2012年中考数学一轮复习考点1: 有理数
2012年数学中考第一轮复习:数与代数考点整理

2012年中考数学第一轮总复习讲义第1-10课时 数与代数(一)考点整理:1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数实数与数轴上的点是一一对应的。
数轴上即有有理数点,又有无理数点。
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 注:2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-.5.实数比大小:(1)利用数轴:数轴上的两个数,右边的数总比左边的数大;(2)利用绝对值:正数>0>负数,正数>负数,两个负数,绝对值大的反而小;(5)平方法:先平方再作差(6)倒数法{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数 负无理数0,0,0a b a b a b a b a b a b a b ->⇔>-=⇔=-<⇔<(3)作差比较法:设、是两个任意实数,则41,11m m m m n m n m n n n n >⇔>=⇔=<⇔<()作商比较法:设m 、n 是两个正实数,则6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1; a 1也可表示为a -1,若ab=1⇔ a 、b 互为倒数;若ab =-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:同号为正,异号为负,并把绝对值相除。
中考数学 第1章 有理数复习题 试题

卜人入州八九几市潮王学校第1篇代数篇第1章有理数1.1有理数的概念★1.1.1 a 、b 在数轴上的位置如下列图,那么在a +b ,b -2a ,a b -,b -a 中负数的个数是().(A )1(B )2(C )3(D )4★1.1.2设有理数a 、b 、c 在数轴上的对应点如下列图,那么代数式b a -+a c -+c b -=____. ★1.1.3a 、b 是有理数,有以下三式: ①a b +<a b -;②a 2+b 2+a +b +1<0;③a 2+b 2-2a -2b +1<0.其中一定不成立的是(填写上序号)★1.1.4在a 、b 、c 三个数中,有如下三个结论:甲:假设至少有两个数互为相反数,那么a +b +c =0;乙:假设至少有两个数互为相反数,那么(a +b )2+(b +c )2+(c -0)2=0; 丙:假设至少有两个数互为相反数,那么(a +b )(b +c )(c +0)=0.其中正确结论的个数是().(A )0(B )1(C )2(D )3★1.1.5数轴上有A 和B 两点,A 、B 之间的间隔为1,点A 与原点O 的间隔为3,那么所有满足条件的点B 与原点O 的间隔之和等于★★1.1.62()1a b -++(a +b -2)2=1,x +ay =1,bx -y =3,那么2(x )1y -++(x +y -2)2 =★★1.1.7求2x --10x +的最小值.★★1.1.8求1x -+2x -+3x -的最小值.★★1.1.9abcde 是一个五位数,其中a ,b ,c ,d ,e 为阿拉伯数字,且a <b <c <d ,那么a b -+b c -+c d -+d e -的最大值是★★1.1.10设x 、y 、a 都是实数,并且x =1-a ,y =(1-a )(a -1-a 2),试求x +y +a 3+1的值. ★★1.1.11数轴上有一动点a ,从原点出发沿着数轴挪动,每次只允许挪动1个单位.经过10次挪动,a 点挪动到间隔原点6个单位处,问:a 点的挪动方法有多少种?★★1.1.12圆周上有和为94的n 个整数(n >3),每个数都等于它后面(按顺时针方向)的两个数的差的绝对值.问:n 的所有可能值是多少?★★★1.1.13如下列图,数轴上标有2n +1个点,它们对应的整数是-n ,-(n -1),…,-2,-1,0,1,2,…,(n -1),n ,它们称为整点,为了确保从这些整点中可以取出2021个,使其中任意两个点之间的间隔不等于4,问:n 的最小值是多少1.2有理数的大小比较★1.2.1假设有理数a 、b 在数轴上的位置如下列图,那么以下各式中错误的选项是().(A )-ab <2(B )1b >-1a (C )a +b <-12(D )a b<一1 ★1.2.2P =999999,Q =990119,那么P 、Q 的大小关系是(). (A )P >Q (B )P =Q (C )P <Q (D )无法确定★1.2.3假设实数a 、b 、c 满足abc >0,a +b +c =0,a <-b <c ,那么a 、b 、c 的大小为().(A )a >0,b >0,c >0(B )a >0,b <0,c >0(C )a <0,b <0,c >0(D )a <0,b >0,c <0★1.2.4有四个数:a =3.852.57-,b =15341023-,c =-487325,d =-267178,它们的大小关系是(). A .d <c <b <aB .d <b <c <aC .b <c <a <dD .d <a <c <b★1.2.5假设a = 3.143.13-÷3.12,b =2.142.13-÷2.12,c =1.141.13÷(-1.12),那么a 、b 、c 的大小顺序是().