重庆市万州二中2017-2018学年高二下学期期中数学试卷(理科) Word版含解析
【精选高中试题】重庆市万州二中高二期中考试题数学Word版含答案

绝密★启用前2017-2018学年度万州二中高2019级期中考试数学试题注意事项:1.选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.2.非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.3.有题目必须在答题卡上作答,在试题卷上答题无效.本试卷分第Ⅰ卷和第Ⅱ卷,共150分.考试时间120分钟第I 卷(选择题,共60分)一、选择题(本大题共12个小题,每小题5分,共60分)在每小题给出的四个选项中,只有一项是符合题目要求的;各题答案必须答在答题卡上相应的位置) 1.“1x <-”是“210x ->”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.已知经过点()3,P m 和点(),2Q m -的直线的斜率等于2,则m 的值为( )A.43B. 1C. 2D. 1- 3.直线013=-+y x 的倾斜角为( )A .3π B .6π C .32π D .65π4.下列几何体各自的三视图中,有且仅有两个视图相同的是( )A. ①②B. ①③C. ①④D. ②④5.如图所示的直观图中,O′A′=O′B′=2,则其平面图形的面积是( )A.4B.24C.22D.86.两圆221C 4470x y x y ++-+=:,222C 410130x y x y +--+=:的公切线的条数为( )A .1B .2C .3D .47.若直线()2200,0ax by a b -+=>>被圆222410x y x y ++-+=截得的弦长为4,则14a b+的最小值是( ) A.16 B.9 C.12 D.88.已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -,则球O 的表面积为( ) A .36π B .64π C .144π D .256π 9.如图所示,正方体ABCD ﹣A 1B 1C 1D 1中,M ,N 分别为棱C 1D 1,C 1C 的中点,以下四个结论中正确的是( )A .直线MN 与BC 1所成角为90°B .直线AM 与BN 互相平行C .直线MN 与DC 1互相垂直D .直线MN 垂直于平面A 1BCD 1 10.在空间直角坐标系Oxyz中,已知()(()(2,0,02,2,20,2,01,1,2A B C ,,,.若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A.B.C.D.11.已知某几何体的外接球的半径为错误!未找到引用源。
重庆市万州区高二数学下学期期中试题 文

重庆市万州区2016-2017学年高二数学下学期期中试题 文考试时间:120分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(本大题共12小题,每题5分,共60分)1.已知全集{}U=2,3,4,5,6,7,集合{}A=4,5,7, {}B=4,6,则 A (∁U B )=( ) A. {}5 B. {}2 C. {}2,5 D. {}5,72.已知i 为虚数单位,则13ii+=-( ) A. 25i - B. 25i + C. 125i - D. 125i+3.命题“N n ∀∈, ()N f n ∉且()f n n ≤”的否定形式是( )A. N n ∀∈, ()N f n ∈且()f n n >B. 0N n ∃∈, ()0N f n ∈且()00f n n >C. N n ∀∈, ()N f n ∈或()f n n >D. 0N n ∃∈, ()0N f n ∈或()00f n n > 4.下列各组函数中,表示同一函数的是( )A.22lg ,lg y x y x == B.()()()01,1f x x g x =-=C.()()21,11x f x g x x x -==+- D.()()f x g t t == 5. 已知集合,,则集合中元素的个数为( )A. 2B. 3C. 4D. 56.设某中学的高中女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据),(i i y x (n i ,,3,2,1⋅⋅⋅=),用最小二乘法近似得到回归直线方程为71.8585.0ˆ-=x y,则下列结论中不正确的是( ) A. y 与x 具有正线性相关关系 B. 回归直线过样本的中心点),(y xC. 若该中学某高中女生身高增加1cm ,则其体重约增加0.85kgD. 若该中学某高中女生身高为160cm ,则可断定其体重必为50.29kg .7.用三段论推理:“任何实数的平方大于0,因为a 是实数,所以20a >”,你认为这个推理 ( )A .大前提错误B .小前提错误 C. 推理形式错误 D .是正确的 8.若实数,x y 满足11ln0x y--=,则y 关于x 的函数图象的大致形状是( )A. B. C. D.9. 已知在曲线()21ax f x x =+在点()()1,1f 处切线的斜率为1,则实数a 的值为( )A .34-B .43 C. 32 D .32- 10.“一支医疗救援队里的医生和护士,包括我在内,总共是13名.下面讲到的人员情况,无论是否把我计算在内,都不会有任何变化.在这些医务人员中:①护士不少于医生;②男医生多于女护士;③女护士多于男护士;④至少有一位女医生.”由此推测这位说话人的性别和职务是( ) A. 男护士 B. 女护士 C. 男医生 D. 女医生 11.已知函数⎩⎨⎧≤≤--≤-=73,1|5|1),2(log )(x x x x x f a (0>a 且1≠a )的图象上关于直线1=x 对称的点有且仅有一对,则实数a 的取值范围是( )A.}3{]51,71[ B.}71{]5,3[ C.}5{]31,71[ D.}51{]7,3[12.设函数()(21)xf x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( ) A. 3[,1)2e -B. 33[,)24e - C. 33[,)24e D. 3[,1)2e 第II 卷(非选择题)二、填空题(本大题共4小题,每题5分,共20分)13.已知复数12z ai =+, 22z i =-(其中0a >, i 为虚数单位).若12z z =,则a 的值为__________. 14.若x x f 131211)(++++= ,计算得当1=n 时23)2(=f ,当2≥n 时有2)4(>f ,25)8(>f ,3)16(>f , ,27)32(>f ,因此猜测当2≥n 时,一般有不等式________________15.已知y x ,取值如下表:画散点图分析可知:y 与x 线性相关,且求得回归方程为1ˆ+=x y,则m 的值为___________.16. .已知函数在上单调递减,且方程有两个不相等的实数根,则实数的取值范围是__________.三、解答题17.(本小题共12分)已知命题0208:2≤--x x p ,命题)0(012:22>≥-+-a a x x q ,若p ⌝是q 的充分不必要条件,求a 的取值范围.18.(本小题共12分)求证:(1)222a b c ab ac bc ++≥++; (2) 6+7>5。
2017—2018学年第二学期高二年级期中考试数学(理)试卷解析版

2017~2018学年第二学期高二年级期中考试数学(理)试卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数ii+310对应的点的坐标为( A )A .)3,1(B .)1,3(C .)3,1(-D .)1,3(-2.已知随机变量ξ服从正态分布),(2σμN ,若15.0)6()2(=>=<ξξP P ,则=<≤)42(ξP ( B )A .0.3B .0.35C .0.5D .0.7 3.设)(x f 在定义域内可导,其图象如图所示,则导函数)('x f 的图象可能是( B )4.用反证法证明命题:“若0)1)(1)(1(>---c b a ,则c b a ,,中至少有一个大于1”时,下列假设中正确的是( B )A .假设c b a ,,都大于1B .假设c b a ,,都不大于1C .假设c b a ,,至多有一个大于1D .假设c b a ,,至多有两个大于15.用数学归纳法证明3)12(12)1()1(2122222222+=+++-++-+++n n n n n 时,从)(*N k k n ∈=到1+=k n 时,等式左边应添加的式子是( B )A .222)1(k k +- B .22)1(k k ++ C .2)1(+k D.]1)1(2)[1(312+++k k6.3名志愿者完成4项工作,每人至少1项,每项由1人完成,则不同的安排方式共有( D )A .12种B .18种C .24种D .36种 7.在62)12(xx -的展开式中,含7x 的项的系数是( D ) A .60 B .160 C .180 D .2408.函数xe xf x2)(=的导函数是( C )A .xe xf 2'2)(= B .x e x f x 2'2)(= C .22')12()(x e x x f x -= D .22')1()(x e x x f x -=9.已知函数223)(a bx ax x x f +++=在1=x 处的极值为10,则数对),(b a 为( C )A .)3,3(-B .)4,11(-C .)11,4(-D .)3,3(-或)11,4(-10.若等差数列}{n a 公差为d ,前n 项和为n S ,则数列}{n S n 为等差数列,公差为2d.类似,若各项均为正数的等比数列}{n b 公比为q ,前n 项积为n T ,则等比数列}{n n T 公比为( C )A.2q B .2q C.q D.n q 11.