex1 1f(i) =T ,f (i) =-^,曲线y = f(x)在点(1 , f(1))处的切线方程为(2x — a)ex — (x2 — ax 土 a)ex e2x(1 )若 a = 2,贝U f (x) w 0 , f(x)在(一a , +s )单调递减. …7 分(2 )若 a v 2,贝 U…10分 …12分1y =肓(x — 1) +(x — 2)(x — a)exA Bf (x)当x€ ( —a , a)或x€ (2 , +a )时,f (x) v 0,当x € (a , 2)时,f (x) > 0 , 此时f(x)在(—a , a)和(2 , +a )单调递减,在(a , 2)单调递增.(3)若a> 2,贝U当x€ ( —a , 2)或x€ (a , +a )时,f (x) v 0,当x € (2 , a)时,f (x) >0 , 此时f(x)在(—a , 2)和(a , +a )单调递减,在(2 , a)单调递增. …12分x2 y2(21)解:(I)设椭圆E的方程为02+ b2 = 1 (a>b> 0),贝y a2+ b2记c= ,a2—b2 ,不妨设F1( — c , 0) , F2(c , 0),则C f1= ( —c—2, —2) , C f2= (c —2, —2),则C f1 • C f2= 8 —c2 = 2 , c2 = 6,即a2 —b2= 6.由①、②得a2= 12, b2= 6. 当m= 3时,直线I 方程为y =— x + 3, 此时,x1 + x2 = 4,圆心为(2 , 1),半径为2,圆P 的方程为(x — 2)2 + (y — 1)2 = 4; 同理,当 m=— 3时,直线I 方程为y = — x — 3,圆P 的方程为(x + 2)2 + (y + 1)2 = 4. …12分 (22)解:(I)连结 BM BN BQ BP. •/ B 为小圆的圆心,••• BM= BN 又••• AB 为大圆的直径,• BQL MN , •- QM= QN …4 分 (n)v AB 为大圆的直径,•/ APB= 90 , • AP 为圆B 的切线,• AP2= AM- AN …6分 由已知 AB= 4, PB= 1 , AP2= AB2- PB2= 15,所以曲线C 的直角坐标方程为 y2= 2x .(n)将直线l 的参数方程代入 y2 = 2x ,得t2sin2 a — 2tcos a — 1= 0.所以椭圆E 的方程为 x2 y2 i2+ 6 = 1. (也可通过2a = iCFlI + |C ?2|求出a ) (n)依题意,直线 0C 斜率为1,由此设直线I 的方程为y = — X + m 代入椭圆 E 方程,得 3x2 — 4m 灶2m2- 12= 0. 由△= 16m2- 12(2m2 — 12) = 8(18 — m2),得 m2< 18. 4m 2m2— 12 记 A(x1 , y1)、B(x2 , y2),贝U x1 + x2=^ , x1x2 = -—. 3 3 x1 + x2 圆P 的圆心为(一_, y1 + y2 2 ),半径r = 当圆P 与y 轴相切时, x1 + x2 r = 1 2 1, 2x1x2 = (x1 + x2)2 4 2(2m2 — 12)= 3 = 4m2 —,m2= 9v 18. …10分 (I)由 2cos 0 p = sinr v ,得(p sin 0 )2 = 2 p cos 0, …6分 7 6设A、B两点对应的参数分别为t1、t2,则4C0S2 a 4 2 + = ------------------------ sin4 a sin2 a sin2 a当a =—亍时,|AB|取最小值2 .…10分 (24)解:—x + 3, x v — 3,(I) f(x) = — 3x — 3,— 3<x < 0,x — 3, x >0.如图,函数y = f(x)的图象与直线 y = 7相交于横坐标为 x1 =— 4,x2 = 10的两点, 由此得 S = [ — 4, 10].\ :I…6分(n)由(I )知,f (x )的最小值为一3,则不等式 f(x) + |2t —3| < 0有解必须且只需—3 + |2t — 3| < 0,解得0W t < 3,所以t 的取值范围是[0 , 3]. t1 + t2 = 2C0S a sin2 at1t2 sin2 a :.|AB| = |t1 - t2| = (t1 + t2)2 - 4t1t2 …10分。

2018届江苏高考数学模拟试卷(1)(含答案)

2018届江苏高考数学模拟试卷(1)(含答案)