(A)a>b>c(B)a>c>b(C)b>c>a(D)c>b>a★★1.2.6比较2234和5100的大小,并说明理由.1.3有理数的运算★1.3.1以下说法中,正确的个数是().(1)n个有理数相乘,当因数有奇数个时,积为负;(2)n个有理数相乘,当正因数有奇数个时,积为负;(3)n个有理数相乘,当负因数有奇数个时,积为负;(4)n个有理数相乘,当积为负数时,负因数有奇数个.(A)1(B)2(C)3(D)4★1.3.2计算:-4012×(114+109144)÷(-0.5)÷34×43-13×[(-2)2-22]=____.★1.3.3计算:(-313)2-413×(-6.5)+(-2)4÷(-6).★1.3.4计算:(-2)5÷(-6)-417×(-8.5)-(-313)2.★1.3.5设a=1÷2÷3÷4,b=1÷(2÷3÷4),c=1÷(2÷3)÷4,d=1÷2÷(3÷4),那么(b÷a)÷(c÷d)=____.★1.3.6某地区2021年2月21-28日的平均气温为-1℃,2月22-29日的平均气温为-0.5℃,2月21日的平均气温为-3C,那么2月29日的平均气温为.★★1.3.7计算:(1+111+113+117)×(111+113+117+119)-(1+111+113+117+119)×(111+113+117)=().(A)111(B)113(C)117(D)119★1.3.8计算:1+2+3+ (100)★1.3.9计算:-1+3-5+7-9+11-…-1993+1995-1997=().(A)999(B)-998(C)998(D)-999★1.3.10计算:-1-(-1)1-(-1)2-(-1)3-…-(-1)99-(-1)100.★★1.3.11计算:(12+32+52+…+992)-(22+42+62+…+1002) ★★1.3.12代数和-1×2021+2×2021-3×2021+4×2021+…-1003×1006+1004×1005的个位数字是 ★★1.3.13计算:11+(21-12)+(31-22+13)+(41-32+23-14)+…+(91-82+73-64+…+19) ★★1.3.14计算:(13-712+920-1130+1342-1556)×23×21. ★1.3.15计算:112⨯+123⨯+134⨯+…+120082009⨯. ★1.3.16求证:113⨯+124⨯+135⨯+146⨯+…+1(n 1)n +=34-232(n 1)(n 2)n +++ ★★1.3.17计算:1+112++1123+++…+11232010++++ ★★1.3.18计算:1-11(12)⨯+-1(12)(123)+⨯++-1(123)(1234)++⨯+++ ★★1.3.19计算:2-22-23-24-…-218-219+220=____. ★★1.3.20S =12-24+38-416+…+(-1)k -12k k +…+200520052-200620062,那么小于S 的最大整数是____. ★★1.3.21计算:1+3+32+33+…+32021.★★★1.3.22计算:12+22+…+n 2. ★★1.3.23比较12+24+38+416+…+2n n 与2的大小. ★★1.3.24计算:(1-2111)×(1-2112)×(1-2113)×…×(1-211994)=. ★★1.3.25m ,n 都是正整数,并且A =(1-12)×(1+12)×(1-13)×(1+13)×…×(1-1m )×(1+1m ), B =(1-12)×(1+12)×(1-13)×(1+13)×…×(1-1n )×(1+1n) (1)证明:A =12m m +,B =12n n+ (2)假设A -B =126,求m 和n 的值. ★★1.3.26算式(1+113⨯)×(1+124⨯)×(1+135⨯)×(1+146⨯)×…×(1+198100⨯)×(1+199101⨯)的整数局部为()(A )1(B )2(C )3(D )4★1.3.27按一定规律排列的一串数11,-13,23,-33,15,-25,35,-45,55,123,,,777--…中,第98个数是____________________. 1.3.28运算*按下表定义,例如3*2=1,那么(2*4)*(1*3)=()A .1B .2C .3D .41.3.29现定义两种运算“⊕〞,“⊗〞,定义,对于任意两个整数a 、b ,1a b a b ⊕=+-,1a b ab ⊗=-, 求4[(68)(35)]⊗⊕⊕⊗.。
初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习

在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式:
(1)仸何一个实数 a 的绝对值是非负数,即| a |≥0; (2)仸何一个实数 a 的平方是非负数,即 a2 ≥0; (3)仸何非负数的算术平方根是非负数,即 a 0 ( a 0 ).