将3颗骰子各掷一次,记事件A 表示“三个点数都不相同”,事件B 表示“至少出现一个3点”,则概率=)|(B A P ( C )A.21691 B.185 C.9160 D.2112.定义在R 上的偶函数)(x f 的导函数为)('x f ,若对任意实数x ,都有2)()(2'<+x xf x f 恒成立,则使1)1()(22-<-x f x f x 成立的实数x 的取值范围为( B )A .}1|{±≠x xB .),1()1,(+∞--∞C .)1,1(-D .)1,0()0,1( - 二、填空题(本大题共4小题,每小题5分,共20分)13.设),(~p n B ξ,若有4)(,12)(==ξξD E ,则=p 2/3 14.若函数32)1(21)(2'+--=x x f x f ,则=-)1('f -1 15.如图所示,阴影部分的面积是 32/316.已知函数)(x f 的定义域为]5,1[-,部分对应值如下表,)(x f 的导函数)('x f y =的图象如图所示,给出关于)(x f 的下列命题:②函数)(x f 在]1,0[是减函数,在]2,1[是增函数; ③当21<<a 时,函数a x f y -=)(有4个零点;④如果当],1[t x -∈时,)(x f 的最大值是2,那么t 的最小值为0. 其中所有正确命题是 ①③④ (写出正确命题的序号).三、解答题(本大题共6小题,共70分) 17.(本小题满分10分)设复数i m m m m z )23()32(22+++--=,试求实数m 的取值,使得 (1)z 是纯虚数; (2)z 对应的点位于复平面的第二象限. 解:(1)复数是一个纯虚数,实部等于零而虚部不等于0分5302303222 =∴⎪⎩⎪⎨⎧≠++=--m m m m m (2)当复数对应的点在第二象限时,分103102303222<<-∴⎪⎩⎪⎨⎧>++<--m m m m m 18.(本小题满分12分) 在数列}{n a 中,已知)(13,2*11N n a a a a n nn ∈+==+(1)计算432,,a a a 的值,并猜想出}{n a 的通项公式; (2)请用数学归纳法证明你的猜想. 解:(1)72123213112=+⨯=+=a a a ,19213,132********=+==+=a a a a a a于是猜想出分5562-=n a n (2)①当1=n 时,显然成立;②假设当)(*N k k n ∈=时,猜想成立,即562-=k a k 则当1+=k n 时,5)1(6216215623562131-+=+=+-⨯-=+=+k k k k a a a k k k , 即当1+=k n 时猜想也成立. 综合①②可知对于一切分12562,*-=∈n a N n n 19.(本小题满分12分)“莞马”活动中的α机器人一度成为新闻热点,为检测其质量,从一生产流水线上抽取20件该产品,其中合格产品有15件,不合格的产品有5件.(1)现从这20件产品中任意抽取2件,记不合格的产品数为X ,求X 的分布列及数学期望; (2)用频率估计概率,现从流水线中任意抽取三个机器人,记ξ为合格机器人与不合格机器人的件数差的绝对值,求ξ的分布列及数学期望. 解:(1)随机变量X 的可能取值为0,1,23821)0(22021505===C C C X P ,3815)1(22011515===C C C X P , 191)2(22001525===C C C X P , 所以随机变量X 的分布列为:分62192381380 =⨯+⨯+⨯=∴EX(2)合格机器人的件数可能是0,1,2,3,相应的不合格机器人的件数为3,2,1,0.所以ξ的可能取值为1,3,有题意知:1122213331319(1)()()()()444416P C C ξ==+=,3333331317(3)()()()()444416P C C ξ==+= 所以随机变量ξ的分布列为:分128163161)( =⨯+⨯=∴ξE 20.(本小题满分12分)编号为5,4,3,2,1的五位学生随意入座编号为5,4,3,2,1的五个座位,每位学生坐一个座位.设与座位编号相同的学生人数是X .(1)试求恰好有3个学生与座位编号相同的概率)3(=X P ; (2)求随机变量X 的分布列及均值.解:(1)恰好有3个学生与座位编号相同,这时另两个学生与座位编号不同,所以分412112010)3(5525 ====A C X P(2)随机变量X 的一切可能值为0,1,2,3,4,5. 且121)3(,00)4(,120112011)5(5555=========X P A X P A X P ; 83120459)1(,61120202)2(55155525========A C X P A C X P301112044)]5()4()3()2()1([1)0(===+=+=+=+=-==X P X P X P X P X P X P 随机变量X 的分布列为故分1211205041236281300)( =⨯+⨯+⨯+⨯+⨯+⨯=X E 21.(本小题满分12分)已知函数)(ln )(R a x ax x f ∈+=(1)若2=a ,求曲线)(x f y =在1=x 处的切线方程; (2)求)(x f 的单调区间;(3)设22)(2+-=x x x g ,若对任意),0(1+∞∈x ,均存在]1,0[2∈x ,使得)()(21x g x f <,求a 的取值范围. 解:(1)2),0(1)('=>+=a x x a x f )0(12)('>+=∴x xx f , 3)1('=∴f , 3=∴k又切点)2,1(,所以切线方程为)1(32-=-x y ,即:013=--y x 故曲线)(x f y =在1=x 处切线的切线方程为分4013 =--y x(2))0(11)('>+=+=x xax x a x f ①当0≥a 时,0)('>x f ,所以)(x f 的单调递增区间为分6),0( +∞②当0<a 时,由0)('=x f ,得ax 1-= 在区间)1,0(a -上0)('>x f ,在区间),1(+∞-a上,0)('<x f . 所以,函数)(x f 的单调递增区间为)1,0(a -,单调递减区间为分8),1( +∞-a(3)由已知,转化为]1,0[,1)1()(,)()(2max max ∈+-=<x x x g x g x f ,2)(max =∴x g 由(2)知,当0≥a 时,)(x f 在),0(+∞上单调递增,值域为R ,故不符合题意. (或者举出反例:存在23)(33>+=ae e f ,故不符合题意.)当0<a 时,)(x f 在)1,0(a -上单调递增,在),1(+∞-a上单调递减, 故)(x f 的极大值即为最大值,)ln(1)1()(max a af x f ---=-=, 所以2)ln(1<---a ,解得31e a -< 综上:分1213 ea -< 22.(本小题满分12分) 已知函数2()ln(1)f x ax x =++ (1)当14a =-时,求函数()f x 的极值; (2)若函数()f x 在区间[1)+∞,上为减函数,求实数a 的取值范围 (3)当[0)x ∈+∞,时,不等式()f x x ≤恒成立,求实数a 的取值范围. 解:(1))1()1(2)1)(2(1121)('->+-+-=++-=x x x x x x x f 令0)('>x f 得11<<-x ,令0)('<x f 得1>x .)(x f ∴在)1,1(-上是增函数,在),1(+∞上是减函数. 2ln 41)1()(+-==∴f x f 极大值,)(x f 无极小值分4(2)因为函数)(x f 在区间[1)+∞,上为减函数, 所以0112)('≤++=x ax x f 对任意的),1[+∞∈x 恒成立, 即)1(21+-≤x x a 对任意的),1[+∞∈x 恒成立,4121)211(2121)21(21)1(2122-=-+-≥-+-=+-x x x分841-≤∴a(3)因为当[0)x ∈+∞,时,不等式()f x x ≤恒成立, 即0)1ln(2≤-++x x ax 恒成立,令)0()1ln()(2≥-++=x x x ax x g , 转化为0)(max ≤x g 即可.1)]12(2[1112)('+-+=-++=x a ax x x ax x g 当0=a 时,1)('+-=x x x g ,0>x ,0)('<∴x g 即)(x g 在),0[+∞上单调递减,故0)0()(=≤g x g 成立. 当0>a 时,令0)('=x g 得,0=x 或121-=ax 若0121≤-a 即21≥a 时,),0(+∞∈x 有0)('>x g , 则)(x g 在),0[+∞上单调递增,0)0()(=≥g x g ,不满足题设; 若0121>-a 即210<<a 时,)121,0(-∈a x 有0)('<x g ,),121(+∞-∈ax 有0)('>x g , 则)(x g 在)121,0(-a 上单调递减,在),121(+∞-a上单调递增,无最大值,不满足题设; 当0<a 时,0>x ,0)('<∴x g即)(x g 在),0[+∞上单调递减,故0)0()(=≤g x g 成立. 综上:实数a 的取值范围为分12]0,( -∞。
2018-2019学年重庆市万州二中高二下学期期中考试 数学(理)

A.甲
B.乙
C.丙
D.丁
6.已知 ( ) = 3 + 2 + ( + 6) + 1 有极大值和极小值,则 a 的取值范围为( )
A.( − 1,2)
B. ( − ∞, − 3) ∪ (6, + ∞)
C.( − 3,2)
D.( − ∞, − 1) ∪ (2, + ∞)
7.我国南宋数学家杨辉 1261 年所著的《详解九章算法》
①当 ≤ 0 时, '( ) < 0, ( )在(0, + ∞)为减函数;
②当
>
0
时,
∈
(0,
1 2
)时,'(
) < 0,故
(
)在(0,
1 2
)为减函数;
∈
(
1 2
, + ∞)时,'(
) > 0,
故
(
)在(
1 2
, + ∞)为增函数.
