第三讲 行列式的性质、行列式的计算

合集下载

行列式知识点

行列式知识点

行列式知识点行列式是线性代数中的重要概念之一,广泛应用于数学、物理、工程和计算机科学等领域。

本文将介绍行列式的基本概念、性质和计算方法,帮助读者更好地理解和应用行列式知识。

一、行列式的定义行列式是一个与矩阵相关的数值。

对于一个n阶方阵A,它的行列式表示为det(A),其中n表示方阵的阶数。

行列式的计算涉及到矩阵的元素和排列的概念,下面将详细介绍。

二、行列式的性质1. 行列式的对角线规则:对于一个n阶方阵A,行列式det(A)等于主对角线元素相乘的积减去次对角线元素相乘的积。

2. 行列式的性质之一:交换行(列)位置,行列式的值不变。

3. 行列式的性质之二:若行(列)中有两行(列)元素成比例,行列式的值为0。

4. 行列式的性质之三:行列式的某一行(列)乘以一个数k,等于行列式的值乘以k。

三、行列式的计算方法1. 二阶和三阶行列式的计算:对于二阶行列式A,可以用交叉相乘法计算,即ad-bc。

对于三阶行列式A,可以用Sarrus法则计算。

2. 高阶行列式的计算:对于n阶行列式A,可以利用拉普拉斯展开定理进行计算。

具体步骤是选择一行(列)作为展开行(列),将行列式展开为以该行(列)元素为首的n个代数余子式的乘积之和。

四、行列式的应用1. 线性方程组的解:行列式可以用于求解线性方程组的解。

若系数矩阵的行列式不为0,则方程组有唯一解;若行列式为0,则方程组无解或有无穷解。

2. 矩阵的逆:若一个n阶方阵A的行列式不为0,则矩阵A可逆,且其逆矩阵A^{-1}的元素可以用A的伴随矩阵元素和行列式的倒数表示。

3. 坐标变换:在几何学中,行列式可以用于坐标变换。

例如,二维平面上坐标变换时,坐标的旋转、平移和缩放可以用行列式进行表示。

五、总结本文介绍了行列式的基本概念、性质和计算方法,并提供了行列式在线性方程组、矩阵逆和坐标变换中的应用。

行列式作为线性代数中的基础知识,对于深入理解和应用相关领域的知识具有重要作用。

通过学习和掌握行列式的知识点,读者可以更好地理解相关的数学和科学问题,并灵活运用行列式进行问题求解和分析。

行列式定义性质与计算

行列式定义性质与计算
定义
二阶行列式是所有位于对角线上的元素和它们不相邻的元素的 总和。
计算方法
用代数余子式展开,然后进行简单的代数运算。
例子
对于二阶行列式
二阶行列式的计算方法
``` |ab| |cd|
二阶行列式的计算方法
```
其值为 a*d - b*c。
三阶行列式的计算方法
01
02
定义
计算方法
三阶行列式是所有位于对角线上的元 素和它们不相邻的元素的总和,共有 6个项,每个项都是不同行不同列的 三个元素的乘积。
矩阵除法中行列式的应用
总结词
矩阵除法中,行列式可以帮助我们确定可 逆矩阵的逆矩阵。
VS
详细描述
在矩阵除法中,我们经常需要求出可逆矩 阵的逆矩阵。这时,行列式可以帮助我们 确定逆矩阵。具体来说,对于一个可逆矩 阵A,其行列式值|A|不为0,这意味着A 存在逆矩阵。通过使用行列式,我们可以 轻松地找到A的逆矩阵。
n阶行列式定义
01
n阶行列式是由n行n列组成的矩阵, 其值由其元素的代数余子式决定。
02
n阶行列式的一般形式为: D=a11a22...ann=(1)^t(P)i=1n(ai1j1+ai2j2+...+ainjn)j 1j2...jn(P)i=1n(ai1j1+ai2j2+...+ainj n)j1j2...jn其中t为P的逆序数,P为排 列。
解法
通过将方程组转化为行列式形式,可以求解未知数 的值。
步骤
将方程组转化为行列式形式后,根据行列式的性质 ,通过展开行列式得到未知数的值。
三阶线性方程组的解法
定义
三阶线性方程组是由三个方程组成的,每个方 程中包含未知数的三阶线性项和常数项。