非负数具有以下性质: (1)非负数有最小值零; (2)有限个非负数乊和仍是非负数; (3)几个非负数乊和等于 0,则每个非负数都等于 0. 4.实数的运算
a a (a 0, b 0) bb
②.加减法
将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数丌变,
即合并同类二次根式.
【典例】
1.计算:5 +
﹣×+ ÷.
【答案】 【解析】解:原式= + ﹣
+3 ÷
=2 ﹣1+3
=2 +2.
x xy xy y
2.若 x 0 ,化简
注:单独一个字母戒一个数也是代数式.
2.代数式的分类:
3.代数式的书写规则: (1)数字不字母相乘戒字母不字母相乘,通常把乘号写作“ ”戒省略丌写,字母乊间的
顺序可以交换,但一般按字母表中的先后顺序写.数字应在字母乊前.如: 3b 丌要写成 b3 (2)在代数式中出现除法运算时,一般都变成分数和乘法来计算.如: 2a b 写成 2a
x
2
0
即
x
1 且x 2
2
.
【难度】易
【结束】
2.若
,则 ( )
A. b>3B. b<3C. b≥3D. b≤3
【答案】D.
【解析】
3 b = 3 b ,所以 3 b ≥0,即 b 3 .
2012年长沙市中考数学总复习 专题一 数与式课件(全)

根式
二次根式 整式的概念
单项式、多项式 整式的加减 整式的乘除 因式分解的意义 因式分解的方法 分式的约分、通分
合并同类项 去括号、添括号法则
幂的运算性质 乘法公式
代数式 整式
整式的运算 因式分解 分式的有关概念
提公因式法
公式法(不 超过两次)
互 逆
分式
分式的基本性质 分式的运算
分式的加、减、乘、除运算
19 28 19 14 19 1 19 9 19 9 作商法: 9 28 9 18 28 14 28 14 14 19 9 9 2 19 19 2 9 2 . , , 即 中间数法: 14 3 28 28 3 14 3 28 14
19 9 28 14
(4)二次根式的意义及性质
(5)二次根式的运算
5 ★当x取何值时,分式 x 4 有意义?
★
当x取何值时, 二次根式 2 x 有意义?
2
x 4 ★ ★当x取何值时,分式 有意义?分 2 x 4x 4 式值为零?
★ ★ ★化简:
a 6a 9 | a 4 |,
2
其中
分析:
(3x2+2x-1)-(x2+5x-3) =3x2+2x-1-x2-5x+3
=2x2-3x+2 3 2 7 2( x ) 0 4 8 ∴3x2+2x-1 > x2+5x-3
第四课时:分式与二次根式
落实知识要点 (1)分式的意义及分式的基本性质 (2)最简分式、最简公分母、约分、通分 (3)分式的混合运算
强调数的意义,降低计算的难度,增加了估
算,加强对较大的数字信息作出合理解释和
第1章有理数

2012年全国各地中考数学试题分类解析汇编第1章有理数一、选择题1.(2012福州)3的相反数是A .-3B .13C .3D .-13考点:相反数. 专题:存在型.分析:根据相反数的定义进行解答.解答:解:由相反数的定义可知,3的相反数是-3.故选A .点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.(2012福州)今年参观“5·18”海交会的总人数约为489000人,将489000用科学记数法表示为A .48.9×104B .4.89×105C .4.89×104D .0.489×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答:解:489000=4.89×105.故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3、(2012•广州)实数3的倒数是( ) A .﹣ B . C .﹣3 D .3 考点: 实数的性质。
专题: 常规题型。
分析: 根据乘积是1的两个数互为倒数解答. 解答:解:∵3×=1,∴3的倒数是.故选B.点评:本题考查了实数的性质,熟记倒数的定义是解题的关键.4. (2012广东湛江)2的倒数是()A.2 B.﹣2 C. D.﹣解析::∵2×=1,∴2的倒数是.故选C.5. (2012广东湛江)国家发改委已于2012年5月24日核准广东湛江钢铁基地项目,项目由宝钢湛江钢铁有限公司投资建设,预计投产后年产10200000吨钢铁,数据10200000用科学记数法表示为()A.102×105 B.10.2×106 C.1.02×106 D.1.02×107解析:将10200000用科学记数法表示为:1.02×107.故选:D.6.(2012广东)﹣5的绝对值是()A. 5 B.﹣5 C.D.﹣考点:绝对值。
2012年重庆市中考数学知识点总复习以及大题分解