21.【解析】(1)当 = 0 时,
= − 1 − ,∴ ' = − 1,
22
3
当且仅当
2
=
12
−
,即
= 8 时, ( )有最大值,
最大值为 ( ) = 1536.
即当该框架的底面宽为 8 分米时,长方体框架所占的空间体积最大,最大值为 1536 立方分
米.
法 2:因为 ( ) = 6 2(12 − ) = 72 2 − 6 3(0 < < 12),
所以 '( ) = 144 − 18 2 =− 18 ( − 8)(0 < < 12),
16.【解析】
重庆万州二中高二下学期期中考试数学(理科)试卷

万州二中高2017级高二下中期考试试题理 科 数 学命题人:程远见 审题人:丁勇数学试题共4页。
满分150分。
考试时间120分钟注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
一、选择题(本大题共12小题,每小题5分,共60分.每小题中只有一项符合题目要求)1. 设i 为虚数单位,则复数5-6i i等于 A .6+5i B .6-5i C .-6+5i D .-6-5i2.用反证法证明命题:若系数为整数的一元二次方程ax 2+bx +c =0(a ≠0)有有理根,那么a ,b ,c 中至少有一个是偶数,下列假设中正确的是A .假设a ,b ,c 都是偶数B .假设a ,b ,c 都不是偶数C .假设a ,b ,c 至多有一个是偶数D .假设a ,b ,至多有两个是偶数3. 已知积分10(1)kx dx k +=⎰,则实数k =A .2B .2-C .1D .1- 4. 已知函数()f x 的导函数如图所示,若ABC ∆为锐角三角形,则下列不等式一定成立的是( )A.()()sin cos f A f A >B.()()sin cos f A f B >C.()()cos cos f A f B <D.()()sin cos f A f B <5. 某公司新招聘进8名员工,平均分给下属的甲、乙两个部门,其中两名英语翻译人员不能分给同一个部门;另三名电脑编程人员也不能分给同一个部门,则不同的分配方案种数是A.18B.24C. 36D. 726.某个自然数有关的命题,如果当)(1*∈+=N n k n 时,该命题不成立,那么可推得k n =时,该命题不成立.现已知当2012=n 时,该命题成立,那么,可推得A. 2011=n 时,该命题成立B. 2013=n 时,该命题成立C.2011=n 时,该命题不成立D.2013=n 时,该命题不成立7.函数3()3f x x x =-+在区间2(12,)a a -上有最小值,则实数a 的取值范围是 -32e ,32e ) (C) 25[,1)3e(D) e, 2e 12,2hslx3y3h 上恰有两个不相等的实数根,∴⎩⎨⎧g (12)≥0g (1)<0g (2)≥0 ,∴ ⎩⎨⎧b -54-ln 2≥0b -2<0b -2+ln 2≥0, ∴ 54+ln 2≤b <2,即5ln 2,24b ⎡⎫∈⎪⎢⎣⎭. ……8分 (III)由(I) 和(II)可知当10,,2a x ⎡⎫=∈+∞⎪⎢⎣⎭时,)1()(f x f ≥,即1ln -≤x x , ∴当1>x 时, 1ln -<x x . ……… 10分 令211x n =+(2,n n ≥∈*N ),则22111ln nn <⎪⎭⎫ ⎝⎛+. 所以当2,n n ≥∈*N 时,2222221 (312)111ln .......311ln 211ln n n +++<⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+ ()11111......321211<-=-⨯++⨯+⨯<nn n , 即111.......311211ln 222<⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+n ,∴e n <⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+22211......311211. ……12分。
2017-2018学年高二下学期期中考试数学(理)试题 word版含答案

2017-2018学年度高二年级期中考试数学(理科)试卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设正弦函数y =sinx 在x =0和x =π2附近的瞬时变化率为k1、k2,则k1、k2的大小关系为( )A .k1>k2B .k1<k2C .k1=k2D .不确定2.命题“对任意x R ∈,都有20x ≥”的否定为( )A .对任意x R ∈,使得20x <B .不存在x R ∈,使得20x <C .存在0x R ∈,都有200x ≥D .存在0x R ∈,都有200x <3.设z 是复数,则下列命题中的假命题是( )A .若20z ≥, 则z 是实数B .若20z <, 则z 是虚数C .若z 是虚数, 则20z ≥D .若z 是纯虚数, 则20z <4.一物体以速度v =(3t2+2t)m/s 做直线运动,则它在t =0s 到t =3s 时间段内的位移是( )A .31mB .36mC .38mD .40m5.3.复数31iz i +=-(i 为虚数单位)在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.对于命题p 和q ,若p 且q 为真命题,则下列四个命题:①p 或¬q 是真命题;②p 且¬q 是真命题;③¬p 且¬q 是假命题;④¬p 或q 是假命题.其中真命题是( )A .①②B .③④C .①③D .②④7.三次函数f(x)=mx3-x 在(-∞,+∞)上是减函数,则m 的取值范围是( )A .m<0B .m<1C .m≤0D .m≤18.已知抛物线y =-2x2+bx +c 在点(2,-1)处与直线y =x -3相切,则b +c 的值为( )A .20B .9C .-2D .29.设f(x)=cos 2tdt ,则f =( )A.1B.sin 1C.sin 2D.2sin 410.“ a=b ”是“直线与圆22()()2x a y b -++=相切的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件11.设函数f(x)的图象如图,则函数y =f ′(x)的图象可能是下图中的( )12.若关于x 的不等式x3-3x2-9x +2≥m 对任意x ∈[-2,2]恒成立,则m 的取值范围是( )A .(-∞,7]B .(-∞,-20]C .(-∞,0]D .[-12,7]二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上)13.若曲线f(x)=x4-x 在点P 处的切线垂直于直线x -y =0,则点P 的坐标为________14.f(x)=ax3-2x2-3,若f′(1)=2,则a 等于________.15.220(4)x x dx --=⎰_______________.16.已知z C ,且|z|=1,则|z-2i|(i 为虚数单位)的最小值是________三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17. (本题满分10分) (1) 求导数22sin(25)y x x =+ (2)求定积分:10(1)x x dx +⎰18. (本题满分12分)设:x2-8x-9≤0,q :,且非p 是非q 的充分不必要条件,求实数m 的取值范围.19.(本题满分12分)已知z 为复数,i z +和i z-2均为实数,其中i 是虚数单位. (Ⅰ)求复数z 和||z ;(Ⅱ)若immzz27111+--+=在第四象限,求m的范围.20.