行列式的定义与计算

行列式的定义与计算

行列式的定义与计算行列式是线性代数中的一个重要概念,用于描述线性方程组的性质以及矩阵的特征。

在本文中,将介绍行列式的定义以及计算方法。

一、行列式的定义行列式是一个数学函数,用一种特定的方式将矩阵映射为一个数字。

对于n阶矩阵A = [aij]来说,其行列式记作det(A)或|A|。

行列式的定义如下:当n=1时,矩阵只有一个元素,此时矩阵的行列式就是这个元素本身。

当n>1时,矩阵A可以分为n行n列,可以表示为:A = [a11 a12 (1)a21 a22 (2)... ... ... ...an1 an2 ... ann]其中a11、a12...ann是矩阵A的元素。

对于n>1的情况,行列式的计算可以使用展开定理或按行(列)展开等方法进行。

二、行列式的计算(一)二阶行列式二阶行列式的计算公式如下:|A| = a11·a22 - a12·a21(二)三阶行列式三阶行列式的计算公式如下:|A| = a11·a22·a33 + a12·a23·a31 + a13·a21·a32 - a13·a22·a31 -a12·a21·a33 - a11·a23·a32(三)n阶行列式n阶行列式的计算可以通过列展开、行展开或使用拉普拉斯定理等方法进行。

这里以列展开为例介绍。

设A为一个n阶矩阵,可以将其表示为A = [a1 a2 ...an],其中ai为A的第i列。

若选择第k列进行展开,则根据列展开法可得:|A| = a1k·A1k - a2k·A2k + ... + (-1)^(k+1)·ank·Ank其中,Aik是移去第i行第k列元素所形成的(n-1)阶行列式。

根据此公式,可以递归地计算n阶行列式的值。

三、行列式的性质行列式具有以下性质:1. 互换行列式的两行(列),行列式的值变号。

行列式的性质

行列式的性质

k
a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 a11 a12 a13 a14
k 0 0
性质4 若行列式的某一列(行)的元素都是两数之和, 例如:
a11 a12 b12 a13 D a21 a22 b22 a23 a31 a32 b32 a33 a11 a12 a13 a11 b12 a13 D a21 a22 a23 a21 b22 a23 a31 a32 a33 a31 b32 a33
性质4 若行列式的某一列(行)的元素都是两数之和,则 行列式可按该行(列)拆成两个行列式的和。 性质5 把行列式的某一列(行)的各元素乘以同一个倍数 然后加到另一列(行)对应的元素上去,行列式不变.
计算行列式
a b c d a ab abc abcd D . a 2a b 3a 2b c 4a 3b 2c d a 3a b 6a 3b c 10a 6b 3c d a1 a2 0 1 xa a D a a
注:以数 k 乘第 j 行(列)加到第 i 行(列)上,记作
ri krj (ci kc j ).
验证
我们以三阶行列式为例. 记
a11 a12 a13 D a21 a22 a23 , a31 a32 a33
则 D D1 .
a11 D1 a21 a31
a12 ka13 a22 ka23 a32 ka33
性质1
行列式与它的转置行列式相等,即 D D .
T
行列式中行与列具有同等的地位,行列式的性质凡是对行 成立的对列也同样成立.
性质2
交换行列式的两行(列),行列式变号.
注:交换第 i 行(列)和第j 行(列),记作 ri rj (ci c j ) .