试卷结构1、内容结构与比例:数与代数 50% 空间与图形 35% 统计与概率 15%二、一、有理数1、有理数有理数的意义,会比较有理数的大小2、借助数轴理解相反数绝对值的意义,会求相反数与绝对值3、掌握有理数的加、减、乘、除、乘方以及简单的混合运算4、运用有理数运算律简化运算,并解决简单问题二、实数1、了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根2、了解开方与乘方互为逆运算,知道实数与数轴上的点一一对应3、用有理数估计一个无理数的大致范围4、了解近似数的概念并会进行近似数的运算5、了解二次根式的概念及其加减乘除运算法则,会用它们进行有关的实数的简单四则运算(不要求分母有理化)三、代数式1、能分析简单问题的数量关系,并用代数式表示2、会求代数式的值,能根据简单的实际问题,探索所需的公式,并会进行计算四、整式与分式1、了解整数指数幂的意义和基本性质,会用科学计数法表示数2、了解正式的概念,会进行简单的正式加减运算,会进行简单的整式乘法运算3、会推导乘法公式:(a+b)(a—b)=a2-b2 (a+b)2=a2+2ab+b2,并能进行简单计算4、会提公因式、分式法进行因式分解5、了解分式的概念,会运用分式的基本性质进行约分和通分,会进行简单的分式加减乘除运算1、能够用等式表示具体问题中的数量关系2、用观察、画图等的手段估计方程解的过程3、会解一元一次方程、二元一次方程组、可化为一元一次方程的分式方程4、理解配方法5、根据具体问题实际意义,检验结果是否合理6、能用不等式表示具体问题中的大小关系7、会解简单的一元一次方程不等式(不等式组),并能在数轴上表示出解集8、能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的实际问题1、了解函数的概念和3中表示方法2、结合图像,对简单实际问题中的函数关系进行分析3、能确定自变量的取值范围,并求出函数值4、结核函数关系的分析,尝试对变量的变化规律进行初步预测5、根据已知条件确定函数的表达式6、会画一次函数的图像并理解kx+b=y(k不等于0)的性质7、理解正比例函数8、用一次函数结局实际问题9、会用描点法画出二次函数的图像,并从图像上认识二次函数的性质1、会比较角的大小,认识度分秒,并进行简单换算2、了解平行线及其性质3、了解补角、余角对顶角4、了解垂线、垂线段的概念5、会做垂线6、了解垂直平分线及其性质7、了解三角形的有关性质(内角、外角、中线、高、角平分线),了解三角形的稳定性质8、了解全等三角形的概念9、了解等腰三角形的相关概念10、了解直角三角形的概念11、会用勾股定理解决问题12、了解四边形的概念13、等腰梯形14、圆(弧、玄、圆心角),了解点与圆、直线与圆的位置关系15、圆心角、圆周角16、三角形的内心与外心17、了解切线18、计算弧长和扇形面积、圆锥的侧面积和全面积19、会做线段、角、角平分线、线段垂直平分线20、做三角形21、作圆22、判断简单物体的三视图及其侧面展开图23、轴对称24、作轴对称25、图形的平移26、图形的旋转27、图形的相似28、图形与坐标29、证明1、统计:个体、样本2、扇形统计图表示数据3、加权平均数4、会计算极差、方差,并明确其意义5、计算简单事件发生的频率第一章 数与代数第二章 方程与不等式第三章 函数第四章 空间与图形第五章 概率与统计考点一、有理数 1.有理数: (1)凡能写成)0p q ,p (pq 为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.(相反数的证明) 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (aa 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; (3)0a 1aa >⇔=;0a 1aa <⇔-=; (4)|a|是重要的非负数,即|a|≥0=5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0. 6.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 7.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 8.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).9.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 10.有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .11.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .12.有理数乘方的法则: (1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时:(-a)n=-a n或(a -b)n=-(b-a)n,当n 为正偶数时:(-a)n=a n或(a-b)n =(b-a)n.13.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0⇔a=0,b=0;14.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.15.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明. 考点二、实数1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
中考数学专题训练第1讲有理数(知识点梳理)

有理数知识点梳理考点01 正数和负数1.正数:像1,2,3,4,0.1等这样大于0的数叫作正数。
正数的前面的“+”可以省略不写。
2.负数:像-0.2.-2.-6这样在正数前面加上符号“-”(负号)的数叫作负数。