(本题满分12分)已知函数f(x)=-x3+3x2+a.(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.21.(本题满分12分) 设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+4.(1)求y=f(x)的表达式;(2)求直线y=2x+4与y=f(x)所围成的图形的面积.22.(本题满分12分) 设函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,4),且在点P处有相同的切线y=4x+4.(1)求a,b,c,d的值.(2)若存在x≥-2时,f(x)≤k-g(x),求k的取值范围.20[解析] (1)f ′(x)=-3x2+6x.令f ′(x)<0,解得x<0,或x>2,∴函数f(x)的单调递减区间为(-∞,0)和(2,+∞).(2)∵f(-2)=8+12+a=20+a,f(2)=-8+12+a=4+a,∴f(-2)>f(2).∵在(0,2)上f ′(x)>0,∴f(x)在(0,2]上单调递增.又由于f(x)在[-2,0]上单调递减,因此f(0)是f(x)在区间[-2,2]上的最大值,于是有f(0)=a=20∴f(x)=-x3+3x2-20∴f(2)==-16,即函数f(x)在区间[-2,2]上的最小值为-16.21[解析] (1)f ′(x)=-3x2+6x.令f ′(x)<0,解得x<0,或x>2,∴函数f(x)的单调递减区间为(-∞,0)和(2,+∞).(2)∵f(-2)=8+12+a=20+a,f(2)=-8+12+a=4+a,∴f(-2)>f(2).∵在(0,2)上f ′(x)>0,∴f(x)在(0,2]上单调递增.又由于f(x)在[-2,0]上单调递减,因此f(0)是f(x)在区间[-2,2]上的最大值,于是有f(0)=a=20∴f(x)=-x3+3x2-20∴f(2)==-16,即函数f(x)在区间[-2,2]上的最小值为-16.22【解题指南】(1)根据曲线y=f(x)和曲线y=g(x)都过点P(0,2),可将P(0,2)分别代入到y=f(x)和y=g(x)中,再利用在点P处有相同的切线y=4x+2,对曲线y=f(x)和曲线y=g(x)进行求导,列出关于a,b,c,d的方程组求解.(2)构造函数F(x)=kg(x)-f(x),然后求导,判断函数F(x)=kg(x)-f(x)的单调性,通过分类讨论,确定k的取值范围.【解析】(1)由已知得f(0)=2,g(0)=2,f′(0)=4,g′(0)=4.而f′(x)=2x+a,g′(x)=ex(cx+d+c).故b=2,d=2,a=4,d+c=4.从而a=4,b=2,c=2,d=2.(2)由(1)知f(x)=x2+4x+2,g(x)=2ex(x+1).设F(x)=kg(x)-f(x)=2kex(x+1)-x2-4x-2,则F′(x)=2kex(x+2)-2x-4=2(x+2)(kex-1).由题设可得F(0)≥0,即k≥1.令F′(x)=0,即2(x+2)(kex-1)=0,得x1=-lnk,x2=-2.①若1≤k<e2,则-2<x1≤0,从而当x∈(-2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在x∈(-2,x1)上单调递减,在x∈(x1,+∞)上单调递增,故F(x)在[-2,+∞)上有最小值为F(x1).F(x1)=2x1+2--4x1-2=-x1(x1+2)≥0.故当x≥-2时,F(x)≥0恒成立,即f(x)≤kg(x).②若当k=e2,则F′(x)=2e2(x+2)(ex-e-2),当x>-2时,F′(x)>0,即F(x)在(-2,+∞)上单调递增,而F(-2)=0,故当且仅当x≥-2时,F(x)≥0恒成立,即f(x)≤kg(x).③若k>e2,则F(-2)=-2ke-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围为[1,e2].。
2017-2018学年高二下学期期中考试数学(理)试题 word版

2017-2018学年第二学期高二年段期中考数学(理)试卷(满分:150分,完善时间:120分钟)班级姓名座号一、选择题(本大题共12小题,共60分)1.设复数z的共轭复数为,若(2+i)z=3-i,则的值为()A.1B.C.2D. 42. 一个包内装有4本不同的科技书,另一个包内装有5本不同的科技书,分别从两个包内各取一本的取法有()种.A.15B.4C.9D.203.已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时有()A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<04.函数y=f(x)导函数f'(x)的图象如图所示,则下列说法正确的是()A.y=f(x)在(-∞,0)上单调递增B. y=f(x)的递减区间为(3,5)C.函数y=f(x)在x=0处取得极大值D.函数y=f(x)在x=5处取得极小值5.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()A.假设三内角都不大于60度B.假设三内角都大于60度C.假设三内角至多有一个大于60度D.假设三内角至多有两个大于60度6.设f(x)=,则f(x)dx=()A. B. C. D.不存在7.用数学归纳法证明1+a+a2+…+an+1=(a≠1,n∈N*),在验证n=1成立时,左边的项是()A.1B.1+aC.1+a+a2D.1+a+a2+a48.有八名运动员参加男子100米的决赛.已知运动场有从内到外编号依次为1,2,3,4,5,6,7,8的八条跑道,若指定的3名运动员所在的跑道编号必须是三个连续的数字(如:4,5,6),则参加比赛的这八名运动员安排跑道的方式共有()A.360种 B.4320种 C.720种 D.2160种9.如图,设D是图中边长分别为1和2的矩形区域,E是D内位于函数图象下方的阴影部分区域,则阴影部分E的面积为()A.ln2B.1-ln2C.2-ln2D.1+ln210.若函数f(x)=x3-ax2+1在(0,2)内单调递减,则实数a的取值范围为()A.a≥3B.a=3C.a≤3D.0<a<311.已知函数f(x)=x2+cosx,f′(x)是函数f(x)的导函数,则f′(x)的图象大致是()A. B. C. D.12.已知,则导函数f′(x)是()A.仅有最小值的奇函数B.既有最大值,又有最小值的偶函数C.仅有最大值的偶函数D.既有最大值,又有最小值的奇函数二、填空题(本大题共4小题,共20.0分)13.已知物体的运动方程为s=t2+(t是时间,s是位移),则物体在时刻t=2时的速度为14. 将3本相同的小说,2本相同的诗集全部分给4名同学,每名同学至少1本,则不同的分法15.若函数存在极值,则m的取值范围是16.用火柴棒按图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数an 与所搭三角形的个数n之间的关系式可以是三、解答题(本大题共6小题,共72分)17. 已知m∈R,复数z=+(m2+2m-3)i,当m为何值时,(1)z∈R;(2)z是纯虚数;(3)z对应的点位于复平面第二象限;18.设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).(Ⅰ)求a,b的值;(Ⅱ)讨论函数f(x)的单调性.19.设a、b∈R+且a+b=3,求证.20.已知数列{an}的前n项和Sn满足Sn=2an-2.(1)求a1,a2,a3并由此猜想an的通项公式;(2)用数学归纳法证明{an}的通项公式.21.某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式:y=+10(x-6)2,其中3<x<6,a 为常数,已知销售的价格为5元/千克时,每日可以售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大,并求出最大值.22.已知函数f(x)=ax2+ln(x+1).(1)当a=-时,求函数f(x)的单调区间;(2)若函数f(x)在区间[1,+∞)上为减函数,求实数a的取值范围;(3)当x∈[0,+∞)时,不等式f(x)-x≤0恒成立,求实数a的取值范围.。