行列式与行列式的性质

行列式与行列式的性质

行列式与行列式的性质行列式是线性代数中的一个重要概念,它在矩阵理论、线性方程组的求解以及向量空间的性质研究等方面都起到了至关重要的作用。

本文将从行列式的定义、性质以及应用等方面进行论述,以便更好地理解和应用行列式。

一、行列式的定义行列式是一个方阵所具有的一个标量值,它可以用来描述方阵的性质和特征。

对于一个n阶方阵A=[a_ij],其行列式记作det(A)或|A|,其中i和j分别代表矩阵中的行和列。

二、行列式的性质1. 行列式与矩阵的转置对于一个方阵A,其行列式与其转置矩阵的行列式相等,即det(A)=det(A^T)。

这个性质可以通过矩阵的定义和性质进行证明。

2. 行列式的可加性对于两个n阶方阵A和B,有det(A+B)=det(A)+det(B)。

这个性质可以通过行列式的定义和矩阵的性质进行证明。

3. 行列式的乘法性质对于一个n阶方阵A和一个标量k,有det(kA)=k^n*det(A)。

这个性质说明了行列式与矩阵的数乘之间的关系。

4. 行列式的行交换性对于一个n阶方阵A,如果将其两行进行交换,那么行列式的值会改变符号,即det(A)=-det(A'),其中A'是A进行行交换后的矩阵。

5. 行列式的行倍性对于一个n阶方阵A,如果将其某一行乘以一个非零标量k,那么行列式的值也会乘以k,即det(kA)=k*det(A)。

三、行列式的应用1. 线性方程组的求解行列式可以用来求解线性方程组的解,通过行列式的性质可以得到线性方程组是否有唯一解、无解或者有无穷多解。

2. 矩阵的可逆性一个n阶方阵A可逆的充要条件是其行列式不等于零,即det(A)≠0。

这个性质可以用来判断一个矩阵是否可逆。

3. 矩阵的秩矩阵的秩可以通过行列式的概念来定义,对于一个n阶矩阵A,其秩r等于其非零子式的最高阶数。

行列式的性质可以帮助我们计算矩阵的秩。

4. 矩阵的特征值与特征向量矩阵的特征值与特征向量可以通过行列式的性质来计算,特征值是一个标量,特征向量是一个非零向量,它们满足A*x=λ*x,其中A是矩阵,x是特征向量,λ是特征值。