3.注意事项:(1)0既不是正数也不是负数.0是正数和负数的分界线;(2)对于正数和负数.不能简单地理解为带“+”号的数就是正数.带负号的数就是负数.要根据正负数的含义.看其是符合正数的定义还是符合负数的定义。
4.正负习惯:习惯上把零上、增加、前进、海平面以上、收入、向南、盈利、上升等记为正.把与它们意义相反的量记为负。
考点02 有理数与数轴1.有理数定义:正整数、0、负整数统称整数.正分数、负分数统称分数.整数和分数统称有理数。
2.有理数的分类3.注意:(1)整数可以看成是分母为1的分数.所以有理数都可以写成分数的形式;有限小数和无限循环小数都可以写成分数形式.所以有限小数和无限循环小数都是有理数。
(2)正数和零统称为非负数;负数和零统称为非正数。
4.零的作用(1)表示数的性质.例如0是自然数;(2)表示没有.例如有5个本子.用+5表示.没有本子用0表示;(3)表示正数与负数的分界。
5.数轴定义:规定了原点、正方向和单位长度的直线叫作数轴。
数轴的三要素即原点、正方向和单位长度。
6.数轴上的点与有理数有理数都可以用数轴上的点来表示.任何一个有理数都能在数轴上找到与它对应的点.而且是唯一的点.但数轴上的点不一定都是有理数。
考点03 相反数和绝对值1.相反数的代数意义:只有符号不同的两个数叫作互为相反数.把其中一个数叫作另一个数的相反数。
0的相反数是0.2.相反数的几何意义:两个互为相反数的数在数轴上所表示的点在原点的两侧且到原点的距离相等;这两点关于原点对称。
3.多重符号的化简:数字前面的“-”号的个数若有偶数个.化简结果为正;有奇数个时.花间结果为负。
4.相反数的性质:如果b a 、互为相反数.那么0=+b a 或b a -=或a b -=;反过来.如果0=+b a .那么b a 、互为相反数。
中考数学专题复习1实数的运算(原卷版)

实数的运算复习考点攻略考点01 有理数1.整数和分数统称为有理数。
(有限小数与无限循环小数都是有理数。
)2.正整数、0、负整数统称为整数。
正分数、负分数统称分数。
3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
4.正数和负数表示相反意义的量。
【注意】0既不是正数,也不是负数。
【例1】.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升【例2】已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克收2元。
圆圆在该快递公司寄一件8千克的物品,需要付费( )。
A.17元B.19元C.21元D.23元考点02 数轴1.数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
【例3】如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C 表示的数是()A.﹣0.5B.﹣1.5C.0D.0.5考点03 相反数、绝对值和倒数1.在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:a。
2.一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩3. 乘积为1的两个数互为倒数。
正数的倒数为正数,负数的倒数为负数,0没 有倒数。
倒数是本身的只有1和-1。
4. 倒数性质:(1)若a 与b 互为倒数,则a·b=1;反之,若a·b=1,则a 与b 互为倒数。
(2)若a 与b 互为负倒数,则a·b=-1;反之,若a·b= -1则a 与b 互为倒数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年中考数学一轮复习考点1:有理数考点1:有理数的概念和分类相关知识:1.整数包括:正整数、0、负整数;分数包括:有限小数和无限环循小数。
2.有理数的概念:整数和分数统称有理数.相关试题:1.(2011宁波市,1,3分)下列各数是正整数的是A.-1 B.2 C.0.5 D. 2【答案】B2.(2011江苏南通,1,3分)如果60m表示“向北走60m”,那么“向南走40m”可以表示为A. -20mB. -40mC. 20mD. 40m【答案】B3.(2011浙江金华,4,3分)有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A.+2 B.-3 C.+3 D.+4【答案】A4.(2011贵州贵阳,1,3分)如果“盈利10%”记为+10%,那么“亏损6%”记为(A)-16% (B)-6% (C)+6% (D)+4%【答案】B5.(2011湖北宜昌,2,3分)如果用+0.02克表示一只乒乓球质量超出标准质量0.02 克,那么一只乒乓球质量低于标准质量0.02克记作( ) .A. +0.02克 B.-0.02克 C. 0 克 D.+0.04克【答案】B6.(2011上海,1,4分)如下列分数中,能化为有限小数的是().(A) 13; (B)15; (C)17; (D)19.【答案】B规律问题7.(2011浙江省嘉兴,9,4分)一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是()(A)2011 (B)2011 (C)2012 (D)2013【答案】D8.(2011台湾台北,12)已知世运会、亚运会、奥运会分别于公元2009年、2011年、2012年举办。