2018届江苏高考数学模拟试卷(1)数学I一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.已知集合{02},{11}A x x B x x =<<=-<<,则A B U = ▲ .2. 设复数1a +=-i z i(i 是虚数单位,a ∈R ).若z 的虚部为3,则a 的值为 ▲ .3.一组数据5,4,6,5,3,7的方差等于 ▲ .4.右图是一个算法的伪代码,输出结果是 ▲ .5.某校有B A ,两个学生食堂,若甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则此三人不在同一食堂用餐的概率为 ▲ .6. 长方体1111ABCD A B C D -中,111,2,3AB AA AC ===,则它的体积等于 ▲ .7.若双曲线2213x y a -=的焦距等于4,则它的两准线之间的距离等于 ▲ .8. 若函数()22xx af x =+是偶函数,则实数a 等于 ▲ .9. 已知函数f (x )=2sin(ωx +φ)(ω>0).若f (π3)=0,f (π2)=2,则实数ω的最小值为 ▲ .S ←0 a ←1 For I From 1 to 3a ←2×a S ←S +a End For Print S (第4题)10. 如图,在梯形ABCD 中,,2,234,//CD AD AB CD AB ====,,如果 ⋅-=⋅则,3= ▲ .11.椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,若椭圆上恰好有6个不同的点P ,使得12F F P ∆为等腰三角形,则椭圆C 的离心率的取值范围是 ▲ .12.若数列12{}(21)(21)n n n +--的前k 项的和不小于20172018,则k 的最小值为 ▲ .13. 已知24παπ<<,24πβπ<<,且22sin sin sin()cos cos αβαβαβ=+,则tan()αβ+的最大值为▲ .14. 设,0a b >,关于x 的不等式3232x xx xa N Mb ⋅-<<⋅+在区间(0,1)上恒成立,其中M , N 是与x 无关的实数,且M N >,M N -的最小值为1. 则ab的最小值为___▲___.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证 明过程或演算步骤.15.如图,在ABC ∆中,已知7,45AC B =∠=o,D 是边AB 上的一点,3,120AD ADC =∠=o . 求:(1)CD 的长; (2)ABC ∆的面积.16.如图,在四棱锥S-ABCD 中,底面ABCD 是平行四边形,E ,F 分别是AB ,SC 的中点. (1)求证:EF ∥平面SAD ; A D CB(2)若SA=AD ,平面SAD ⊥平面SCD ,求证:EF ⊥AB .17.如图,有一椭圆形花坛,O 是其中心,AB 是椭圆的长轴,C 是短轴的一个端点. 现欲铺设灌溉管道,拟在AB 上选两点E ,F ,使OE =OF ,沿CE 、CF 、F A 铺设管道,设θ=∠CFO ,若OA =20m ,OC =10m , (1)求管道长度u 关于角θ的函数;(2)求管道长度u 的最大值.18.在平面直角坐标系xOy 中,已知圆222:C x y r +=和直线:l x a =(其中r 和a 均为常数,且0r a <<),M 为l 上一动点,1A ,2A 为圆C 与x 轴的两个交点,直线1MA ,2MA 与圆C 的另一个交点分别为,P Q .(1)若2r =,M 点的坐标为(4,2),求直线PQ 方程; (2)求证:直线PQ 过定点,并求定点的坐标.19.设R k ∈,函数2()ln 1f x x x kx =+--,求: (1)1=k 时,不等式()1f x >-的解集; (2)函数()x f 的单调递增区间;(3)函数()x f 在定义域内的零点个数.20.设数列{}n a ,{}n b 分别是各项为实数的无穷等差数列和无穷等比数列. (1)已知06,12321=+-=b b b b ,求数列{}n b 的前n 项的和n S ;(2)已知数列{}n a 的公差为d (0)d ≠,且11122(1)22n n n a b a b a b n +++⋅⋅⋅+=-+,求数列{}n a ,{}n b 的通项公式(用含n ,d 的式子表达); (3)求所有满足:11n n n na b b a ++=+对一切的*N n ∈成立的数列{}n a ,{}n b .数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.................... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲(本小题满分10分) 如图,在△ABC 中,90BAC ∠=,延长BA 到D ,使得AD =12AB ,E ,F 分别为BC ,AC 的中点,求证:DF =BE .B .选修4—2:矩阵与变换 (本小题满分10分)已知曲线1C :221x y +=,对它先作矩阵1002A ⎡⎤=⎢⎥⎣⎦对应的变换,再作矩阵010m B ⎡⎤=⎢⎥⎣⎦对应的变换(其中0≠m ),得到曲线2C :2214x y +=,求实数m 的值.C .选修4—4:坐标系与参数方程 (本小题满分10分)已知圆C的参数方程为12cos 2sin x y θθ=+⎧⎪⎨=⎪⎩, , (θ为参数),直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩, , (t 为参数,0 ααπ<<π≠2,且),若圆C 被直线lα的值.D .选修4—5:不等式选讲 (本小题满分10分)对任给的实数a 0a ≠()和b ,不等式()12a b a b a x x ++-⋅-+-≥恒成立,求实数x 的取值范围.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文 字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在直三棱柱ABC -A 1B 1C 1中,A A 1=AB =AC =1,AB ⊥AC ,M ,N 分别是棱CC 1,BC 的 中点,点P 在直线A 1B 1上.(1)求直线PN 与平面ABC 所成的角最大时,线段1A P 的长度;(2)是否存在这样的点P ,使平面PMN 与平面ABC 所成的二面角为6π. 如果存在,试确定点P 的位置;如果不存在,请说明理由.(第21—A 题)BECFDA123.(本小题满分10分)设函数()sin cos n n f θθθ=+,其中n 为常数,n ∈*N , (1)当(0,)2πθ∈时, ()f θ是否存在极值?如果存在,是极大值还是极小值?(2)若sin cos a θθ+=,其中常数a 为区间[内的有理数. 求证:对任意的正整数n ,()f θ为有理数.2018高考数学模拟试卷(1)数学Ⅰ答案一、填空题答案:1. {12}x x -<<2. 5 3.53 4. 14 5. 43 6.4 7. 1 8. 1 9. 3 10.2311. 111(,)(,1)322⋃.解:422111232c a c e e c a>-⎧⇒<<≠⎨≠⎩且,故离心率范围为111(,)(,1)322⋃.12. 10解:因为对任意的正整数n ,都有1212)12)(12(211--=--++n n n n n 1-1, 所以⎭⎬⎫⎩⎨⎧--+)12)(12(21n n n的前k 项和为 1)1)(2(221)1)(2(221)1)(2(221322211--++--+--+k kk12112112112112112113221---++---+---=+k k 12111--=+k 使2018201712111≥--+k ,即2018121≥-+k ,解得10≥k ,因此k 的最小值为10.13. -4解:因为24ππ<<βα,,所以βαβαsin sin cos cos ,,,均不为0.由βαβαβαcos cos )sin(sin sin 22+=,得βαβαβαβαsin cos cos sin tan tan sin sin +=,于是αββαtan 1tan 1tan tan +=,即βαβαβαtan tan tan tan tan tan +=, 也就是βαβα22tan tan tan tan =+,其中βαtan tan ,均大于1. 由βαβαβαtan tan 2tan tan tan tan22⋅≥+=⋅,所以34tan tan ≥βα.令()341tan tan 1-,--∞∈=βαt , βαβαβαβαβαtan tan 1tan tan tan tan 1tan tan )tan(22-=-+=+21-+=tt 4-≤,当且仅当1-=t 时取等号.14.4+解:32()32xxx x a f x b ⋅-=⋅+,则23()6l n2()0(32)xx x a b f x b +'=>⋅+恒成立,所以()f x 在(0,1)上单调递增, 132(0),(1)132a a f f b b --==++,∴()f x 在(0, 1)上的值域为132(,)132a ab b --++,M x f N <<)( 在(0,1)上恒成立,故mi n 321()1321(32)(1)a a ab M N b b b b --+-=-==++++,所以2342a b b =++,所以2344a b b b=++≥.所以min ()4ab=+.二、解答题答案15.解:(1)在ACD ∆中,由余弦定理得2222cos AC AD CD AD CD ADC =+-⋅∠,2227323cos120CD CD =+-⨯⋅o ,解得5CD =.(2)在BCD ∆中,由正弦定理得sin sin BD CD BCD B =∠,5sin 75sin 45BD =o o,解得BD = 所以BDC BD CD ADC CD AD S S S BCD ACD ABC ∠⋅+∠⋅=+=∆∆∆sin 21sin 2111535sin120560222+=⨯⨯+⨯⨯oo 758+=.16. 解(1)取SD 的中点G ,连AG ,FG .在SCD ∆中,因为F ,G 分别是SC ,SD 的中点, 所以FG ∥CD ,12FG CD =. 因为四边形ABCD 是平行四边形,E 是AB 的中点, 所以1122AE AB CD ==,AE ∥CD . 所以FG ∥AE ,FG=AE ,所以四边形AEFG 是平行四边形,所以EF ∥AG .因为AG ⊂平面SAD ,EF ⊄平面SAD ,所以EF ∥平面SAD . (2)由(1)及SA=AD 得,AG SD ⊥.因为平面SAD ⊥平面SCD ,平面SAD ⋂平面SCD =SD ,AG ⊂平面SAD , 所以AG ⊥平面SCD ,又因为SCD CD 面⊂,所以AG ⊥CD . 因为EF ∥AG ,所以EF ⊥CD , 又因为CD AB //,所以EF ⊥AB .17. 解:(1)因为θsin 01=CF ,θtan 10=OF ,θtan 10-20=AF , 所以θθθθsin cos 102020tan 1002sin 02-+=-+=++=AF CF CE u , AE DCS FG其中,552cos 0<<θ. (2)由 θθsin cos 102020-+=u ,得θθ2'sin cos 0201-=u ,令21cos 0'==θ,u , 当 21cos 0<<θ时,0'>u ,函数)(θu 为增函数;当552c o s 21<<θ时,0'<u ,函数)(θu 为减函数. 所以,当21cos =θ,即3πθ=时,310203sin21102020max +=⨯-+=πu (m )所以,管道长度u 的最大值为)(31020+m.18. 解:(1)当2r =,(4,2)M 时,则1(2,0)A -,2(2,0)A ,直线1MA 的方程:320x y -+=,解224320x y x y ⎧+=⎨-+=⎩得86(,)55P .直线2MA 的方程:20x y --=,解22420x y x y ⎧+=⎨--=⎩得(0,2)Q -.所以PQ 方程为220x y --=.