§12行列式的性质与计算

§12行列式的性质与计算

§1.2 行列式的性质与计算行列式是线性代数中的基本概念之一,它是一种特殊的方阵,由一个方阵中的所有元素按照一定规则构成。

行列式具有一些重要的性质和计算方法,以下是关于行列式的性质与计算的介绍。

一、行列式的性质1.行列式的行和列具有相同的独立性。

即对于一个n阶行列式,它的行和列都是n个独立的元素,可以独立进行变换,而不影响其他元素的位置。

2.行列式的行和列具有相同的代数余子式。

即对于一个n阶行列式,它的行代数余子式和列代数余子式都是n阶行列式,可以通过伴随矩阵的方式求得。

3.行列式的行和列具有相同的转置矩阵。

即对于一个n阶行列式,它的行转置矩阵和列转置矩阵都是n阶矩阵,可以通过转置矩阵的方式求得。

4.行列式的行和列具有相同的逆矩阵。

即对于一个n阶行列式,它的行逆矩阵和列逆矩阵都是n阶矩阵,可以通过逆矩阵的方式求得。

5.行列式的行和列具有相同的特征值。

即对于一个n阶行列式,它的行特征值和列特征值都是n个独立的特征值,可以通过特征多项式的方式求得。

二、行列式的计算1.按照定义计算。

行列式的定义是一个由方阵中的元素按照一定规则构成的多项式,可以按照定义直接计算。

2.化简计算。

行列式中的元素可以进行化简和约分,使得计算更加简便。

3.公式计算。

行列式有一些常用的公式,可以通过这些公式进行计算。

4.软件计算。

现在有很多数学软件可以用来计算行列式,例如MATLAB、Mathematica等等。

三、特殊行列式的计算1.二阶行列式的计算。

二阶行列式只有两个元素,可以通过交叉相乘的方式计算。

2.三阶行列式的计算。

三阶行列式有六个元素,可以按照展开式的公式进行计算,也可以通过软件计算。

3.n阶行列式的计算。

对于n阶行列式,可以使用Laplace展开式进行计算,也可以使用软件进行计算。

四、行列式的应用1.在解线性方程组中的应用。

通过求解线性方程组的系数矩阵和常数向量,可以得到方程组的解。

而系数矩阵就是一个n阶行列式,因此行列式在解线性方程组中有着重要的应用。

线性代数行列式的性质与计算

线性代数行列式的性质与计算

线性代数行列式的性质与计算线性代数中的行列式是一种非常重要的数学工具,它在各个领域的数学和物理问题中都具有广泛的应用和重要性。

行列式是一个数,它与矩阵的元素有关,在许多情况下可以通过一些算法进行计算。

一、行列式的性质1.行列式有可加性:若A为n阶方阵,有两列完全相同,则行列式的值为0;若A为n阶方阵,交换两列,行列式的值变号。

2.行列式有因子约束:若A的其中一行或其中一列的元素是两个数之和,则A的行列式等于这两个数的和的行列式之和。

3.行列式有数乘的性质:若将A的其中一行或其中一列的元素都乘以k,则A的行列式等于k乘以这个行列式。

4.行列式对其中一行与另一行的代换变号,对其中一列与另一列的代换变号,换行、换列对行列式无影响。

5.方阵A与其转置矩阵A'行列式相等,即,A,=,A'。

6.若A为可逆的方阵,则,A,≠0;若A的其中一行全为0,则,A,=0。

二、行列式的计算1.二阶行列式的计算:设A为二阶方阵。

2.三阶行列式的计算:设A为三阶方阵a11a12a1A=,a21a22a23a31a32a33.高阶行列式的计算:a)拉普拉斯展开法:以行或列为基准进行展开,逐步减小行列式的阶数,直至计算到二阶行列式。

b)三角形矩阵法:若A为上(下)三角矩阵,则A的行列式等于对角元素的乘积。

c)伴随矩阵法:设A为n阶方阵,A的伴随矩阵的转置矩阵为A*,则,A,=,A*,=A*A^-1d)特征值法:设A的特征值为λ1,λ2,…,λn,则,A,=λ1λ2…λn.e)克拉默法则:若Ax=b为线性方程组,其中A为n阶方阵,且,A,≠0,则方程组有唯一解x=A^-1b.总之,行列式作为一种数学工具,在线性代数中具有重要的地位和作用。

它不仅可以帮助我们判断矩阵的可逆性,还可以求解线性方程组、计算矩阵的秩、判断矩阵的相似性等。

行列式的性质和计算方法可以帮助我们更好地理解和应用线性代数的相关知识。

行列式的运算法则

行列式的运算法则

行列式的运算法则行列式是线性代数中的一个重要概念,它在矩阵运算和方程组求解中起着重要的作用。

行列式的运算法则是指对于不同类型的行列式,我们可以通过一系列的运算来求得其值。

本文将介绍行列式的运算法则,包括行列式的定义、性质以及常见的运算方法。

1. 行列式的定义行列式是一个数学概念,用来描述一个方阵(即行数等于列数的矩阵)所固有的一种性质。

对于一个n阶方阵A,其行列式记作det(A),可以通过以下方法来计算:- 当n=1时,det(A) = a11,即一个1阶方阵的行列式就是它的唯一元素。

- 当n=2时,det(A) = a11 * a22 - a12 * a21,即一个2阶方阵的行列式是其主对角线上元素的乘积减去次对角线上元素的乘积。

- 当n>2时,可以通过递归的方法将n阶方阵的行列式表示为n-1阶方阵的行列式的线性组合,直到n=2时再利用上述方法计算。

2. 行列式的性质行列式具有许多重要的性质,其中包括:- 互换行列式的两行(列)会改变行列式的符号,即det(-A)= (-1)^n * det(A),其中n为方阵的阶数。

- 如果方阵A的某一行(列)全为0,则det(A) = 0。

- 如果方阵A的两行(列)成比例,则det(A) = 0。

- 如果方阵A的某一行(列)是另一行(列)的线性组合,则det(A) = 0。

- 如果方阵A的某一行(列)加上另一行(列)的k倍,行列式的值不变。

3. 行列式的运算法则在实际应用中,我们经常需要对行列式进行一系列的运算,常见的运算包括:- 行列式的加法:如果方阵A、B的行数和列数相等,则它们的行列式可以相加,即det(A + B) = det(A) + det(B)。