高二第二学期期中数学试卷理科及答案

2017-2018学年度第二学期期中考试高二数学试题(理)一、选择题(每题5分,共60分)1.设复数z满足11zz-+=2i,则z =A.35-45-B.35-+45i C.35+45i D.3545-i2.已知椭圆+=1上一点P到其中一个焦点的距离为3,则点P到另一个焦点的距离为A.2B.3C.5D.7 3.已知A(2,-5,1),B(2,-2,4),C(1,-4,1),则向量AB→与AC→夹角为()A.30° B.45° C.60° D.90°4.椭圆+=1的焦距是2,则m的值是( )A.5B.3或8C.3或5D.20 5.中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是()A.x281+y272=1 B.x281+y29=1 C.x281+y245=1 D.x281+y236=16.观察式子:1+122<32,1+122+132<53,1+122+132+142<74,…,则可归纳出第n-1个式子为( )A.1+122+132+…+1n2<12n-1B.1+122+132+…+1n2<12n+1C.1+122+132+…+1n2<2n-1n D.1+122+132+…+1n2<2n2n+17.已知函数 的导函数 图象如图所示,则函数 有 A.两个极大值,一个极小值 B.两个极大值,无极小值 C.一个极大值,一个极小值 D.一个极大值,两个极小值 8.设a ≠0,a ∈R,则抛物线y =ax 2的焦点坐标为( ) A.⎝ ⎛⎭⎪⎫a 2,0B.⎝⎛⎭⎪⎫0,12aC.⎝ ⎛⎭⎪⎫a 4,0D.⎝⎛⎭⎪⎫0,14a9.三角形的面积为S=(a+b+c)·r,其中a,b,c为三角形的边长,r为三角形内切圆的半径,利用类比推理可以得出四面体的体积为 ( ) A.V=abcB.V=ShC.V= (S 1+S 2+S 3+S 4)· r(S 1,S 2,S 3,S 4分别为四面体的四个面的面积,r为四面体内切球的半径)D.V=(ab+bc+ac)·h(h为四面体的高)10.函数f (x )=x 3+ax -2在区间(1,+∞)内是增函数,则实数a 的取值范围是( )A .[3,+∞)B .[-3,+∞)C .(-3,+∞)D .(-∞,-3)11.若直线与抛物线 相交于 , 两点,则 等于 A .B .C .D .12.正三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( ) A.30°B.45°C.60°D.90°二、填空题(每题5分,共20分) 13.已知()20d f x x ⎰=8,则()202d f x x x ⎡⎤-⎣⎦⎰=______14.若双曲线11622=-m x y 的离心率2=e ,则=m ______________.15.在平面直角坐标系xOy 中,二元一次方程Ax +By =0(A ,B 不同时为0)表示过原点的直线.类似地,在空间直角坐标系Oxyz 中,三元一次方程Ax +By +Cz =0(A ,B ,C 不同时为0)表示____________________.16.已知函数f (x )=x 3+ax 2+bx +c ,x ∈[-2,2]表示过原点的曲线,且在x =±1处的切线的倾斜角均为34π,有以下命题:①f (x )的解析式为f (x )=x 3-4x ,x ∈[-2,2]. ②f (x )的极值点有且只有一个. ③f (x )的最大值与最小值之和等于零. 其中正确命题的序号为________. 三、解答题(17题10分,18—22每题12分)17.( 本小题满分10分)(1)已知斜率为1的直线l 过椭圆1422=+y x 的右焦点F 交椭圆于A 、B 两点,求弦AB 的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年重庆市万州二中高二(下)期中数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.每小题中只有一项符合题目要求)1.设i是虚数单位,则复数=()A.6+5i B.6﹣5i C.﹣6+5i D.﹣6﹣5i2.用反证法证明:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么a、b、c中至少有一个偶数时,下列假设正确的是()A.假设a、b、c都是偶数B.假设a、b、c都不是偶数C.假设a、b、c至多有一个偶数D.假设a、b、c至多有两个偶数3.已知积分,则实数k=()A.2 B.﹣2 C.1 D.﹣14.已知函数f(x)的导函数如图所示,若△ABC为锐角三角形,则下列不等式一定成立的是()A.f(sinA)>f(cosA)B.f(sinA)>f(cosB)C.f(cosA)<f(cosB)D.f(sinA)<f(cosB)5.某公司新招聘进8名员工,平均分给下属的甲、乙两个部门,其中两名英语翻译人员不能分给同一个部门,另三名电脑编程人员也不能分给同一个部门,则不同的分配方案种数是()A.18 B.24 C.36 D.726.某个自然数有关的,如果当n=k+1(n∈N*)时,该不成立,那么可推得n=k时,该不成立.现已知当n=2012时,该成立,那么,可推得()A.n=2011时,该成立B.n=2013时,该成立C.n=2011时,该不成立D.n=2013时,该不成立7.函数f(x)=﹣x3+3x在区间(a2﹣12,a)上有最小值,则实数a的取值范围是()A.(﹣1,) B.(﹣1,2)C.(﹣1,2] D.(1,4)8.记f(n)(x)为函数f(x)的n(n∈N*)阶导函数,即f(n)(x)=[f(n﹣1)(x)]′(n≥2,n ∈N*).若f(x)=cosx且集合M={m|f(m)(x)=sinx,m∈N*,m≤2013},则集合M中元素的个数为()A.1006 B.1007 C.503 D.5049.某学校组织演讲比赛,准备从甲、乙等8名学生中选派4名学生参加,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加时,他们的演讲顺序不能相邻,那么不同的演讲顺序的种数为()A.1860 B.1320 C.1140 D.102010.已知定义在(0,+∞)上的单调函数f(x),对∀x∈(0,+∞),都有f[f(x)﹣log3 x]=4,则函数g(x)=f(x﹣1)﹣f′(x﹣1)﹣3的零点所在区间是()A.(1,2)B.(2,3)C.(,1)D.(0,)11.已知函数f(x)的导函数为f′(x),满足xf′(x)+2f(x)=,且f(1)=2,则函数f (x)的最大值为()A.B.C.D.2e12.设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在两个整数x1,x2,使得f(x1),f (x2)都小于0,则a的取值范围是()A.[,)B.[﹣,)C.[,1)D.[,1)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中对应题号后的横线上.13.复数的虚部为.14.如图所示的数阵叫“莱布尼兹调和三角形”,他们是由整数的倒数组成的,第n行有n个数且两端的数均为,每个数是它下一行左右相邻两数的和,如:…,则第n(n≥3)行第3个数字是.15.