(2)由题设得1(,0)A r -,2(,0)A r ,设(,)M a t ,直线1MA 的方程是()ty x r a r =++,与圆C 的交点11(,)P x y , 直线2MA 的方程是()ty x r a r=--,与圆C 的交点22(,)Q x y ,则点11(,)P x y ,22(,)Q x y 在曲线[()()][()()]0a r y t x r a r y t x r +-+---=上, 化简得2222222()2()()0a r y ty ax r t x r ---+-=, ①又11(,)P x y ,22(,)Q x y 在圆C 上,圆C :2220x y r +-=, ②①-2t ×②得22222222222()2()()()0a r y ty ax r t x r t x y r ---+--+-=,化简得2222()2()0a r y t ax r t y ----=.所以直线PQ 方程为2222()2()0a r y t ax r t y ----=.令0y =得2r x a =,所以直线PQ 过定点2(,0)r a.19.解(1)k =1时,不等式()1f x >-即2ln 0x x x +->,设2()l n g x x x x =+-,因为2121()210x x g x x x x-+'=+-=>在定义域(0,)+∞上恒成立,所以g (x )在(0,)+∞上单调递增,又(1)0g =,所以()1f x >-的解集为(1,)+∞.(2)2121()2(0)x kx f x x k x x x-+'=+-=>,由()0f x '≥得2210x kx -+≥……(*). (ⅰ)当280k ∆=-≤,即k -≤≤(*)在R 上恒成立,所以()f x 的单调递增区间为(0,)+∞. (ⅱ)当k >时,280k ∆=->,此时方程2210x kx -+=的相异实根分别为12x x ==,因为12120,2102k x x x x ⎧+=>⎪⎪⎨⎪=>⎪⎩,所以120x x <<,所以()0f x '≥的解集为(0,[)44k k -+∞U , 故函数f (x )的单调递增区间为)+∞和.(ⅲ)当k <-时,同理可得:,0,21,020212121<<∴⎩⎨⎧<=+>=x x kx x x x ()f x 的单调递增区间为(0,)+∞.综上所述,当k >()f x的单调递增区间为)+∞和;当k ≤()f x 的单调递增区间为(0,)+∞. (3)据(2)知①当k ≤时,函数()f x 在定义域(0,)+∞上单调递增,令210,0x kx x ⎧-->⎨>⎩得2k x +>,取}m =,则当x >m 时,2()10f x x kx >-->.设01x <<,21max{1,}x kx k λ--<--=,所以()l n f x x λ<+,当0x e λ-<<时,()0f x <,取m i n {1,}n e λ-=,则当(0,)x n ∈时,()0f x <,又函数()f x 在定义域(0,)+∞上连续不间断,所以函数()f x 在定义域内有且仅有一个零点.②当22>k 时,()f x 在12(0,)(,)x x +∞和上递增,在12(,)x x 上递减, 其中012,0122211=+-=+-kx x kx x则2221111111()ln 1ln (21)1f x x x kx x x x =+--=+-+-211ln 2x x =--.下面先证明ln (0)x x x <>:设x x x h -=ln )(),由1()xh x x-'=>0得01x <<,所以h (x )在(0,1)上递增,在(1,)+∞上递减,01)1()(m a x <-==h x h ,所以()0h x <)0(>x ,即 ln (0)x x x <>.因此,047)21(2)(212111<---=--<x x x x f ,又因为)(x f 在12(,)x x 上递减,所以21()()0f x f x <<,所以()f x 在区间2(0,)x 不存在零点.由①知,当x m >时,()0f x >,()f x 的图象连续不间断,所以()f x 在区间2(,)x +∞上有且仅有一个零点. 综上所述,函数()f x 在定义域内有且仅有一个零点.20.解(1)设{}n b 的公比为q ,则有063=+-q q ,即2(2)(23)0q q q +-+=,所以2q =-,从而1(2)3nn S --=.(2)由11122(1)22n n n a b a b a b n +++⋅⋅⋅+=-+得112211(2)22nn n a b a b a b n --++⋅⋅⋅+=-+,两式两边分别相减得2(2)nn n a b n n =⋅≥.由条件112a b =,所以*2(N )n n n a b n n =⋅∈,因此111(1)2(2)n n n a b n n ---=-⋅≥,两式两边分别相除得12(2)1n n a n q n a n -⋅=≥-,其中q 是数列{}n b 的公比.所以122(1)(3)2n n a n q n a n ---⋅=≥-,上面两式两边分别相除得2221(2)(3)(1)n n n a a n n n a n ---=≥-.所以312234a a a =,即1121(2)3()4a d a a d +=+,解得113a d a d ==-或,若d a 31-=,则04=a ,有024444==⋅b a 矛盾,所以1a d =满足条件,所以2,nn n a dn b d==.(3)设数列{}n a 的公差为d ,{}n b 的公比为q , 当q =1时,112n n b b b ++=,所以112n na b a +=,所以数列{}n a 是等比数列,又数列{}n a 是等差数列,从而数列{}n a 是各项不为0的常数列,因此112b =,经验证,110,2n n a a b =≠=满足条件.当1q ≠时,由11n n n n a b b a ++=+得1111(1)n dn a b q q dn a d-+=++-……(*) ①当d>0时,则1d a n d ->时,10n n a a +>>,所以111dn a dn a d +>+-此时令112dn a dn a d +<+-得12d a n d->,因为112d a d a d d -->所以,当12d a n d ->时,1112dn a dn a d +<<+-. 由(*)知,10,0b q >>. (ⅰ)当q >1时,令11(1)2n b q q-+>得121log (1)qn b q >++,取11122max{,1log }(1)q d a M d b q -=++,则当1n M >时,(*)不成立. (ⅱ)当0<q <1时,令11(1)1n b q q -+<得111log (1)qn b q >++,取12121max{,1log }(1)q d a M d b q -=++,则当2n M >时,(*)不成立. 因此,没有满足条件的数列{}n a ,{}n b .②同理可证:当d <0时,也没有满足条件的数列{}n a ,{}n b .综上所述,所有满足条件的数列{}n a ,{}n b 的通项公式为110,2n n a a b =≠=(*N n ∈).数学Ⅱ(附加题)答案21.【选做题】答案A .选修4—1:几何证明选讲 解:取AB 中点G ,连结GF ,12AD AB =,AD AG ∴=,又90BAC ∠=, 即AC 为DG 的垂直平分线, ∴ DF = FG ………………① ,又E 、F 分别为BC 、AC 中点, 1//2EF AB BG EF BG ==∴ 四边形BEFG 为平行四边形, ∴ FG = BE …………② 由①②得BE =DF .B .选修4—2:矩阵与变换 解:010********m m BA ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,设P ()00,x y 是曲线1C 上的任一点,它在矩阵BA 变换作用下变成点(),P x y ''',则000020210x my x m y x y '⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦⎣⎦,则002x my y x '=⎧⎨'=⎩,即0012x y y x m'=⎧⎪⎨'=⎪⎩, 又点P 在曲线1C 上,则22214x y m''+=,'p 在曲线2C 上,则14''22=+x y , 故21m =,所以,1m =±.C .选修4—4:坐标系与参数方程 解:圆的直角坐标方程为()(2214x y -+-=,直线的直角坐标方程为()1y k x =-()tan k α=,因为圆C 被直线l,∴=k =,即tan α=, 又0πα≤<,∴α=π3或2π3.D .选修4—5:不等式选讲 解:由题知,aba b a x x ++-≤-+-21恒成立,故|1||2|x x -+-不大于aba b a ++-的最小值 ,∵||||2|||≥|a b a b a b a b a -++++-=,当且仅当()()0≥a b a b +-时取等号, ∴aba b a ++-的最小值等于2.∴x 的范围即为不等式|x -1|+|x -2|≤2的解,解不等式得1522≤≤x .【必做题】答案22. 解:如图,以A 为原点建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1), M (0,1,12),N (12,12,0)设10),1,0,(<<=λλp .则)0,0,(1λ=A ,)1,0,(11λ=+=A ;)1,21,21(--=λ, (1)∵()0,0,1=m 是平面ABC 的一个法向量.=><=∴|,cos |sin m θ45)21(1141)21(|100|22+-=++--+λλ∴当12λ=时,θ取得最大值,此时sin θ=,tan 2θ=即:当12λ=时, θ取得最大值,此时tan 2θ=. 故P A 1的长度为21.(2)=)21,21,21(-,由(1))1,21,21(--=λ,设(),,x y z =n 是平面PMN 的一个法向量.则111022211()022x y z x y z λ⎧-++=⎪⎨⎪-+-=⎩得123223y x z x λλ+⎧=⎪⎨-⎪=⎩令x =3,得y =1+2λ,z=2-2λ, ∴()3,12,22λλ=+-n , ∴|cos ,|<>=m n 4210130λλ++=(*)∵△=100-4⨯4⨯13=-108<0,∴方程(*)无解∴不存在点P 使得平面PMN 与平面ABC 所成的二面角为30º. 23. 解:(1)当(0,)2πθ∈时,设22()sin cos (sin cos )0n n f n θθθθθ--'=->,等价于0cos sin 22>---θθn n .(ⅰ)n =1时,令,>0)('f θ得110sin cos θθ->,解得04πθ<<,所以()f θ在(0,)4π上单调递增,在(,)42ππ上单调递减,所以()f θ存在极大值,无极小值.(ⅱ)n =2时,()f θ=1,()f θ既无极大值,也无极小值. (ⅲ)3n ≥时,令,>0)('f θ得sin cos θθ>,所以42ππθ<<,所以()f θ在(0,)4π上单调递减,在(,)42ππ上单调递增,所以()f θ存在极小值,无极大值.(3)由22sin cos sin cos 1a θθθθ+=⎧⎪⎨+=⎪⎩得:21sin cos 2a θθ-= , 所以sin θ,cos θ是方程22102a x ax --+=的两根, x =,∴()((2nnnnna a f θ+=+=⎝⎭⎝⎭,当k n 2=为偶数时,()()()()()()()()]222222[(2]222222[(2222222244222224244222222kn n n n n kn nn nnnna a C a C a a C a C a a-++-+-+=-++-+-+=--+-+----当12+=k n 为奇数时,()()()()()()()()]2222222[(22222222(222222122442222214244222222kn n n n n n n knn nn nn n nnna C a C a C a C a C a C a a -++-+-+=-++-+-+=--+-+------∵a为[内的有理数,m n C,2n为正整数,∴()fθ为有理数.。