若这三项运动会均每四年举办一次,则这三项运动会均不在下列哪一年举办?A .公元2070年B .公元2071年C .公元2072年D .公元2073年【答案】B9.(2011山东日照,12,4分)观察图中正方形四个顶点所标的数字规律,可知数2011应标在( )(A )第502个正方形的左下角 (B )第502个正方形的右下角(C )第503个正方形的左上角 (D )第503个正方形的右下角【答案】C10. (2011重庆綦江,10,4分)如下表,从左到右在每个小格子中都填入一个整数..,使得其中任意三个相邻..格子中所填整数之和都相等,则第2011个格子中的数为( )A. 3B. 2C. 0D. -1【答案】:A11.(2011山东菏泽,14,3分)填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值是 .【答案】158 12. (2011江苏南京,16,2分)甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5、乙报6……按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是50时,报数结束;… …红 黄 绿 蓝 紫 红 黄 绿 黄 绿 蓝 紫16②若报出的数为3的倍数,则报该数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为____________.【答案】413. (2011四川绵阳18,4)观察上面的图形,它们是按一定规律排列的,依照此规律,第____个图形共有120 个。
【答案】1514.(2011河北,18,3分)如图9,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号为_ _.【答案】3考点2:数轴相关知识:1.数轴的定义:规定了原点、正方向、单位长度的直线叫做数轴。
画数轴时,要注意上述规定的三要素缺一不可。
2.解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴(“三要素”)②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
3.数轴的作用: A.直观地比较有理数的大小; B.明确体现绝对值意义; C.建立点与实数的一一对应关系。
相关试题:1. (2011浙江省,1,3分)如图,在数轴上点A 表示的数可能是( )A. 1.5B.-1.5C.-2.6D. 2.6【答案】C2. (2011四川乐山13,3分)数轴上点A 、B 的位置如图所示,若点B 关于点A 的对称点为C ,则点C 表示的数为【答案】-5考点3: 相反数相关知识:1. 实数与它的相反数是一一对应(只有符号不同的两个数叫做互为相反数,零的相反数是零).2. 从数轴上看,互为相反数的两个数所对应的点关于原点对称3. 如果a 与b 互为相反数,则有a +b =0,a = —b ,反之亦成立。
即: (1)实数a 的相反数是a -. (2)a 和b 互为相反数0a b ⇔+=.相关试题:1. (2011浙江丽水,1,3分)下列各组数中,互为相反数的是( )A .2和-2B .-2和12C .-2和-12D .12和2 【答案】A2. (2011湖南邵阳,1,3分)-(-2)=( )A.-2B. 2C.±2D.4 【答案】B3. (2011安徽芜湖,1,4分)8-的相反数是( ).A. 8-B. 18-C. 18D. 8 【答案】D4. (2011江苏扬州,1,3分)21-的相反数是( ) A. 2 B.21 C. -2 D. 21- 【答案】B5. (2011山东烟台,1,4分)(-2)0的相反数等于( )A.1B.-1C.2D.-2【答案】B6. (2011浙江金华,1,3分)下列各组数中,互为相反数的是( )A .2和-2B .-2和12C .-2和-12D .12和2 【答案】A7. (2011贵州安顺,1,3分)-4的倒数的相反数是( )A .-4B .4C .-41D .41 【答案】D考点4: 绝对值相关知识:1. 一个数的绝对值就是表示这个数的点与原点的距离,|a |≥0。
2. 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 即: (0)0 (0) (0)a a a a a a <>⎧⎪==⎨⎪-⎩﹝另有两种写法﹞3. 零的绝对值时它本身,也可看成它的相反数,若|a |=a ,则a ≥0;若|a |=-a ,则a ≤0。
4. 实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离.5.几个非负数的和等于零则每个非负数都等于零.注意:│a │≥0,符号“││”是“非负数”的标志;数a 的绝对值只有一个;处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