如图,用五种不同的颜色给图中的A,B,C,D,E,F六个不同的点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,则不同的涂色方法共有种.16.设f(x)=x2lnx,由函数乘积的求导法则,(x2lnx)′=2xlnx+x,等式两边同时求区间[1,e]上的定积分,有:.移项得:.这种求定积分的方法叫做分部积分法,请你仿照上面的方法计算下面的定积分:=.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知p:“复数z=(λ2﹣1)+(λ2﹣2λ﹣3)i,(λ∈R)是实数”,q:“在复平面C内,复数z=λ+(λ2+λ﹣6)i,(λ∈R)所对应的点在第三象限”.(1)若p是真,求λ的值;(2)若“¬p∧q”是真,求λ的取值范围.18.一个口袋内有4个不同的红球,6个不同的白球,(1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?19.已知函数f(x)=x3﹣2ax2+bx+c,(1)当c=0时,f(x)在点P(1,3)处的切线平行于直线y=x+2,求a,b的值;(2)若f(x)在点A(﹣1,8),B(3,﹣24)处有极值,求f(x)的表达式.=+n+1(n∈N*,n≥2),20.在数列{a n}中,a1=6,且a n﹣a n﹣1(1)求a2,a3,a4的值;(2)猜测数列{a n}的通项公式,并用数学归纳法证明.21.已知函数f(x)=﹣ax.(Ⅰ)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)已知f′(x)表示f(x)的导数,若∃x1,x2∈[e,e2](e为自然对数的底数),使f(x1)﹣f′(x2)≤a成立,求实数a的取值范围.22.已知函数f(x)=x﹣ln(x+a)(a是常数).(1)求函数f(x)的单调区间;(2)当y=f(x)在x=1处取得极值时,若关于x的方程f(x)+2x=x2+b在[,2]上恰有两个不相等的实数根,求实数b的取值范围;(3)求证:当n≥2,n∈N*时,(1+)(1+)…(1+)<e.2015-2016学年重庆市万州二中高二(下)期中数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.每小题中只有一项符合题目要求)1.设i是虚数单位,则复数=()A.6+5i B.6﹣5i C.﹣6+5i D.﹣6﹣5i【考点】复数代数形式的乘除运算.【分析】把的分子分母同时乘以i,得到,利用虚数单位的性质,得,由此能求出结果.【解答】解:===﹣6﹣5i.故选D.2.用反证法证明:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么a、b、c中至少有一个偶数时,下列假设正确的是()A.假设a、b、c都是偶数B.假设a、b、c都不是偶数C.假设a、b、c至多有一个偶数D.假设a、b、c至多有两个偶数【考点】反证法与放缩法.【分析】本题考查反证法的概念,逻辑用语,否与的否定的概念,逻辑词语的否定.根据反证法的步骤,假设是对原结论的否定,故只须对“b、c中至少有一个偶数”写出否定即可.【解答】解:根据反证法的步骤,假设是对原结论的否定“至少有一个”的否定“都不是”.即假设正确的是:假设a、b、c都不是偶数故选:B.3.已知积分,则实数k=()A.2 B.﹣2 C.1 D.﹣1【考点】微积分基本定理.【分析】先找出已知被积函数的一个原函数,然后结合积分基本定理即可求解【解答】解:∵,∴=k∴∴k=2故选A4.已知函数f(x)的导函数如图所示,若△ABC为锐角三角形,则下列不等式一定成立的是()A.f(sinA)>f(cosA)B.f(sinA)>f(cosB)C.f(cosA)<f(cosB)D.f(sinA)<f(cosB)【考点】函数的单调性与导数的关系.【分析】根据函数单调性和导数之间的关系,结合三角函数值的取值范围即可得到结论.【解答】解:若△ABC为锐角三角形,则0<A<,0<B<,0<C<,即0<π﹣A﹣B<,即A+B>,∴B>﹣A,∴0<﹣A<B<,即cos(﹣A)>cosB,∴0<cosB<sinA<1,由导函数图象可知当0<x<1时,f′(x)<0,即f(x)在(0,1)上单调递减,∴f(sinA)<f(cosB),故选:D.5.某公司新招聘进8名员工,平均分给下属的甲、乙两个部门,其中两名英语翻译人员不能分给同一个部门,另三名电脑编程人员也不能分给同一个部门,则不同的分配方案种数是()A.18 B.24 C.36 D.72【考点】计数原理的应用.【分析】分类讨论:①甲部门要2个2电脑编程人员和一个翻译人员;②甲部门要1个电脑编程人员和1个翻译人员.分别求得这2个方案的方法数,再利用分类计数原理,可得结论.【解答】解:由题意可得,有2种分配方案:①甲部门要2个电脑编程人员,则有3种情况;翻译人员的分配有2种可能;再从剩下的3个人中选一人,有3种方法.根据分步计数原理,共有3×2×3=18种分配方案.②甲部门要1个电脑编程人员,则方法有3种;翻译人员的分配方法有2种;再从剩下的3个人种选2个人,方法有3种,共3×2×3=18种分配方案.由分类计数原理,可得不同的分配方案共有18+18=36种,故选:C.6.某个自然数有关的,如果当n=k+1(n∈N*)时,该不成立,那么可推得n=k时,该不成立.现已知当n=2012时,该成立,那么,可推得()A.n=2011时,该成立B.n=2013时,该成立C.n=2011时,该不成立D.n=2013时,该不成立【考点】反证法的应用;四种的真假关系;进行简单的演绎推理;反证法.【分析】根据条件关系,利用反证法进行推理即可.【解答】解:利用反证法证明,若当n=2013时,该不成立,则当n=2012时,该不成立,与已知当n=2012时,该成立矛盾,故假设不成立,则n=2013时,该成立,故选:B7.函数f(x)=﹣x3+3x在区间(a2﹣12,a)上有最小值,则实数a的取值范围是()A.(﹣1,) B.(﹣1,2)C.(﹣1,2] D.(1,4)【考点】利用导数求闭区间上函数的最值.【分析】求函数f(x)=﹣x3+3x的导数,研究其最小值取到的位置,由于函数在区间(a2﹣12,a)上有最小值,故最小值点的横坐标是集合(a2﹣12,a)的元素,由此可以得到关于参数a的等式,解之求得实数a的取值范围【解答】解:解:由题f'(x)=3﹣3x2,令f'(x)>0解得﹣1<x<1;令f'(x)<0解得x<﹣1或x>1由此得函数在(﹣∞,﹣1)上是减函数,在(﹣1,1)上是增函数,在(1,+∞)上是减函数,∵f(0)=0,∴函数f(x)=﹣x3+3x在R上的图象大体如下:故函数在x=﹣1处取到极小值﹣2,判断知此极小值必是区间(a2﹣12,a)上的最小值∴a2﹣12<﹣1<a,解得﹣1<a<,又当x=2时,f(2)=﹣2,故有a≤2综上知a∈(﹣1,2]故选:C.8.记f(n)(x)为函数f(x)的n(n∈N*)阶导函数,即f(n)(x)=[f(n﹣1)(x)]′(n≥2,n ∈N*).若f(x)=cosx且集合M={m|f(m)(x)=sinx,m∈N*,m≤2013},则集合M中元素的个数为()A.1006 B.1007 C.503 D.504【考点】导数的运算.【分析】利用记n阶导函数定义,判断其周期性,问题得以解决.【解答】解:∵[f(cosx)]′=﹣sinx,[f(﹣sinx)]′=﹣cosx,[f(﹣cosx)]′=sinx,[f(sinx)]′=cosx,∴周期是4,∴2013÷4=503余1,∴集合M中元素的个数为503个.故选C.9.