苏州市2018届高三上学期期中考试数学试题(完整资料).doc

苏州市2018届高三上学期期中考试数学试题(完整资料).doc

【最新整理,下载后即可编辑】苏州市2018届高三第一学期期中调研试卷数 学一、填空题(本大题共14小题,每小题5分,共70分,请把答案直接填写在答卷纸...相应的位置) 1.已知集合{1,2,3,4,5},{1,3},{2,3}U A B ===,则()U A B = ▲ .2.函数1ln(1)y x =-的定义域为 ▲ .3.设命题:4p x >;命题2:540q x x -+≥,那么p 是q 的 ▲ 条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”). 4.已知幂函数22*()m m y x m -=∈N 在(0,)+∞是增函数,则实数m 的值是 ▲ .5.已知曲线3()ln f x ax x =+在(1,(1))f 处的切线的斜率为2,则实数a 的值是▲ .6.已知等比数列{}n a 中,32a =,4616a a =,则7935a a a a -=- ▲ .7.函数sin(2)(0)2y x ϕϕπ=+<<图象的一条对称轴是12x π=,则ϕ的值是 ▲ .8.已知奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,则不等式()01f x x >-的解集为 ▲ .9.已知tan()24απ-=,则cos2α的值是 ▲ .10.若函数8,2()log 5,2ax x f x x x -+⎧=⎨+>⎩≤(01)a a >≠且的值域为[6,)+∞,则实数a 的取值范围是 ▲ .11.已知数列{},{}n n a b 满足1111,1,(*)21n n n n a a b b n a +=+==∈+N ,则122017b b b ⋅⋅=▲ .12.设ABC △的内角,,A B C 的对边分别是,,a b c ,D 为AB 的中点,若cos sin b a C c A=+且CD =ABC △面积的最大值是▲ .13.已知函数()sin()6f x x π=-,若对任意的实数5[,]62αππ∈--,都存在唯一的实数[0,]m β∈,使()()0f f αβ+=,则实数m 的最小值是 ▲ . 14.已知函数ln ,0()21,0x x f x x x >⎧=⎨+⎩≤,若直线y ax =与()y f x =交于三个不同的点(,()),(,()),A m f m B n f n(,())C t f t (其中m n t <<),则12n m++的取值范围是 ▲ .二、解答题(本大题共6个小题,共90分,请在答题卷区域内作答,解答时应写出文字说明、证明过程或演算步骤) 15.(本题满分14分)已知函数1())(0,0)42f x ax b a b π=+++>>的图象与x 轴相切,且图象上相邻两个最高点之间的距离为2π.(1)求,a b 的值;(2)求()f x 在[0,]4π上的最大值和最小值.16.(本题满分14分)在ABC △中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin sin sin ()B C m A m +=∈R ,且240a bc -=.(1)当52,4a m ==时,求,bc 的值;(2)若角A 为锐角,求m 的取值范围.17.(本题满分15分)已知数列{}n a 的前n 项和是n S ,且满足11a =,*131()n n S S n +=+∈N . (1)求数列{}n a 的通项公式;(2)在数列{}n b 中,13b =,*11()n n n na b b n a ++-=∈N ,若不等式2n n a b n λ+≤对*n ∈N 有解,求实数λ的取值范围.如图所示的自动通风设施.该设施的下部ABCD 是等腰梯形,其中AB 为2米,梯形的高为1米,CD 为3米,上部CmD 是个半圆,固定点E 为CD 的中点.MN 是由电脑控制可以上下滑动的伸缩横杆(横杆面积可忽略不计),且滑动过程中始终保持和CD 平行.当MN 位于CD 下方和上方时,通风窗的形状均为矩形MNGH (阴影部分均不通风). (1)设MN 与AB 之间的距离为5(02x x <≤且1)x ≠米,试将通风窗的通风面积S (平方米)表示成关于x 的函数()y S x =;(2)当MN 与AB 之间的距离为多少米时,通风窗的通风面积S 取得最大值?19.(本题满分16分)已知函数2()ln ,()f x x g x x x m ==--. (1)求过点(0,1)P -的()f x 的切线方程;(2)当0=m 时,求函数()()()F x f x g x =-在],0(a 的最大值;(3)证明:当3m ≥-时,不等式2()()(2)e x f x g x x x +<--对任意1[,1]2x ∈均成立(其中e 为自然对数的底数,e 2.718...=).已知数列{}n a 各项均为正数,11a =,22a =,且312n n n n a a a a +++=对任意*n ∈N 恒成立,记{}n a 的前n 项和为n S . (1)若33a =,求5a 的值;(2)证明:对任意正实数p ,221{}n n a pa -+成等比数列;(3)是否存在正实数t ,使得数列{}n S t +为等比数列.若存在,求出此时n a 和n S 的表达式;若不存在,说明理由.2017—2018学年第一学期高三期中调研试卷数学(附加题部分)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相..........应的答题区域内作答..........若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .(几何证明选讲)(本小题满分10分)如图,AB 为圆O 的直径,C 在圆O 上,CF AB ⊥于F ,点D 为线段CF 上任意一点,延长AD 交圆O于E ,030AEC ∠=. (1)求证:AF FO =; (2)若CF =,求AD AE ⋅的值.BB .(矩阵与变换)(本小题满分10分)已知矩阵1221⎡⎤=⎢⎥⎣⎦A ,42α⎡⎤=⎢⎥⎣⎦,求49αA 的值.C .(极坐标与参数方程)(本小题满分10分)在平面直角坐标系中,直线l 的参数方程为42525x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为cos()(0)4a ρθπ-≠.(1)求直线l 和圆C 的直角坐标方程;(2)若圆C 任意一条直径的两个端点到直线l,求a的值.D .(不等式选讲)(本小题满分10分)设,x y 均为正数,且x y >,求证:2212232x y x xy y ++-+≥.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)在小明的婚礼上,为了活跃气氛,主持人邀请10位客人做一个游戏.第一轮游戏中,主持人将标有数字1,2,…,10的十张相同的卡片放入一个不透明箱子中,让客人依次去摸,摸到数字6,7,…,10的客人留下,其余的淘汰,第二轮放入1,2,…,5五张卡片,让留下的客人依次去摸,摸到数字3,4,5的客人留下,第三轮放入1,2,3三张卡片,让留下的客人依次去摸,摸到数字2,3的客人留下,同样第四轮淘汰一位,最后留下的客人获得小明准备的礼物.已知客人甲参加了该游戏. (1)求甲拿到礼物的概率;(2)设ξ表示甲参加游戏的轮数..,求ξ的概率分布和数学期望()E ξ.23.(本小题满分10分)(1)若不等式(1)ln(1)x x ax ++≥对任意[0,)x ∈+∞恒成立,求实数a 的取值范围;(2)设*n ∈N ,试比较111231n ++++与ln(1)n +的大小,并证明你的结论.2017—2018学年第一学期高三期中调研试卷数 学 参 考 答 案一、填空题(本大题共14小题,每小题5分,共70分) 1.{1} 2.(1,2)(2,)+∞3.充分不必要 4.15.136.4 7.3π 8.(2,0)(1,2)-9.45-10.(1,2] 11.12018 12.113.2π14.1(1,e )e+二、解答题(本大题共6个小题,共90分) 15.(本题满分14分)解:(1)∵()f x 图象上相邻两个最高点之间的距离为2π,∴()f x 的周期为2π,∴202||2a a ππ=>且,······································································2分∴2a =,··················································································································4分此时1())42f x x b π=+++, 又∵()f x 的图象与x 轴相切,∴1||02b b +=>,·······················································6分∴122b =-;··········································································································8分(2)由(1)可得())4f x x π=+∵[0,]4x π∈,∴4[,]444x ππ5π+∈, ∴当444x π5π+=,即4x π=时,()f x 有最大值为;·················································11分当442x ππ+=,即16x π=时,()f x 有最小值为0.························································14分 16.(本题满分14分) 解:由题意得b c ma+=,240a bc -=.···············································································2分(1)当52,4a m ==时,5,12b c bc +==,解得212b c =⎧⎪⎨=⎪⎩或122b c ⎧=⎪⎨⎪=⎩;································································································6分(2)2222222222()()22cos 23222a ma abc a b c bc a A m a bc bc--+-+--====-,····························8分∵A 为锐角,∴2cos 23(0,1)A m =-∈,∴2322m <<,····················································11分又由b c ma +=可得0m >,·························································································13分∴m <<···········································································14分 17.(本题满分15分)解:(1)∵*131()n n S S n +=+∈N ,∴*131(,2)n n S S n n -=+∈N ≥,∴*13(,2)n n a a n n +=∈N ≥,·························································································2分又当1n =时,由2131S S =+得23a =符合213a a =,∴*13()n n a a n +=∈N ,······························3分∴数列{}n a 是以1为首项,3为公比的等比数列,通项公式为1*3()n n a n -=∈N ; (5)分(2)∵*113()n n n na b b n a ++-==∈N ,∴{}n b 是以3为首项,3为公差的等差数列,····················7分∴*33(1)3()n b n n n =+-=∈N ,·····················································································9分∴2n n a b nλ+≤,即1233n n nλ-⋅+≤,即2133n n n λ--≤对*n ∈N 有解,··································10分设2*13()()3n n nf n n --=∈N ,∵2221(1)3(1)32(41)(1)()333n n nn n n n n n f n f n -+-+---++-=-=, ∴当4n ≥时,(1)()f n f n +<,当4n <时,(1)()f n f n +>, ∴(1)(2)(3)(4)(5)(6)f f f f f f <<<>>>, ∴max 4[()](4)27f n f ==,···························································································14分∴427λ≤.·············································································································15分 18.(本题满分15分)解:(1)当01x <≤时,过A 作AK CD ⊥于K (如上图),则1AK =,122CD AB DK -==,1HM x =-,由2AKMH DKDH ==,得122HM xDH -==,∴322HG DH x =-=+, ∴2()(1)(2)2S x HM HG x x x x =⋅=-+=--+;·······························································4分当512x <<时,过E 作ET MN ⊥于T ,连结EN (如下图),则1ET x =-,22239(1)(1)224MN TN x x ⎛⎫==---- ⎪⎝⎭∴292(1)4MN x =--∴29()2(1)(1)4S x MN ET x x =⋅=---,······································································8分综上:222,01()952(1)(1)142x x x S x x x x ⎧--+<⎪=⎨---<<⎪⎩≤;·································································9分(2)当01x <≤时,2219()2()24S x x x x =--+=-++在[0,1)上递减,∴max ()(0)2S x S ==;································································································11分2︒当512x <<时,229(1)(1)94()2(224x x S x x -+--=-⋅=,当且仅当(1)x -=51(1,)2x +∈时取“=”, ∴max 9()4S x =,此时max 9()24S x =>,∴()S x 的最大值为94,············································14分答:当MN 与AB1+米时,通风窗的通风面积S 取得最大值.····················15分 19.(本题满分16分)解:(1)设切点坐标为00(,ln )x x ,则切线方程为0001ln ()y x x x x -=-, 将(0,1)P -代入上式,得0ln 0x =,01x =, ∴切线方程为1y x =-;·······························································································2分(2)当0m =时,2()ln ,(0,)F x x x x x =-+∈+∞, ∴(21)(1)(),(0,)x x F x x x+-'=-∈+∞,············································································3分当01x <<时,()0F x '>,当1x >时,()0F x '<, ∴()F x 在(0,1)递增,在(1,)+∞递减,·············································································5分∴当01a <≤时,()F x 的最大值为2()ln F a a a a =-+; 当1a >时,()F x 的最大值为(1)0F =;········································································7分(3)2()()(2)e x f x g x x x +<--可化为(2)e ln x m x x x >-+-,设1()(2)e ln ,[,1]2x h x x x x x =-+-∈,要证3m ≥-时()m h x >对任意1[,1]2x ∈均成立,只要证max ()3h x <-,下证此结论成立. ∵1()(1)(e )x h x x x'=--,∴当112x <<时,10x -<,·······················································8分设1()e x u x x=-,则21()e 0x u x x '=+>,∴()u x 在1(,1)2递增, 又∵()u x 在区间1[,1]2上的图象是一条不间断的曲线,且1()202u =<,(1)e 10u =->,∴01(,1)2x ∃∈使得0()0u x =,即01e xx =,00ln x x =-,····················································11分当01(,)2x x ∈时,()0u x <,()0h x '>;当0(,1)x x ∈时,()0u x >,()0h x '<;∴函数()h x 在01[,]2x 递增,在0[,1]x 递减,∴0max 00000000012()()(2)e ln (2)212x h x h x x x x x x x x x ==-+-=-⋅-=--,····························14分∵212y x x=--在1(,1)2x ∈递增,∴0002()121223h x x x =--<--=-,即max ()3h x <-, ∴当3m ≥-时,不等式2()()(2)e xf xg x x x +<--对任意1[,1]2x ∈均成立.··························16分 20.(本题满分16分) 解:(1)∵1423a a a a =,∴46a =,又∵2534a a a a =,∴54392a a ==;·······································2分(2)由3121423n n n n n n n n a a a a a a a a +++++++=⎧⎨=⎩,两式相乘得2134123n n n n n n n a a a a a a a ++++++=,∵0n a >,∴2*42()n n n a a a n ++=∈N , 从而{}n a 的奇数项和偶数项均构成等比数列,···································································4分设公比分别为12,q q ,则1122222n n n a a q q --==,1121111n n n a a q q ---==,······································5分又∵312=n n n na a a a +++,∴42231122a a q a a q ===,即12q q =,···························································6分设12q q q ==,则2212223()n n n n a pa q a pa ---+=+,且2210n n a pa -+>恒成立, 数列221{}n n a pa -+是首项为2p+,公比为q的等比数列,问题得证;····································8分(3)法一:在(2)中令1p =,则数列221{}n n a a -+是首项为3,公比为q 的等比数列,∴22212223213 ,1()()()3(1),11k k k k k k k q S a a a a a a q q q---=⎧⎪=++++++=-⎨≠⎪-⎩, 12122132 ,13(1)2,11k k k k k k k q q S S a q q q q ---⎧-=⎪=-=⎨--≠⎪-⎩,·····································································10分且12341,3,3,33S S S q S q ===+=+,∵数列{}n S t +为等比数列,∴22132324()()(),()()(),S t S t S t S t S t S t ⎧+=++⎪⎨+=++⎪⎩ 即22(3)(1)(3),(3)(3)(33),t t q t q t t q t ⎧+=+++⎪⎨++=+++⎪⎩,即26(1),3,t q t t q +=+⎧⎨=-⎩ 解得14t q =⎧⎨=⎩(3t =-舍去),·························································································13分∴224121k k k S =-=-,212121k k S --=-, 从而对任意*n ∈N 有21n n S =-, 此时2n n S t +=,12n n S tS t-+=+为常数,满足{}n S t +成等比数列, 当2n ≥时,111222n n n n n n a S S ---=-=-=,又11a =,∴1*2()n n a n -=∈N , 综上,存在1t =使数列{}n S t +为等比数列,此时1*2,21()n n n n a S n -==-∈N . (16)分法二:由(2)知,则122n n a q -=,121n n a q --=,且12341,3,3,33S S S q S q ===+=+,∵数列{}n S t +为等比数列,∴22132324()()(),()()(),S t S t S t S t S t S t ⎧+=++⎪⎨+=++⎪⎩ 即22(3)(1)(3),(3)(3)(33),t t q t q t t q t ⎧+=+++⎪⎨++=+++⎪⎩,即26(1),3,t q t t q +=+⎧⎨=-⎩ 解得14t q =⎧⎨=⎩(3t =-舍去),·······················································································11分∴121222n n n a q --==,22212n n a --=,从而对任意*n ∈N 有12n n a -=,····································13分∴01211222222112n n n n S --=++++==--, 此时2n n S t +=,12n n S tS t-+=+为常数,满足{}n S t +成等比数列, 综上,存在1t =使数列{}n S t +为等比数列,此时1*2,21()n n n n a S n -==-∈N . (16)分21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相..........应的答题区域内作答..........若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .(几何证明选讲,本小题满分10分) 解:(1)证明 :连接,OC AC ,∵030AEC ∠=,∴0260AOC AEC ∠=∠=,又OA OC =,∴AOC ∆为等边三角形, ∵CF AB ⊥,∴CF 为AOC ∆中AO 边上的中线, ∴AF FO =;····························B··········································5分(2)解:连接BE , ∵CF =,AOC ∆是等边三角形,∴可求得1AF =,4AB =,∵AB 为圆O 的直径,∴90AEB ∠=,∴AEB AFD ∠=∠, 又∵BAE DFA ∠=∠,∴AEB ∆∽AFD ∆,∴AD AF ABAE=,即414AD AE AB AF ⋅=⋅=⨯=.··················································································10分 B .(矩阵与变换,本小题满分10分) 解:矩阵A 的特征多项式为212()2321f λλλλλ--==----, 令()0f λ=,解得矩阵A 的特征值121,3λλ=-=,····························································2分当11λ=-时特征向量为111α⎡⎤=⎢⎥-⎣⎦,当23λ=时特征向量为211α⎡⎤=⎢⎥⎣⎦,·····································6分又∵12432ααα⎡⎤==+⎢⎥⎣⎦,·························································································。

江苏省苏州市2018届高三期中调研数学试卷(含答案)

江苏省苏州市2018届高三期中调研数学试卷(含答案)