相关试题:1. (2011浙江义乌,1,3分)-3的绝对值是( )A .3B .-3C .- 13D .13【答案】A2. (2011浙江省嘉兴,1,4分) -6的绝对值是( )(A )-6(B )6 (C )61 (D )61- 【答案】B3. (2011四川宜宾,1,3分)|-5|的值是( ) A . 51 B .5 C .-5 D .51- 【答案】B4. (2011湖南常德,1,3分)2______.-=【答案】25. (2011台湾台北,1) 如图,O 是原点,A 、B 、C 三点所表示的数分别为a 、b 、c 。
根据图中各点的位置,下列各数的絶对值的比较何者正确?A .|b |<|c |B .|b |>|c |C .|a |<|b |D .|a |>|c |【答案】A6.(2011浙江丽水,4,3分)有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( )A .+2B .-3C .+3D .+4 【答案】A7. (2011福建泉州,10,4分)已知方程||x 2=,那么方程的解是 .【答案】1222x x ==-,;考点5: 倒数相关知识:1. 如果a 与b 互为倒数,则有ab =1,反之亦成立。
2. 倒数等于本身的数是1和-1。
零没有倒数。
即: (1) 实数a (a ≠0)的倒数是1a . (2) a 和b 互为倒数1ab ⇔=。
(3) 注意0没有倒数.相关试题1. (2011广东汕头,1,3分)-2的倒数是( )A .2B .-2C .12D .12- 【答案】D2. (2011重庆市潼南,1,4分)5的倒数是A .15B .-5 C. -15D. 5 【答案】A3. (2011山东菏泽,1,3分)-32的倒数是 A .32 B .23 C .32- D .23- 【答案】D4.(2011广东肇庆,1,3分)21的倒数是 A .2 B . 2- C .21 D . 21- 【答案】A5. (2011四川凉山州,1,4分)0.5-的倒数是( )A .2-B .0.5C .2D .0.5-【答案】A6. (2011湖南永州,1,3分)20111的倒数是_________. 【答案】2011考点6:科学计数法与有效数字相关知识:(1)一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
(2) 近似值的精确度:一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位(3)按精确度或有效数字取近似值,一定要与科学计数法有机结合起来.(4)把一个数写做na 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。
① 确定a :a 是只有一位整数数位的数.② 确定n :当原数≥1时,n 等于原数的整数位数减1;;当原数<1时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零)。
例如:-40700=-4.07×105,0.000043=4.3×10ˉ5.相关试题1. (2011宁波市,4,3分)据宁波市统计局公布的第六次人口普查数据,本市常住人口760.57万人,其中760.57万人用科学记数法表示为A . 7.6057×105人B . 7.6057×106人C . 7.6057×107人D . 0.76057×107人【答案】B2. (2011浙江衢州,1,3分)衢州市“十二五”规划纲要指出,力争到2015年,全市农民人均年纯收入超过13000元,数13000用科学记数法可以表示为( )A.31310⨯B. 41.310⨯C. 50.1310⨯D.213010⨯【答案】B3. (2011广东汕头,2,3分)据中新社北京2011年l2月8日电2011年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .75.46410⨯吨B .85.46410⨯吨C .95.46410⨯吨D .105.46410⨯吨 【答案】B4. (2011安徽,2,4分)安徽省2011年末森林面积为3804.2千公顷,用科学记数法表示3804.2千.正确的是( ) A .3804.2×103B .380.42×104C .3.8042×106D .3.8042×107 【答案】C5. (2011浙江省,3,3分)中国是严重缺水的国家之一,人均淡水资源为世界人均量的四分之一,所以我们为中国节水,为世界节水.若每人每天浪费水0.32L ,那么100万人每天浪费的水,用科学记数法表示为( )A.3.2×107LB. 3.2×106LC. 3.2×105LD. 3.2×104L【答案】C6. (2011福建泉州,3,3分)“天上星星有几颗,7后跟上22个0”,这是国际天文学联合大会上宣布的消息,用科学记数法表示宇宙空间星星颗数为( ).A .2070010⨯B .23710⨯C .230.710⨯D .22710⨯【答案】D7.(2011山东烟台,13,4分)微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩小.某种电子元件的面积大约为0.000 000 7平方毫米,用科学记数法表示为 平方毫米.【答案】7×10-78. (2011湖南邵阳,6,3分)地球上的水的总储量约为1.39×1018m 3,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.0107×1018m 3,因此我们要节约用水。