某学校组织演讲比赛,准备从甲、乙等8名学生中选派4名学生参加,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加时,他们的演讲顺序不能相邻,那么不同的演讲顺序的种数为()A.1860 B.1320 C.1140 D.1020【考点】排列、组合的实际应用.【分析】分2种情况讨论,①只有甲乙其中一人参加,②甲乙两人都参加,由排列、组合计算可得其符合条件的情况数目,由加法原理计算可得答案.【解答】解:根据题意,分2种情况讨论,若只有甲乙其中一人参加,有C21•C63•A44=960种情况;若甲乙两人都参加,有C22•C62•A44=360种情况,其中甲乙相邻的有C22•C62•A33•A22=180种情况;则不同的发言顺序种数960+360﹣180=1140种.故选C.10.已知定义在(0,+∞)上的单调函数f(x),对∀x∈(0,+∞),都有f[f(x)﹣log3 x]=4,则函数g(x)=f(x﹣1)﹣f′(x﹣1)﹣3的零点所在区间是()A.(1,2)B.(2,3)C.(,1)D.(0,)【考点】导数的运算;函数零点的判定定理.【分析】由∀x∈(0,+∞),都有f[f(x)﹣log3 x]=4,可设f(x)﹣log3 x=c(c为常数),求出g(x)的解析式,并说明g(x)的单调性,计算g(2),g(3),确定符号,由零点存在定理即可得到答案.【解答】解:∵对∀x∈(0,+∞),都有f[f(x)﹣log3 x]=4,∴可设f(x)﹣log3 x=c(c为常数),则f(x)=log3 x+c,∴f[f(x)﹣log3 x]=f(c)=log3c+c=4,∴c=3,∴f(x)=log3 x+3,∴g(x)=f(x﹣1)﹣f′(x﹣1)﹣3=log3(x﹣1)﹣log3e在(1,+∞)上为增函数,g(2)=﹣log3e<0,g(3)=log32﹣log3e=log3>0,由零点存在定理得,函数g(x)的零点所在的区间为(2,3).故选B.11.已知函数f(x)的导函数为f′(x),满足xf′(x)+2f(x)=,且f(1)=2,则函数f(x)的最大值为()A.B.C.D.2e【考点】利用导数求闭区间上函数的最值.【分析】由xf′(x)+2f(x)=,变形为(x2f(x))′=(lnx)′,可得f(x)=,由于f(1)=2,可得C=2.f(x)=,(x>0).利用导数研究其单调性极值与最值即可得出.【解答】解:由xf′(x)+2f(x)=,变形为(x2f(x))′=(lnx)′,∴f(x)=,∵f(1)=2,∴C=2.∴f(x)=,(x>0).f′(x)=,当x>时,f′(x)<0,此时函数f(x)单调递减;当0<x<时,f′(x)>0,此时函数f(x)单调递增.∴当x=时,函数f(x)取得最大值为f()=.故选:A.12.设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在两个整数x1,x2,使得f(x1),f (x2)都小于0,则a的取值范围是()A.[,)B.[﹣,)C.[,1)D.[,1)【考点】利用导数求闭区间上函数的最值.【分析】设g(x)=e x(2x﹣1),y=ax﹣a,则存在两个整数x1,x2,使得g(x)在直线y=ax ﹣a的下方,由此利用导数性质能求出a的取值范围.【解答】解:函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,设g(x)=e x(2x﹣1),y=ax﹣a,∵存在两个整数x1,x2,使得f(x1),f(x2)都小于0,∴存在两个整数x1,x2,使得g(x)在直线y=ax﹣a的下方,∵g′(x)=e x(2x+1),∴当x<﹣时,g′(x)<0,∴当x=﹣时,[g(x)]min=g(﹣)=﹣2.当x=0时,g(0)=﹣1,g(1)=e>0,直线y=ax﹣a恒过(1,0),斜率为a,故﹣a>g(0)=﹣1,且g(﹣1)=﹣3e﹣1<﹣a﹣a,解得a<.g(﹣2)≥﹣2a﹣a,解得a≥,∴a的取值范围是[,).故选:A.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中对应题号后的横线上.13.复数的虚部为1.【考点】复数代数形式的乘除运算;复数的基本概念.【分析】利用复数的乘除运算将复数转化为代数形式,即可得出虚部.【解答】解:==1+i,∴z的虚部为1.故答案为:1.14.如图所示的数阵叫“莱布尼兹调和三角形”,他们是由整数的倒数组成的,第n行有n个数且两端的数均为,每个数是它下一行左右相邻两数的和,如:…,则第n(n≥3)行第3个数字是.【考点】归纳推理.【分析】根据“莱布尼兹调和三角形”的特征,每个数是它下一个行左右相邻两数的和,得出将杨晖三角形中的每一个数C n r都换成分数,就得到一个如图所示的分数三角形,最后即可求出第n(n≥3)行第3个数字.【解答】解:将杨晖三角形中的每一个数C n r都换成分数,就得到一个如图所示的分数三角形,即为莱布尼兹三角形.2,∵杨晖三角形中第n(n≥3)行第3个数字是C n﹣1则“莱布尼兹调和三角形”第n(n≥3)行第3个数字是=.故答案为:.15.如图,用五种不同的颜色给图中的A,B,C,D,E,F六个不同的点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,则不同的涂色方法共有1920种.【考点】排列、组合及简单计数问题.【分析】分两步来进行,先涂A、B、C,再涂D、E、F.然后分①若5种颜色都用上;②若5种颜色只用4种;③若5种颜色只用3种这三种情况,分别求得结果,再相加,即得所求.【解答】解:分两步来进行,先涂A、B、C,再涂D、E、F.①若5种颜色都用上,先涂A、B、C,方法有A53种;再涂D、E、F中的两个点,方法有A32种,最后剩余的一个点只有2种涂法,故此时方法共有A53•A32•2=720种.②若5种颜色只用4种,首先选出4种颜色,方法有C54种;先涂A、B、C,方法有A43种;再涂D、E、F中的1个点,方法有3种,最后剩余的两个点只有3种涂法,故此时方法共有C54•A43•3•3=1080种.③若5种颜色只用3种,首先选出3种颜色,方法有C53种;先涂A、B、C,方法有A33种;再涂D、E、F,方法有2种,故此时方法共有C53•A33•2=120 种.综上可得,不同涂色方案共有720+1080+120=1920种,故答案为:1920.16.设f(x)=x2lnx,由函数乘积的求导法则,(x2lnx)′=2xlnx+x,等式两边同时求区间[1,e]上的定积分,有:.移项得:.这种求定积分的方法叫做分部积分法,请你仿照上面的方法计算下面的定积分:=1.【考点】定积分.【分析】由分部积分法即可求出.【解答】解:=xlnx|﹣xd(lnx)=xlnx|﹣dx=e﹣x|=e﹣(e﹣1)=1,故答案为:1.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知p:“复数z=(λ2﹣1)+(λ2﹣2λ﹣3)i,(λ∈R)是实数”,q:“在复平面C内,复数z=λ+(λ2+λ﹣6)i,(λ∈R)所对应的点在第三象限”.(1)若p是真,求λ的值;(2)若“¬p∧q”是真,求λ的取值范围.【考点】复合的真假;复数的代数表示法及其几何意义.【分析】(1)根据复数的概念,即可求λ的值;(2)根据¬p∧q是真,得到p,q的真假,即可求λ的取值范围.【解答】解:(1)若p是真,即复数z=(λ2﹣1)+(λ2﹣2λ﹣3)i,(λ∈R)是实数.则λ2﹣2λ﹣3=0,解得λ=3或λ=﹣1.(2)若复数z=λ+(λ2+λ﹣6)i,(λ∈R)所对应的点在第三象限,则,即,解得﹣3<λ<0,若¬p∧q为真,则¬p,q都为真,即p是假,q是真.即¬p:λ≠3且λ≠﹣1,则,解得﹣3<λ<﹣1或﹣1<λ<0.18.