- 行列式的数乘:如果方阵A的行列式为det(A),则kA的行列式为k^n * det(A),其中k为常数,n为方阵的阶数。

- 行列式的乘法:如果方阵A、B的行数和列数相等,则它们的行列式可以相乘,即det(AB) = det(A) * det(B)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D 0.
综上,得重要公式:
ak1 Ai1 ak 2 Ai 2 akn Ain
D, (当k i) 0,(当k i)
5
a1l A1 j a2l A2 j anl Anj
D, (当l j) 0, (当l j)
性质5 用数 k 乘行列式的某一行(列)中所有 的元素,等于用数 k 乘此行列式.
4 1 a c 3 7 4k
3 b 2 3k
1 c 3 k
由上述例子可以看出,选择适当的k,可以使得后面一个 行列式的(3,1)元素为0. 由此可知,多次运用此性质可以 将一个行列式化为上三角行列式.
9
二、行列式的计算
行列式的基本运算符号:
1. 交换两行(列):交换第 i 行和第 j 行,记作 r i r j ;交换第 i 列和第 j 列,记作 c i c j .
第一章
第三讲
行列式
一、行列式的性质
二、行列式的计算(1)
1
一、行列式的性质
a 11 a12

a1n
记 D= a21 a 22 a2 n
a n1 an 2

a nn
行列式 D T 称为行列式 D 的转置行列式. 性质1 行列式与它的转置行列式相等.
注:行列式中行与列地位相同,对行成立的 性质对列也成立,反之亦然.
2. 以数 k 乘行列式的某一行(列):以数k乘行 列式的第 i 行记作 ri k ;以数k乘行列式的 第 i 列,记作 c i k .
10
3.某一行(列)的k倍加到另一行(列): 第i行的 k倍加到第j行,记作 r j kr i , 第i列的k倍加到第j 列, 记作 c j kc i .
2
如:
D
1 3
2 4
2,
D
T

1 2
3 4
2
显然,
性质2 例如
D
1 3
2 4
D
T

1 2
3 4
2
互换行列式的两行(列),行列式变号.
3
又如
1 7 5 1 7 5
1 7 6 6 3 5
5
7 1
5 2. 8
6 3
6 5
2 3 8 6
5 6
8, 2
2 6 6 8
1 D 5 2 2 6 4 3 7 0 6
7
性质6 若行列式的某一列(行)的元素都是两 数之和,
a 11 a n1 a 11 D a 21 a n1 a1i a 2i a ni a 12 an2 (a1i a1i ) ( a ni a ) ni a 11 a 21 a n1 a1i ai 2 a ni a1n a nn a1n a 2n a nn
5 3
性质3 行列式等于它的任一行(列)的各元素与其 对应的代数余子式乘积之和. 如:
1 3 5 1 2 7 0 4 8 0
(分别按第一行、第三列展开).
4
推论1 如果行列式有两行(列)完全相同, 则此行列式为零. 证明: 互换相同的两行,有 D D , 性质4 行列式任一行(列)的元素与另一行 (列)的对应元素的代数余子式乘积之和等于 零,即
注意记号 ri kr j与 r j kr i是不同的. 行列式经过记号 r j kr i 表示的运算,行列式中只有第 j 行的元素改变了.
计算行列式常用方法:利用行列式的性质把行列 式化为上三角形行列式,从而算得行列式的值. 利用行列式性质计算:目标 化为三角形行列式
Байду номын сангаас
11
6
如:
D
a1 1 5 a 21
a1 2 5 a 22
5 a1 1 a 2 2 a1 2 a 2 1 5
a1 1 a 21
a1 2 a 22
推论2 行列式的某一行(列)中所有元素的公 因子可以提到行列式符号的外面. 推论3 行列式中如果有两行(列)元素成比例, 则此行列式为零.
8
例如
D
a 21
a 22

(a 2i a i ) 2

a 2n
则D等于下列两个行列式之和:
a1n a 2n a nn
性质7 把行列式的某一行(列)的各元素乘以 同一数然后加到另一行(列)对应的元素上去, 行列式不变. (对行 (列)倍加运算,其值不变)
4 a 7 3 b 2
相关文档
最新文档