2
42
高点之间的距离为 .
2
(1)求 a,b 的值;
(2)求 f (x) 在[0, ] 上的最大值和最小值.
4
16.(本题满分 14 分)
在 △ABC 中,角 A,B,C 所对的边分别是 a,b,c,已知 sin B sin C m sin A(m R) ,且
a2 4bc 0 . (1)当 a 2, m 5 时,求 b,c 的值;

▲.
12.设 △ABC 的内角 A, B,C 的对边 分别是 a,b,c ,D 为 AB 的中点 ,若 b a cos C c sin A 且
CD 2 ,则 △ABC 面积的最大值是 ▲ .
13.已知函数
f
(x)

sin(x

)
,若对任意的实数
[
5
,
] ,都存在唯一的实数

[0, m]
,使
6
62
f ( ) f ( ) 0 ,则实数 m 的最小值是 ▲ .
14 . 已 知 函 数
f
(
x)

ln x, x
2x

1,
x
0 ≤
0



线
y ax

y f (x) 交 于 三 个 不 同 的 点
A(m, f (m)), B(n, f (n)),
已知矩阵
A

1 2
2 1

ur

4 2
,求
ur A49
的值.
C.(极坐标与参数方程)
(本小题满分 10 分)
在平面直角坐标系中,直线

2018届高三第一次全国大联考(江苏卷)数学卷(考试版)

2018届高三第一次全国大联考(江苏卷)数学卷(考试版)

数学试题 第1页(共6页) 数学试题 第2页(共6页)绝密★启用前2018年第一次全国大联考【江苏卷】数学Ⅰ(考试时间:120分钟 试卷满分:160分)注意事项:1.本试卷均为非选择题(第1题~第20题,共20题)。

考试结束后,请将本试卷和答题卡一并交回。

2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

一、填空题(本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上........) 1.已知集合{|23}S x x =∈-≤≤Z ,2{|40}T x x =∈-<R ,则ST =__________.2.已知复数3(23i)(1i )z =++,其中i 是虚数单位,若z 是z 的共轭复数,则z 的模是__________.3.某学校为调查毕业班学生的学习问题现状,将参加高三上学期期末统考的800名学生随机地编号为:000,001,002,,799,准备从中抽取一个容量为40的样本,按系统抽样的方法把总体分成40组.第1组编号为000,001,,019;第2组编号为020,021,,039;;第40组编号为780,781,,799.若在第1组中随机抽取到的一个号码为012,则在第35组中应抽取的号码为__________.4.在平面直角坐标系xOy 中,若双曲线2221(0)4y x a a-=>的焦距为,则其离心率e =__________. 5.若函数2lg(2)y x x =+-的定义域为A ,则函数1(()2x y x A =∈的值域是__________.6.如图是一个算法的流程图,若输出的y 的值是9,则输入的x 的值为__________.7.已知数列{}n a 的前n 项和为n S 8.从长度分别为3,4,5,6,7的五条线段中任意取出三条,则以这三条线段为边可以构成锐角三角形的概率是__________.9.已知圆锥的高4h =,底面圆的半径3R =,则该圆锥的内切球(与圆锥的底面和各母线均相切的球)的表面积S =__________.10.已知非零向量,a b 的夹角为钝角,且||4=b .若当12t =-时,||t -b a 则向量a 在向量b 方向上的投影是__________.11.在锐角ABC △中,角,,AB C 所对的边分别为,,a b c ,cos cos )2sin b C c B a A +=,4b =,则a 的取值范围是__________.12.已知a 是区间[1,7]上的任意实数,直线1l :220ax y a ---=与不等式组830x mx y x y ≥⎧⎪+≤⎨⎪-≤⎩表示的平面区域总有公共点,则直线30(,)l mx y n m n -+=∈R :的倾斜角α的取值范围为__________.13.已知两实数,x y 满足2225x y +=,若在,x y 之间插入四个实数,使这六个实数构成等差数列,则这个等差数列后三项和的最大值为__________.14.设定义在R 上的偶函数()f x 满足()(2)f x f x =-,且当[1,2]x ∈时,23()f x x x =-.若方程()0f x bx +=有5个不同的实数根,则实数b 的取值范围为__________.二、解答题(本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)如图,已知在三棱锥P ABC -中,PB AB =,PB ⊥平面ABC ,AB BC ⊥,且点,,D E F 分别是棱,,PA PC BC 的中点,点,G H 分别是线段,BD BE 的中点.(1)求证:平面FGH平面PAC ;(2)求证:PA ⊥平面BCD .数学试题 第3页(共6页) 数学试题 第4页(共6页)16.(本小题满分14分)已知ABC △的内角,,A B C 所对的边分别为,,a b c ,向量(,)c a b =+m ,(,)c a b c =-+n ,且3a =,⊥m n . (1)求A 及ABC △面积的最大值; (2)求b c +的取值范围. 17.(本小题满分14分)如图,某单位为处理含有某种有毒物质的污水,要制造一个无盖长方体消毒箱,有毒污水由A 孔流入,经消毒处理后从B孔流出.现有制箱材料60平方米,并设计箱体的底面边长分别为a 米,2米,高度为b 米(,A B 孔的面积忽略不计).由研究分析知从B 孔流出的水中该有毒物质的质量分数与,a b 的乘积成反比,且比例系数为(0)k k >.(1)问,a b 各为多少米时,经消毒后流出的水中该有毒物质的质量分数最小?(2)出于安全考虑,在消毒箱的正面制作一警示牌,写上“有毒水质,请勿接触”的标语.为了使警示牌更加醒目,其中CD 、DE 、EF 三段用发光材料制作.求发光材料总长度z 的最小值.18.(本小题满分16分)如图,已知点F 为抛物线22(0)C y px p =>:的焦点,过点F 的动直线l 与抛物线C 交于,M N 两点,且当直线l 的倾斜角为45︒时,||16MN =. (1)求抛物线C 的方程;(2)试确定在x 轴上是否存在点P ,使得直线,PM PN 的斜率之和恒为零?若存在,求出P 点的坐标;若不存在,说明理由.19.(本小题满分16分)给定正整数k ,若各项为非零的实数数列{}n a 满足21111k n k n k n n n k n k n a a a a a a a --+-++-+=对任意n *∈N (n k >)恒成立,则称数列{}n a 是“()G k 数列”.(1)若数列{}n a 为等比数列,求证:数列{}n a 是“(3)G 数列”;(2)若正项数列{}n a 既是“(3)G 数列”,又是“(2)G 数列”,求证:数列{}n a 是等比数列. 20.(本小题满分16分)已知函数2()e 2ln f x x x x x =--,2()e x g x ax x =-+(a ∈R ),其中e 为自然常数. (1)求函数()f x 的图象在点(1,(1))f 处的切线方程;(2)若()()g x f x ≥对任意的0x >恒成立,求实数a 的取值范围.数学试题 第5页(共6页) 数学试题 第6页(共6页)数学Ⅱ(附加题)(考试时间:30分钟 试卷满分:40分)注意事项:1.本试卷均为非选择题(第21题~第23题)。

2018年高考数学江苏卷(含答案与解析)

2018年高考数学江苏卷(含答案与解析)

数学试卷 第1页(共42页) 数学试卷 第2页(共42页)绝密★启用前江苏省2018年普通高等学校招生全国统一考试数 学本试卷共160分.考试时长120分钟.参考公式:锥形的体积公式13V Sh =,其中S 是椎体的底面积,h 是椎体的高。

一、填空题:本大题共14小题,每小题5分,共计70分. 1.已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么AB = .2.若复数z 满足i 12i z =+,其中i 是虚数单位,则z 的实部为 .3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 .5.函数()f x =的定义域为 .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 .7.已知函数ππsin(2)()22y x ϕϕ=+-<<的图象关于直线π3x =对称,则ϕ的值是 .8.在平面直角坐标系xOy 中,若双曲线22221(0)x y a b a b-=>>0,的右焦点(,0)F c 到一条渐近线的距离为2,则其离心率的值是 . 9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,()cos (2)2102x x f x x x π⎧⎪⎪=⎨⎪+⎪⎩0<≤,(-2<≤),,则((15))f f 的值为 . 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,点(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD =,则点A 的横坐标为 .13.在ABC △中,角A ,B ,C 所对应的边分别为a ,b ,c ,120ABC ∠=,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .14.已知集合{21,}A x x n n ==-∈*N ,{2,}n B x x n ==∈*N .将AB 的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共42页) 数学试卷 第4页(共42页)二、解答题:本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥. 求证:(Ⅰ)AB ∥平面11A B C ; (Ⅱ)平面11ABB A ⊥平面1A BC .16.(本小题满分14分)已知α,β为锐角,4tan 3α=,cos()αβ+=.(Ⅰ)求cos2α的值; (Ⅱ)求tan()αβ-的值.数学试卷 第5页(共42页) 数学试卷 第6页(共42页)17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成,已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求点A ,B 均在线段MN 上,C ,D 均在圆弧上.设OC 与MN 所成的角为θ.(Ⅰ)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围; (Ⅱ)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C过点1)2,焦点1(F,2F ,圆O 的直径为12F F .(Ⅰ)求椭圆C 及圆O 的方程;(Ⅱ)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点.若OAB △,求直线l 的方程.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共42页) 数学试卷 第8页(共42页)19.(本小题满分16分)记()f x ',()g x '分别为函数()f x ,()g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(Ⅰ)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (Ⅱ)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(Ⅲ)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项1b ,公比为q 的等比数列. (Ⅰ)设10a =,11b =,2q =若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围; (Ⅱ)若110a b =>,m ∈*N,q ∈,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立,并求d 的取值范围(用1b ,m ,q 表示).数学试卷 第9页(共42页) 数学试卷 第10页(共42页)数学Ⅱ(附加题)本试卷均为非选择题(第21题~第23题). 本卷满分40分,考试时间为30分钟.21.【选做题】本题包括A ,B ,C ,D 四小题,请选定其中两小题并作答...........,若多做,则按作答的前两小题评分、解答时应写出文字说明、证明过程或演算步骤。