一个口袋内有4个不同的红球,6个不同的白球,(1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?【考点】分类加法计数原理.【分析】(1)由题意知本题是一个分类计数问题,取4个红球,没有白球,有C44种,取3个红球1个白球,有C43C61种;取2个红球2个白球,有C42C62,根据加法原理得到结果.(2)设出取到白球和红球的个数,根据两个未知数的和是5,列出方程,根据分数不少于7,列出不等式,根据这是两个整数,列举出结果.【解答】解(1)由题意知本题是一个分类计数问题,将取出4个球分成三类情况取4个红球,没有白球,有C44种取3个红球1个白球,有C43C61种;取2个红球2个白球,有C42C62,∴C44+C43C61+C42C62=115种(2)设取x个红球,y个白球,则∴∴符合题意的取法种数有C42C63+C43C62+C44C61=186种19.已知函数f(x)=x3﹣2ax2+bx+c,(1)当c=0时,f(x)在点P(1,3)处的切线平行于直线y=x+2,求a,b的值;(2)若f(x)在点A(﹣1,8),B(3,﹣24)处有极值,求f(x)的表达式.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的极值.【分析】(1)求出原函数的导函数,利用f(1)=3,f′(1)=1联立方程组求解a,b的值;(2)由f(x)在点A(﹣1,8),B(3,﹣24)处有极值,得到f′(﹣1)=f′(3)=0,结合f (1)=8求解a,b,c的值,验证f(3)=﹣24得答案.【解答】解:(1)当c=0时,f(x)=x3﹣2ax2+bx.∴f′(x)=3x2﹣4ax+b.依题意可得f(1)=3,f′(1)=1,即,解得;(2)由f(x)=x3﹣2ax2+bx+c,得f′(x)=3x2﹣4ax+b.令,解得,由f(﹣1)=﹣1﹣2a﹣b+c=8,,可得c=3.∴f(x)=x3﹣3x2﹣9x+3.检验知f(3)=33﹣3×32﹣9×3+3=﹣24符合题意.∴f(x)=x3﹣3x2﹣9x+3.=+n+1(n∈N*,n≥2),20.在数列{a n}中,a1=6,且a n﹣a n﹣1(1)求a2,a3,a4的值;(2)猜测数列{a n}的通项公式,并用数学归纳法证明.【考点】数学归纳法;数列递推式.【分析】(1)分别取n=2,3,4即可得出;(2)由(1)猜想a n=(n+1)(n+2),再利用数学归纳法证明即可.【解答】解:(1)n=2时,a2﹣a1=+2+1,∴a2=12.同理可得a3=20,a4=30.(2)猜测a n=(n+1)(n+2).下用数学归纳法证明:①当n=1,2,3,4时,显然成立;②假设当n=k(k≥4,k∈N*)时成立,即有a k=(k+1)(k+2),则当n=k+1时,=+n+1,得+n+1,由且a n﹣a n﹣1故==(k+2)(k+3),故n=k+1时等式成立;由①②可知:a n=(n+1)(n+2)对一切n∈N*均成立.21.已知函数f(x)=﹣ax.(Ⅰ)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)已知f′(x)表示f(x)的导数,若∃x1,x2∈[e,e2](e为自然对数的底数),使f(x1)﹣f′(x2)≤a成立,求实数a的取值范围.【考点】导数在最大值、最小值问题中的应用.【分析】(Ⅰ)由题意得,a≥=h(x)在(1,+∞)上恒成立,即a≥h max(x)即可,根据配方法易得h max(x)=,即得结论;(Ⅱ)通过分析,问题等价于:“当x∈[e,e2]时,有f min(x)≤”,结合(Ⅰ)及f′(x),分①a≥、②a≤0、③0<a<三种情况讨论即可.【解答】解:(Ⅰ)∵f(x)在(1,+∞)递减,∴f′(x)=﹣a≤0在(1,+∞)上恒成立,∴x∈(1,+∞)时,f′(x)max≤0,∵f′(x)=﹣(﹣)2+﹣a,∴当=,即x=e2时,f′(x)max=﹣a,∴﹣a≤0,于是a≥,故a的最小值为.(Ⅱ)“若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a”等价于“当x∈[e,e2]时,有f min(x)≤f′max(x)+a”,由(2)得,当x∈[e,e2]时,f′max(x)=﹣a,则f′max(x)+a=,故问题等价于:“当x∈[e,e2]时,有f min(x)≤”,∵f′(x)=﹣a,由(Ⅰ)知∈[0,],①当a≥时,f′(x)≤0在[e,e2]上恒成立,因此f(x)在[e,e2]上为减函数,则f min(x)=f(e2)=﹣ae2≤,故a≥﹣;②当a≤0时,f′(x)≥0在[e,e2]上恒成立,因此f(x)在[e,e2]上为增函数,则f min(x)=f(e)=a﹣ae≥e>,不合题意;③当0<a<时,由于f′(x)=﹣()2+﹣a=﹣(﹣)2+﹣a在[e,e2]上为增函数,故f′(x)的值域为[f′(e),f′(e2)],即[﹣a,﹣a].由f′(x)的单调性和值域知,存在唯一x0∈(e,e2),使f′(x0)=0,且满足:当x∈(e,x0),时,f′(x)<0,此时f(x)为减函数;当x∈(x0,e2),时,f′(x)>0,此时f(x)为增函数;所以,f min(x)=f(x0)=﹣ax0≤,x0∈(e,e2),所以,a≥﹣>﹣>﹣=与0<a<矛盾,不合题意.综上所述,得a≥﹣.22.已知函数f(x)=x﹣ln(x+a)(a是常数).(1)求函数f(x)的单调区间;(2)当y=f(x)在x=1处取得极值时,若关于x的方程f(x)+2x=x2+b在[,2]上恰有两个不相等的实数根,求实数b的取值范围;(3)求证:当n≥2,n∈N*时,(1+)(1+)…(1+)<e.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(1)函数f(x)=x﹣ln(x+a),定义域为{x|x>﹣a}.=.对a分类讨论即可得出;(2)函数y=f(x)在x=1处取得极值,可得f′(1)=0,解得a=0.关于x的方程f(x)+2x=x2+b化为x2﹣3x+lnx+b=0.令g(x)=x2﹣3x+lnx+b,(x∈[,2]).利用导数研究其单调性极值与最值,关于x的方程f(x)+2x=x2+b在[,2]上恰有两个不相等的实数根,必须满足,解得即可.(3)由(1)可知:a=1,函数f(x)在(﹣1,+∞)上单调递增,可得:当x≥0时,x>ln(1+x).令x=(n∈N*),则.利用“累加求和”、对数的运算性质、放缩、“裂项求和”即可得出.【解答】解:(1)函数f(x)=x﹣ln(x+a),定义域为{x|x>﹣a}.=.当a≥1时,f′(x)>0,函数f(x)在(﹣a,+∞)上单调递增;当a<1时,令f′(x)>0,解得x>1﹣a,此时函数f(x)在(1﹣a,+∞)上单调递增;令f′(x)<0,解得﹣a<x<1﹣a,此时函数f(x)在(﹣a,1﹣a)上单调递减.(2)∵函数y=f(x)在x=1处取得极值,∴f′(1)=0,解得a=0.关于x的方程f(x)+2x=x2+b化为x2﹣3x+lnx+b=0.令g(x)=x2﹣3x+lnx+b,(x∈[,2]).==,令g′(x)=0,解得x=或1.令g′(x)>0,解得1<x≤2,此时函数g(x)单调递增;令g′(x)<0,解得x<1,此时函数g(x)单调递减.∵关于x 的方程f (x )+2x=x 2+b 在[,2]上恰有两个不相等的实数根,则,解得.∴实数b 的取值范围是;(3)由(1)可知:a=1,函数f (x )在(﹣1,+∞)上单调递增, ∴当x ≥0时,x >ln (1+x ).令x=(n ∈N *).则.依次取n=2,3,…,n .累加求和可得: ++…+<…+.当n ≥2时,=,依次取n=2,3,…,n .则+…+<+…+=.∴++…+<1﹣<1.∴(1+)(1+) (1))<e .2016年10月17日。