第14章 一次函数复习学案

合集下载

14章总复习教案

14章总复习教案

5 b 90 5 k 解:设 s=kt+b,则 ,解得: 3 ,所以 s=- t +90 3 6k b 80 b 90
2、 (2007 浙江温州)为调动销售人员的积极性,A、B 两公司采取如下工资支付方 式:A 公司每月 2000 元基本工资,另加销售额的 2%作为奖金;B 公司每月 1600 元基本工资,另加销售额的 4%作为奖金。已知 A、B 公司两位销售员小李、小 张 1~6 月份的销售额如下表: 月份 销售额(单位:元) 销售额 1月 2月 3月 4月 5月 6月 小李(A 公 11600 12800 14000 15200 16400 17600 司) 小张(B 公 7400 9200 1100 12800 14600 16400 司 (1)请问小李与小张 3 月份的工资各是多少? (2)小李 1~6 月份的销售额 y1 与月份 x 的函数关系式是 y1 1200x 10400, 小张 1~6 月份的销售额 y2 也是月份 x 的一次函数,请求出 y2 与 x 的函数关系式; (3)如果 7~12 月份两人的销售额也分别满足(2)中两个一次函数的关系,问 几月份起小张的工资高于小李的工资。 解: (1)小李 3 月份工资=2000+2%×14000=2280(元) 小张 3 月份工资=1600+4%×11000=2040(元) (2)设 y2 kx b ,取表中的两对数(1,7400)(2,9200)代入解析式,得 ,
A. y x 2 B. y x 2
C. y x 2
D. y x 2
图2
4、 (2007 浙江湖州) 将直线 y=2x 向右平移 2 个单位所得的直线的解析式是 ( C A、y=2x+2 B、y=2x-2 C、y=2(x-2) D、y=2(x+2) 5、 (2007 浙江宁波)如图,是一次函数 y=kx+b 与反比例函 2 2 数 y= 的图像, 则关于 x 的方程 kx+b= 的解为( )C x x (A)xl=1,x2=2 (B)xl=-2,x2=-1 (C)xl=1,x2=-2 (D)xl=2,x2=-1 6、 (2007 四川乐山) 已知一次函数 y kx b 的图象如图 (6) 所示,当 x 1 时, y 的取值范围是( A. 2 y 0 B. 4 y 0 )C C. y 2 D. y 4

初中数学八年级第14章一次函数(十二)——函数复习导学案

初中数学八年级第14章一次函数(十二)——函数复习导学案

(八年级数学)第14章一次函数(十二)——函数复习知识点一:变量、常量、自变量、函数的概念函数32+=x y 中的变量有 个,常量为 ,自变量为 是 的函数。

知识点二:函数自变量取值范围1、函数21y x =-的自变量x 的取值范围是 ;2、函数225y x =-+的自变量x 的取值范围是 ;3、函数y =x 的取值范围是 ;4、用300元钱购买单价为8元的书,则剩余的钱y (元)与买这种书的本数x 之间的关系式是 ,变量是 ,自变量是 , 是 的函数,自变量的取值范围是 。

知识点三:求函数值 当2x =时,求下列函数的函数值:(1)25y x =- (2)22y x =- (3)11y x =- (4)y =知识点四:由函数图象获得信息周末,韩聪同学和爸爸8时骑自行车从家出发,到野外游玩,16时回到家,他俩离开家后的距离S (千米)与时间t(时)的关系有如图所示的曲线表示。

根据图象回答下列各题:①韩聪和爸爸 时休息;②8时到10时,他俩骑车的速度是 ;③10时到13时,他们骑了 千米;④他俩离家最远是 千米,时最远;⑤返回时,他俩的车速是 。

知识点五:点在函数图象上1、已知函数21y x =-。

(1)判断点A (-1,3) 和点B (1,1) (在或不在)此函数图象上;(2)已知点C (),1a a +在函数图象上,则______a =。

2、已知点(),2a -、(),3b 在直线56y x =-+上,则,a b 的大小关系是 。

知识点六:正比例函数和一次函数的定义1、一次函数y= (),k b 为______,k___0,特别地,当____0=时,y= ()k___0也叫做正比例函数。

2、右边四个函数,y 是x 的一次函数的有 个(1)31y x =-(2)231y x =-(3)3y x =(4)113y x=- 3、函数()26y m x =-+是一次函数,则m 满足的条件是 。

4、函数()2y x m =+-是正比例函数,则m 满足的条件是 。

一次函数全章复习学案

一次函数全章复习学案

第14章 一次函数复习知识梳理针对练习: 1.函数1y x =-x 的取值范围是 。

2、一个矩形的周长为6,一条边长为x,另一条边长为y,则用x 表示y 的函数表达式为_______________。

自变量x 的取值范围是 。

知识点击:1.函数自变量取值范围应从 方面考虑。

2.写函数表达式时,要区分自变量和函数。

针对练习:用描点法画函数y=2x 和y=2x+1和y=2x-1的图像 (1)列表:x -2 -1 0 1 2 y= 2x y= 2x+1 y= 2x-1(2)描点画图:用描点法画函数y=-2x 和y=-2x+1和y=-2x-1的图像(1)列表: x -2 -1 0 1 2 y= -2x y= -2x+1 y= -2x-1(2)描点画图: ◆考点链接:1.正比例函数的一般形式是__________.一次函数的一般形式是__________________. 2.一次函数y kx b =+的图象与性质 k 、b 的符号k >0b >0k >0 b <0k <0 b >0k <0b <0针对练习:1.若函数9)3(2-++=a x a y 是正比例函数,则______=a , 图像过______象限. 2.当x<0时,函数y=-2x 的图象在第( )象限。