江苏省百校联考2018届高三上学期第一次联考数学试题含答案

江苏省百校联考2018届高三上学期第一次联考数学试题含答案

江苏省百校联考2018届高三上学期第一次联考数学试卷Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.集合{}02A x x =≤≤,{}123B =-,,,则A B =I ▲ . 2.若复数z 满足()i 2i z =-(i 是虚数单位),则复数z 的模z = ▲ .3.某市交通部门对某路段公路上行驶的汽车速度实施监控,从速度在50~90km/h 的汽车中抽取200辆进行分析,得到数据的频率分布直方图(如图所示),则速度在70km/h 以下的汽车 有 ▲ 辆.4.如图,若输入的x 为16,则相应输出的值y 为 ▲ .5.已知变量x ,y 满足条件10360x x y x y ⎧⎪-⎨⎪+-⎩≥,≤,≤,则x y +的最大值是 ▲ .6.某校高三年级学生会主席团共有4名同学组成,其中有2名同学来自同一班级,另外两名同学来自另两个不同班级.现从中随机选出两名同学参加会议,则选出的两名同学来自不同班 级的概率为 ▲ .7.已知一个圆锥的母线长为2,侧面展开图是半圆,则该圆锥的体积为 ▲ .8.双曲线()2222100x y a b a b-=>>,的一条渐近线方程是340x y -=,则该双曲线的离心率为 ▲ .9.在等差数列{}n a 中,若44a =,227196a a -=,则数列{}n a 前10项和10S 的值为 ▲ . 10.将函数y =()πsin 23x +的图象向右平移φ()π02ϕ<<个单位后,所得的函数图象关于原点成中 心对称,则φ= ▲ .速度(km/h )0.010.02 0.03 0.04 50 (第3题图)11.已知函数()22210121ln x mx m x f x x m x x⎧+--<⎪=⎨->⎪⎩,≤,,在区间()0+∞,上有且 只有三个不同的零点,则实数m 的取值范围是 ▲ . 12.如图,已知点O 是平面四边形ABCD 的外接圆的圆心,AB =2,BC =6,AD =CD =4,则BO CD ⋅u u u r u u u r= ▲ .13.在平面直角坐标系xOy 中,已知AB 是圆O :221x y +=直径,若直线l :310kx y k --+=上存在点P ,连接AP 与圆O 交于点Q ,满足BP ∥OQ ,则实数k 的取值范围是 ▲ .14.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若22c ab kbc +≥,则实数k 的最大值是 ▲. 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、 证明过程或演算步骤.15.在三棱锥P -ABC 中,D ,E 分别为AB ,AC 的中点,且P A =PB ,PDC ∠为锐角.(1)求证:BC ∥平面PDE ;(2)若平面PCD ⊥平面ABC ,求证:AB ⊥PC .16.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且()π3sin sin 34B B +=. (1)求B ∠;(2)求sin A +sin C 的取值范围.(第12题图)(第15题图)CBDAEP17.在平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>>,且点2,在 椭圆C 上.(1)求椭圆C 的方程;(2)设P 为椭圆上第一象限内的点,点P 关于原点O 的对称点为A ,点P 关于x 轴的对称点为Q ,设PD PQ λ=u u u r u u u r,直线AD 与椭圆C 的另一个交点为B ,若P A ⊥PB ,求实数λ的值.18.一块圆柱形木料的底面半径为6cm ,高为16cm .要将这块木料加工成一只笔筒,在木料一端中间掏去一个小圆柱,使小圆柱与原木料同轴,并且掏取的圆柱体积是原木料体积的三分之 一.设小圆柱底面半径为r ,高为h ,要求笔筒底面的厚度超过1cm . (1)求r 与h 的关系,并指出r 的取值范围;(2)笔筒成形后进行后续加工,要求笔筒上底圆环面、桶内侧面、外表侧面都喷上油漆,其中上底圆环面、外表侧面喷漆费用均为a (元/cm 2),桶内侧面喷漆费用是2a (元/cm 2), 而筒内底面铺贴金属薄片,其费用是7a (元/ cm 2)(其中a 为正常数). ①将笔筒的后续加工费用y (元)表示为r 的函数;②求出当r 取何值时,能使笔筒的后续加工费用y 最小,并求出y 的最小值.19.已知函数()()ln f x x x ax =-(a ∈R ).(1)当0a =时,求函数()f x 的最小值;(2)若函数()f x 既有极大值又有极小值,求实数a 的取值范围;(3)设()()21g x ax a x a =--+,若对任意的()1x ∈+∞,,都有()()0f x g x +>,求整数..a 的最大值.20.已知数列{a n }的首项10a ≠,其前n 项的和为S n ,且S n =3a n -2a 1对任意正整数n 都成立.(1)求证:数列{a n }为等比数列; (2)若a 1=32,设()()111n n n n a b a a +=--,求数列{b n }的前n 项的和为T n ; (3)若a 1,a k (3k ≥,k ∈N*)均为正整数,如果存在正整数q ,使得a 1≥1k q -,a k ≤()11k q -+,求证:a 1=12k -.(第21—A 题)Ⅱ卷(理科附加)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.................... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲]在△ABC 中,已知CM 是∠ACB 的平分线,△AMC 的外接圆交BC 于点N ,且BN =2AM . 求证:AB 2=AC .B .[选修4-2:矩阵与变换]已知矩阵A =⎣⎡⎦⎤302a ,A 的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤310 b 1. (1)求a ,b 的值; (2)求A 的特征值.C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知圆C 的参数方程为⎩⎪⎨⎪⎧x =3+cos θ,y =sin θ(θ为参数),以原点O 为极点,以x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程为()πsin 6ρθ-= P 是圆C 上的动点,求点P 到直线l 的距离的最小值.D .[选修4-5:不等式选讲]已知a ,b ,c均为正数,证明:()2222111a b c a b c+++++≥.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.如图,已知直三棱柱111ABC A B C -中,AB AC ⊥,3AB =,4AC =,11B C AC ⊥.(1)求1AA 的长.(2)若BP =1,求二面角1P AC A --的余弦值.23.某书店有不同类型的数学杂志n 种,数学教师张老师购买每种类型杂志的概率都是12,且任何 两种不同类型杂志其是否购买相互独立,设X 表示张老师购买的杂志种类数与没有购买的杂志 种类数的差的绝对值.(1)当n =3时,求X 的概率分布及数学期望;(2)当n =2k +1,*k ∈N 时,求X 的概率分布及数学期望.(第22题图)A 1CB 1C 1BP A。

江苏省常州市2018届高三数学第一次模拟考试

江苏省常州市2018届高三数学第一次模拟考试

江苏省常州市2018届高三数学第一次模拟考试2018届高三年级第一次模拟考试(二)数学满分160分,考试时间120分钟)一、填空题:本大题共14小题,每小题5分,共计70分.1.若集合A={-2,1},B={x|x^2>1},则集合A∩B={1}.2.命题“∃x∈[0,1],x^2-1≥0”是真命题.3.若复数z满足z·2i=|z|^2+1(其中i为虚数单位),则|z|=2.4.若一组样本数据2015,2017,x,2018,2016的平均数为2017,则该组样本数据的方差为2.5.如图是一个算法的流程图,则输出的n的值是3.6.函数f(x)=lnx的定义域记作集合D.随机地投掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有点数1,2,…,6),记骰子向上的点数为t,则事件“t∈D”的概率为1/2.7.已知圆锥的高为6,体积为8.用平行于圆锥底面的平面截圆锥,得到的圆台体积是7,则该圆台的高为3.8.在各项均为正数的等比数列{an}中,若a2a3a4=a2+a3+a4,则a3的最小值为3.9.在平面直角坐标系xOy中,设直线l:x+y+1=0与双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的两条渐近线都相交且交点都在y轴左侧,则双曲线C的离心率e的取值范围是(1,√2).10.已知实数x,y满足2x+y-2≥0,x-2y+4≥0,则x+y的取值范围是[2,∞).11.已知函数f(x)=bx+lnx,其中b∈R.若过原点且斜率为k 的直线与曲线y=f(x)相切,则k-b的值为1/e.12.如图,在平面直角坐标系xOy中,函数y=sin(ωx+φ)(ω>0,0<φ<π)的图象与x轴的交点A,B,C满足OA+OC=2OB,则φ=π/3.13.在△ABC中,AB=5,AC=7,BC=3,P为△ABC内一点(含边界),若满足BP=4BA+λBC(λ∈R),则BA·BP的取值范围为[25/4,35/4].二、解答题:共计90分.14.已知函数f(x)=sinx+cosx,x∈[0,π/2],则f(x)的最小值是√2-1.15.已知函数f(x)=x^3-3x,x∈[-2,2],则f(x)在[-2,2]上的最大值是4.16.如图,在△ABC中,AD是边BC上的高,点E,F分别在AB,AC上,且满足BE=CF=AD.若BE=CF=AD=1,AB=2,AC=√5,则三角形AEF的面积为(√5-1)/2.17.已知函数f(x)=x^3-3x,g(x)=f(x-2),则g(x)在[-2,2]上的最小值是-5.18.如图,在平面直角坐标系xOy中,点A(1,0),B(0,1),C(-1,0),D(0,-1),E(2,0),F(0,2),G(-2,0),H(0,-2).若点P(x,y)满足PA^2+PB^2+PC^2+PD^2=PE^2+PF^2+PG^2+PH^2,则点P的坐标为(0,0).19.已知函数f(x)=ln(1+2x)-ax,其中a为常数,f(x)在[0,1]上取得最大值,且f(1/2)=0,则a=1/2.20.已知函数f(x)=x^3-3x,g(x)=f(x-2),则当g(x)在[1,3]上单调递增时,x的取值范围是[1,3].已知在三角形ABC中,AB=AC=3,存在点P在三角形ABC所在平面内,使得PB²+PC²=3PA²=3,则三角形ABC的面积最大值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018届高三年级第一次模拟考试(五)数学(满分160分,考试时间120分钟)一、填空题:本大题共14小题,每小题5分,共计70分.1. 已知i为虚数单位,复数z=32-32i的模为________.2. 已知集合A={1,2a},B={-1,1,4},且A⊆B,则正整数a=________.3. 在平面直角坐标系xOy中,抛物线y2=-8x的焦点坐标为________.4. 苏州轨道交通1号线每5分钟一班,其中,列车在车站停留0.5分钟,假设乘客到达站台的时刻是随机的,则该乘客到达站台立即能乘上车的概率为________.5. 已知4a=2,logax=2a,则正实数x=________.6. 秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.下面的流程图是秦九韶算法的一个实例.若输入n,x的值分别为3,3,则输出v的值为________.(第6题) (第9题)7. 已知变量x ,y 满足⎩⎪⎨⎪⎧0≤x ≤3,x +y≥0,x -y +3≤0,则z =2x -3y 的最大值为________.8. 已知等比数列{an}的前n 项和为Sn ,且S6S3=-198,a4-a2=-158,则a3的值为________. 9. 鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为5,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为________.(容器壁的厚度忽略不计,结果保留π)10. 如图,两座建筑物AB ,CD 的高度分别是9 m 和15 m ,从建筑物AB 的顶部A 看建筑物CD 的张角∠CAD =45°,则这两座建筑物AB 和CD 的底部之间的距离BD =________m.(第10题) (第13题)11. 在平面直角坐标系xOy 中,已知过点A(2,-1)的圆C 和直线x +y =1相切,且圆心在直线y =-2x 上,则圆C 的标准方程为________.12. 已知正实数a ,b ,c 满足1a +1b =1,1a +b +1c=1,则c 的取值范围是________. 13. 如图,△ABC 为等腰三角形,∠BAC =120°,AB =AC =4,以A 为圆心,1为半径的圆分别交AB ,AC 与点E ,F ,P 是劣弧EF ︵上的一点,则PB →·PC →的取值范围是________.14. 已知直线y =a 分别与直线y =2x -2,曲线y =2ex +x 交于点A ,B ,则线段AB 长度的最小值为________.二、 解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)已知函数f(x)=(3cosx +sinx)2-23sin2x.(1) 求函数f(x)的最小值,并写出f(x)取得最小值时自变量x 的取值集合;(2) 若x ∈⎣⎡⎦⎤-π2,π2,求函数f(x)的单调增区间.16. (本小题满分14分)如图,在正方体ABCDA1B1C1D1中,已知E ,F ,G ,H 分别是A1D1,B1C1,D1D ,C1C 的中点.求证:(1) EF ∥平面ABHG ;(2) 平面ABHG ⊥平面CFED.17. (本小题满分14分)如图,B ,C 分别是海岸线上的两个城市,两城市间由笔直的海滨公路相连,B ,C 之间的距离为100km ,海岛A 在城市B 的正东方向50 km 处.从海岛A 到城市C ,先乘船按北偏西θ角(α<θ≤π2,其中锐角α的正切值为12)航行到海滨公路P 处登陆,再换乘汽车到城市C.已知船速为25 km/h ,车速为75 km/h.(1) 试建立由A 经P 到C 所用时间与θ的函数解析式;(2) 试确定登陆点P 的位置,使所用时间最少,并说明理由.在平面直角坐标系xOy 中,椭圆C :x2a2+y2b2=1(a>b>0)的离心率为22,椭圆上动点P 到一个焦点的距离的最小值为3(2-1).(1) 求椭圆C 的标准方程;(2) 已知过点M(0,-1)的动直线l 与椭圆C 交于A ,B 两点,试判断以AB 为直径的圆是否恒过定点,并说明理由.已知各项是正数的数列{an}的前n 项和为Sn.(1) 若Sn +Sn -1=a2n +23(n ∈N*,n ≥2),且a1=2. ①求数列{an}的通项公式;②若Sn ≤λ·2n +1对任意n ∈N*恒成立,求实数λ的取值范围;(2) 数列{an}是公比为q(q>0,q ≠1)的等比数列,且{an}的前n 项积为10Tn.若存在正整数k ,对任意n ∈N*,使得T (k +1)n Tkn为定值,求首项a1的值.已知函数f(x)=⎩⎪⎨⎪⎧-x3+x2,x<0,ex -ax , x ≥0. (1) 当a =2时,求函数f(x)的单调区间;(2) 若方程f(-x)+f(x)=ex -3在区间(0,+∞)上有实数解,求实数a 的取值范围;(3) 若存在实数m ,n ∈[0,2],且|m -n|≥1,使得f(m)=f(n),求证:1≤a e -1≤e.2018届高三年级第一次模拟考试(三)数学附加题(本部分满分40分,考试时间30分钟)21. 【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A. [选修41:几何证明选讲](本小题满分10分)如图,AB ,AC 与圆O 分别切于点B ,C ,P 为圆O 上异于点B ,C 的任意一点,PD ⊥AB ,垂足为D ,PE ⊥AC ,垂足为E ,PF ⊥BC ,垂足为F.求证:PF2=PD·PE.B. [选修42:矩阵与变换](本小题满分10分)已知M =⎣⎢⎡⎦⎥⎤1221,β=⎣⎢⎡⎦⎥⎤17,求M4β.C. [选修44:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =t -3(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θsin2θ,若直线l 与曲线C 相交于A ,B 两点,求△AOB 的面积.D. [选修45:不等式选讲](本小题满分10分)已知a ,b ,c ∈R ,a2+b2+c2=1,若|x -1|+|x +1|≥(a -b +c)2对一切实数a ,b ,c 恒成立,求实数x 的取值范围.【必做题】第22题、第23题,每题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.22. (本小题满分10分)如图,已知矩形ABCD 所在平面垂直于直角梯形ABPE 所在平面,其交线为AB ,且AB =BP =2,AD =AE =1,AE ⊥AB ,且AE ∥BP.(1) 求平面PCD 与平面ABPE 所成的二面角的余弦值;(2) 线段PD 上是否存在一点N ,使得直线BN 与平面PCD 所成角的正弦值等于25?若存在,试确定点N 的位置;若不存在,请说明理由.23. (本小题满分10分)在正整数集上定义函数y =f(n),满足f(n)[f(n +1)+1]=2[2-f(n +1)],且f(1)=2. (1) 求证:f(3)-f(2)=910;(2) 是否存在实数a ,b ,使f(n)=1a ⎝⎛⎭⎫-32n -b +1,对任意正整数n 恒成立,并证明你的结论.2018届苏州高三年级第一次模拟考试 数学参考答案1. 32. 23. (-2,0)4.110 5. 12 6. 48 7. -9 8. 949. 30π 10. 18 11. (x -1)2+(y +2)2=2 12. ⎝⎛⎦⎤1,43 13. [-11,-9] 14.3+ln2215. 解析:(1) f(x)=(3cosx +sinx)2-23sin2x =3cos2x +23sinxcosx +sin2x -23sin2x =3(1+cos2x )2+1-cos2x2-3sin2x(2分)=cos2x -3sin2x +2=2cos ⎝⎛⎭⎫2x +π3+2.(4分)当2x +π3=2k π+π,即x =k π+π3(k ∈Z)时,f(x)取得最小值0,此时自变量x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+π3,k ∈Z .(7分)(2) 由(1)知f(x)=2cos ⎝⎛⎭⎫2x +π3+2.令π+2k π≤2x +π3≤2π+2k π(k ∈Z),(8分)解得π3+k π≤x ≤5π6+k π(k ∈Z),(10分)又x ∈⎣⎡⎦⎤-π2,π2,令k =-1,x ∈[-π2,-π6],令k =0,x ∈⎣⎡⎦⎤π3,π2,所以函数f(x)在⎣⎡⎦⎤-π2,π2上的单调增区间是⎣⎡⎦⎤-π2,-π6和⎣⎡⎦⎤π3,π2.(14分)16. 解析:(1) 因为E ,F 是A1D1,B1C1的中点,所以EF ∥A1B1.在正方体ABCDA1B1C1D1中,A1B1∥AB , 所以EF ∥AB.(3分)又EF ⊄平面ABHG ,AB ⊂平面ABHG , 所以EF ∥平面ABHG.(6分)(2)在正方体ABCDA1B1C1D1中,CD ⊥平面BB1C1C , 又BH ⊂平面BB1C1C ,所以BH ⊥CD.(8分) 设BH∩CF =P ,易知△BCH ≌△CC1F , 所以∠HBC =∠FCC1.因为∠HBC +∠PHC =90°, 所以∠FCC1+∠PHC =90°.所以∠HPC =90°,即BH ⊥CF.(11分) 又DC∩CF =C ,DC ,CF ⊂平面CFED , 所以BH ⊥平面CFED. 又BH ⊂平面ABHG ,所以平面ABHG ⊥平面CFED.(14分)17. 解析:(1) 由题意,轮船航行的方位角为θ, 所以∠BAP =90°-θ,AB =50, 则AP =50cos (90°-θ)=50sin θ,BP =50tan(90°-θ)=50sin (90°-θ)cos (90°-θ)=50cos θsin θ,所以PC =100-BP =100-50cos θsin θ.(4分) 由A 到P 所用的时间为t1=AP 25=2sin θ, 由P 到C 所用的时间为t2=100-50cos θsin θ75=43-2cos θ3sin θ,(6分)所以由A 经P 到C 所用时间与θ的函数关系为 f (θ)=t1+t2=2sin θ+43-2cos θ3sin θ=6-2cos θ3sin θ+43,(8分)函数f(θ)的定义域为⎝⎛⎦⎤α,π2,其中锐角α的正切值为12.(2) 由(1)知f(θ)=6-2cos θ3sin θ+43,θ∈⎝⎛⎦⎤α,π2,所以f′(θ)=6(1-3cos θ)9sin2θ.令f′(θ)=0,解得cos θ=13.(10分)设θ0∈⎝⎛⎭⎫0,π2,使cos θ0=13.当θ变化时,f ′(θ),f (θ)的变化情况如下表:θ (α,θ0) θ0 ⎝⎛⎭⎫θ0,π2f ′(θ) -0 +f (θ)极小值(12分)所以当θ=θ0时函数f(θ)取得最小值,此时BP =50cos θ0sin θ0=2522≈17.68(km).故在BC 上选择距离B 为17.68km 处为登陆点,所用时间最少.(14分) 18. 解析:(1) 由题意知c a =22,所以a =2c.(1分)又椭圆上动点P 到一个焦点的距离的最小值为3(2-1),所以a -c =32-3,(2分) 解得c =3,a =32,所以b2=a2-c2=9,(4分) 所以椭圆C 的标准方程为x218+y29=1.(6分)(2) 当直线l 的斜率为0时,令y =-1,则x =±4,此时以AB 为直径的圆的方程为x2+(y +1)2=16;(7分)当直线l 的斜率不存在时,以AB 为直径的圆的方程为x2+y2=9.(8分)联立⎩⎪⎨⎪⎧x2+(y +1)2=16,x2+y2=9,解得x =0,y =3,即两圆过点T(0,3).猜想:以AB 为直径的圆恒过定点T(0,3).(9分) 对一般情况证明如下:设过点M(0,-1)的直线l 的方程为y =kx -1,与椭圆C 交于点A(x1,y1),B(x2,y2),则⎩⎪⎨⎪⎧y =kx -1,x2+2y2=18,消去y ,整理得(1+2k2)x2-4kx -16=0,所以x1+x2=4k 1+2k2,x1x2=-161+2k2.(12分)因为TA →·TB →=(x1,y1-3)·(x2,y2-3)=x1x2+y1y2-3(y1+y2)+9=x1x2+(kx1-1)(kx2-1)-3(kx1-1+kx2-1)+9=(k2+1)x1x2-4k(x1+x2)+16=-16(k2+1)1+2k2-16k21+2k2+16=-16(1+2k2)1+2k2+16=0,所以TA ⊥TB.所以存在以AB 为直径的圆恒过定点T ,且定点T 的坐标为(0,3).(16分) 19. 解析:(1) ①当n≥2时,Sn +Sn -1=a2n +23,所以Sn +1+Sn =a2n +1+23,两式相减得an +1+an =13(a2n +1-a2n ),即an +1-an =3,n ≥2;(2分)当n =2时,S2+S1=a22+23,即a22-3a2-10=0,解得a2=5或a2=-2(舍),所以a2-a1=3,即数列{}an 为等差数列,且首项a1=2, 所以数列{}an 的通项公式为an =3n -1.(5分) ②由①知an =3n -1,所以Sn =n (3n -1+2)2=3n2+n2.由题意可得λ≥Sn2n +1=3n2+n 2n +2对一切n ∈N*恒成立,记cn =3n2+n 2n +2,则cn -1=3(n -1)2+(n -1)2n +1,n ≥2,所以cn -cn -1=-3n2+11n -42n +2,n ≥2.(8分)当n>4时,cn<cn -1;当n =4时,c4=1316,且c3=1516,c2=78,c1=12,所以当n =3时,cn =3n2+n 2n +2取得最大值1516,所以实数λ的取值范围为⎣⎡⎭⎫1516,+∞.(11分)(2) 由题意,设an =a1qn -1(q>0,q ≠1),a1·a2·…·an =10Tn ,两边取常用对数,得 Tn =lga1+lga2+…+lgan.令bn =lgan =nlgq +lga1-lgq ,则数列{}bn 是以lga1为首项,lgq 为公差的等差数列.(13分)若T (k +1)n Tkn 为定值,令T (k +1)nTkn =μ,则(k +1)nlga1+(k +1)n[(k +1)n -1]2lgqknlga1+kn (kn -1)2lgq=μ,即{[(k +1)2-μk 2]lgq}n +[(k +1)-μk]·⎝⎛⎭⎫lg a21q =0对n ∈N*恒成立, 因为q>0,q ≠1,所以问题等价于⎩⎪⎨⎪⎧(k +1)2-μk 2=0,(k +1)-μk =0或a21=q.将k +1k=μ代入(k +1)-μk =0,解得μ=0或μ=1. 因为k ∈N*,所以μ>0,μ≠1,所以a21=q. 又an>0,所以a1=q.(16分)20. 解析:(1) 当a =-2时,f(x)=⎩⎪⎨⎪⎧-x3+x2,x<0,ex -2x , x ≥0,当x<0时,f(x)=-x3+x2,f ′(x)=-3x2+2x =-x(3x -2), 令f′(x)=0,解得x =0或x =23(舍),所以当x<0时,f ′(x)<0,所以函数f(x)在区间(-∞,0)上为减函数;(2分) 当x≥0时,f(x)=ex -2x ,f ′(x)=ex -2, 令f′(x)=0,解得x =ln2,所以当0<x<ln2时,f ′(x)<0;当x>ln2时,f ′(x)>0,所以函数f(x)在区间(0,ln2)上为减函数,在区间(ln2,+∞)上为增函数,且f(0)=1>0.(4分) 综上,函数f(x)的单调减区间为(-∞,0)和(0,ln2),单调增区间为(ln2,+∞).(5分) (2) 设x>0,则-x<0,所以f(-x)+f(x)=x3+x2+ex -ax.由题意,x3+x2+ex -ax =ex -3在区间(0,+∞)上有解,等价于a =x2+x +3x 在区间(0,+∞)上有解.(6分)记g(x)=x2+x +3x(x>0),则g′(x)=2x +1-3x2=2x3+x2-3x2=(x -1)(2x2+3x +3)x2,(7分)令g′(x)=0,因为x>0,所以2x2+3x +3>0,故解得x =1.当x ∈(0,1)时,g ′(x)<0;当x ∈(1,+∞)时,g ′(x)>0,所以函数g(x)在区间(0,1)上单调递减,在区间(1,+∞)上单调递增, 故函数g(x)在x =1处取得最小值g(1)=5.(9分)要使方程a =g(x)在区间(0,+∞)上有解,当且仅当a≥g(x)min =g(1)=5, 综上,满足题意的实数a 的取值范围为[5,+∞).(10分) (3) 由题意知f′(x)=ex -a.当a≤0时,f ′(x)>0,此时函数f(x)在[0,+∞)上单调递增,由f(m)=f(n),可得m =n ,与条件|m -n|≥1矛盾,所以a>0.(11分) 令f′(x)=0,解得x =lna.当x ∈(0,lna)时,f ′(x)<0;当x ∈(lna ,+∞)时,f ′(x)>0, 所以函数f(x)在(0,lna)上单调递减,在(lna ,+∞)上单调递增. 若存在m ,n ∈[0,2],f(m)=f(n),则lna 介于m ,n 之间,(12分) 不妨设0≤m<lna<n ≤2.因为f(x)在(m ,lna)上单调递减,在(lna ,n)上单调递增,且f(m)=f(n), 所以当m≤x≤n 时,f (x)≤f(m)=f(n),由0≤m<n≤2,|m -n|≥1,可得1∈[m ,n], 所以f(1)≤f(m)=f(n).又f(x)在(m ,lna)上单调递减,且0≤m<lna ,所以f(m)≤f(0), 所以f(1)≤f(0).同理f(1)≤f(2),(14分)即⎩⎪⎨⎪⎧e -a≤1,e -a≤e2-2a ,解得e -1≤a≤e2-e , 所以1≤a e -1≤e.(16分)21. A .解析:连结PB ,PC.因为∠PCF ,∠PBD 分别为同弧BP 上的圆周角和弦切角, 所以∠PCF =∠PBD.(2分) 因为PD ⊥BD ,PF ⊥FC , 所以△PDB ∽△PFC ,所以PD PF =PBPC.(5分) 同理∠PBF =∠PCE. 又PE ⊥EC ,PF ⊥FB ,所以△PFB ∽△PEC ,所以PF PE =PBPC .(8分)所以PD PF =PFPE ,即PF2=PD·PE.(10分)B. 解析:矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=λ2-2λ-3.(2分)令f(λ)=0,解得λ1=3,λ2=-1,所以属于λ1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,属于λ2的一个特征向量为α2=⎣⎢⎡⎦⎥⎤1-1.(5分)令β=mα1+nα2,即⎣⎢⎡⎦⎥⎤17=m ⎣⎢⎡⎦⎥⎤11+n ⎣⎢⎡⎦⎥⎤1-1, 所以⎩⎪⎨⎪⎧m +n =1,m -n =7,解得m =4,n =-3.(7分)所以M4β=M4(4α1-3α2)=4(M4α1)-3(M4α2)=4(λ41α1)-3(λ42α2)=4×34⎣⎢⎡⎦⎥⎤11-3×(-1)4×⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤321327.(10分) C. 解析:由题意知曲线C 的直角坐标方程是y2=2x ,(2分) 直线l 的普通方程为x -y -4=0.(4分)联立方程组⎩⎪⎨⎪⎧y2=2x ,y =x -4,解得A(2,-2),B(8,4),所以AB =62,(7分)因为原点到直线x -y -4=0的距离d =|-4|2=22,所以S △AOB =12×62×22=12.(10分)D. 解析:因为a ,b ,c ∈R ,a2+b2+c2=1, 所以由柯西不等式得(a -b +c)2≤(a2+b2+c2)·(1+1+1)=3.(4分)因为|x -1|+|x +1|≥(a -b +c)2对一切实数a ,b ,c 恒成立,所以|x -1|+|x +1|≥3.当x<-1时,-2x≥3,即x≤-32;当-1≤x≤1时,2≥3不成立;当x>1时,2x ≥3,即x≥32.综上所述,实数x 的取值范围为⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞.(10分) 22. 解析:(1) 因为平面ABCD ⊥平面ABEP ,平面ABCD∩平面ABEP =AB ,BP ⊥AB ,所以BP ⊥平面ABCD.又AB ⊥BC ,所以直线BA ,BP ,BC 两两垂直, 以B 为原点,分别以BA ,BP ,BC 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则P(0,2,0),B(0,0,0),D(2,0,1),E(2,1,0),C(0,0,1).因为BC ⊥平面ABPE ,所以BC →=(0,0,1)为平面ABPE 的一个法向量.(2分)PD →=(2,-2,1),CD →=(2,0,0),设平面PCD 的一个法向量为n =(x ,y ,z), 则⎩⎪⎨⎪⎧n·CD →=0,n·PD →=0, 即⎩⎪⎨⎪⎧2x =0,2x -2y +z =0,令y =1,则z =2,故n =(0,1,2).(4分)设平面PCD 与平面ABPE 所成的二面角为θ,则cos θ=n·BC →|n|·|BC →|=21×5=255,显然0<θ<π2,所以平面PCD 与平面ABPE 所成二面角的余弦值为255.(6分)(2) 设线段PD 上存在一点N ,使得直线BN 与平面PCD 所成角α的正弦值等于25.设PN →=λPD →=(2λ,-2λ,λ)(0≤λ≤1),BN →=BP →+PN →=(2λ,2-2λ,λ).(7分) 由(1)知平面PCD 的一个法向量为n =(0,1,2), 所以cos 〈BN →,n 〉=BN →·n |BN →|·|n|=25×9λ2-8λ+4=25,即9λ2-8λ-1=0,解得λ=1或λ=-19(舍去).(9分)当点N 与点D 重合时,直线BN 与平面PCD 所成角的正弦值为25.(10分)23. 解析:(1) 因为f(n)[f(n +1)+1]=2[2-f(n +1)],所以f(n +1)=4-f (n )f (n )+2.由f(1)=2,代入得f(2)=4-22+2=12,f(3)=4-1212+2=75,所以f(3)-f(2)=75-12=910.(2分)(2) 由f(1)=2,f(2)=12,可得a =-45,b =15.(3分)以下用数学归纳法证明: 存在实数a =-45,b =15,使f(n)=1-45⎝⎛⎭⎫-32n -15+1成立.①当n =1时,显然成立;(4分)②当n =k 时,假设存在a =-45,b =15,使得f(k)=1-45⎝⎛⎭⎫-32k -15+1成立,(5分)那么当n=k+1时,f(k+1)=4-f(k)f(k)+2=4-⎣⎢⎢⎡⎦⎥⎥⎤1-45⎝⎛⎭⎫-32k-15+11-45⎝⎛⎭⎫-32k-15+1+2=125⎝⎛⎭⎫-32k+85125⎝⎛⎭⎫-32k-25=1+165⎝⎛⎭⎫-32k-15=1-45⎝⎛⎭⎫-32k+1-15+1,即当n=k+1时,存在a=-45,b=15,使得f(k+1)=1-45⎝⎛⎭⎫-32k+1-15+1成立.(9分)由①②可知,存在实数a=-45,b=15,使f(n)=1a⎝⎛⎭⎫-32n-b+1对任意正整数n恒成立.(10分)。

相关文档
最新文档