(A )一 (B )二 (C )三 (D )四3. 一次函数y=-2x+3的图像不经过的象限是( ). A 第一象限 B 第二象限 C 第三象限 D 第四象限 4.下列函数中,y 随x 的增大而减小的有( ) ①12+-=x y ② x y -=6③ 31xy +-= ④ x y )21(-=A.1个B.2个C.3个D.4个5.已知一次函数y=kx+2,当x=5时y 的值为4,求k 值.6.已知直线y=kx+b 经过点(-4,9)和点(6,3),求k 、b 值.7.已知正比例函数x k y 1=的图像与一次函数92-=x k y 的图像交于点P (3,-6)。

八年级数学上册_第十四章 一次函数_本章综合学案人教版

八年级数学上册_第十四章 一次函数_本章综合学案人教版

第十四章 一次函数 14.1 变量与函数14 变量知能新视窗知识结构学点博览学点1 变量和常量在一个变化过程中,有些量的值是按照某种规律变化的,我们称它为变量,有些量的数值是始终不变的,我们称它为常量.理解要点:(1)判断一个量是常量还是变量的方法,需看两个方面:①看它是否在一个变化的过程中;②看它在这个变化过程中的取值情况.(2)变量与常量必须存在同一个变化过程中,常量是相对于某一过程或另一个变量而言的.如:圆的半径R 和周长C 的关系式C=2πR 中,其中C 、R 可取不同数值是变量,而圆周率π和2都保持不变,是常量.(3)在某一个变化过程中,变量、常量都可以有多个,常量可以是一个实数,也可以是一个代数式(数值始终保持不变). 学点2 变量与常量的关系常量与变量是相对的,变量是随不同的问题而有所不同,在这个式子中是变量,也许在其它式中就是常量,也就是说一个量是否是变量、常量是相对的,要看具体问题而定。

理解要点:(1)相对性:例如,在汽车行驶中有三个量:路程S ,行驶时间t,速度v ,当速度v 一定时,路程S 与时间t 是变量,速度v 是常量;当行驶时间t 一定时,路程S 与速度v 是变量,行驶的时间是常量;当路程S 一定时,速度v 与时间t 是变量,路程S 是常量.(2)常量也可以是常数,如C=2πR 中π是常数.名师开小灶金考点考点1判断变化过程中的变量和常量常量和变量是普遍存在的,它们只是相对于某个变化过程而言的两个概念,因此对它的判别应紧扣定义及相应的实际情境.[例1]指出下列各关系式中的常量与变量(1)圆的面积公式S=πr 2(S 是圆的面积,r 是半径)中,变量是,常量是. (2)求补角的公式y=180°-x 中,变量是,常量是. (3)△ABC 的底边是a ,底边的高为h ,则△ABC 的面积S=21ah ,若h 为一定长,则此式中,变量是,常量是.[点拨]根据变量、常量的定义,抓住“变“与”不变”来解答. [解答](1)S 和r ,π (2)y 和x ,180° (3)S 和a,21和h[方法规律]根据实际问题情境,判断“量”的变化与否,数值发生变化的量是变量,否则为常量. 考点2常量和变量的相对性常量是相对于某一过程或另一个变量而言的,绝对的常量是不存在的.[例2](1)设圆柱的底面半径R 不变,圆柱的体积V 与圆柱的高h 的关系式是V=πR 2h 在这个式子中,常量和变量分别是什么?(2)设圆柱的高h 不变,圆柱的体积V 与圆柱的底面半径R 的关系式是V=πR 2h 中在这个式子中,常量和变量分别又是什么?[点拨]常量和变量往往是相对的,相对于某个变化过程,并非一成不变。

(整理)初中数学八年级上册第十四章《一次函数》精品复习学案

(整理)初中数学八年级上册第十四章《一次函数》精品复习学案

新课标人教版初中数学八年级上册第十四章《一次函数》精品复习学案一、知识回顾:(1).甲、乙两地相距S千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=S,在这个变化过程中,下列判断中错误的是()A.S是变量 B.t是变量 C.v是变量 D.S是常量(2)、如图所示的图象分别给出了x与y的对应关系,其中y是x的函数的是()知识提要:1.在一个变化过程中,___________的量是变量,•___________的量是常量.2.一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有________的值与其对应,那么就称y是x的函数.(3)、在下列函数中, x是自变量, y是x的函数,那些是一次函数?那些是正比例函数?y=2x y=-3x+1 y=x2(4)、已知一次函数kxky)1(-=+3,则k= .知识提要:一次函数的概念:函数y=_______(k、b为常数,k______)叫做一次函数。

当b_____时,函数y=____(k____)叫做正比例函数。

(5)、有下列函数:①y=2x+1, ②y=-3x+4,③y=0.5x,④y=x-6;其中过原点的直线是________;函数y随x的增大而增大的是__________;函数y随x的增大而减小的是___________;图象在第一、二、三象限的是________ 。

知识提要:正比例函数y=kx(k≠0)的性质:正比例函数y=kx(k≠0)的图象是过_______的一条_________。

⑴当k>0时,图象过______象限;y随x的增大而____。

⑵当k<0时,图象过______象限;y随x的增大而____。

一次函数y=kx+b(k ≠ 0)的性质:一次函数y=kx+b(k≠0)的图象是一条__________。

⑴当k>0时,y 随x 的增大而_________。

⑵当k<0时,y 随x 的增大而_________。

第十四章-一次函数-全章导学案

第十四章-一次函数-全章导学案

第十四章一次函数14.1.1变量学习目标:1.理解变量与函数的概念以及相互之间的关系2.增强对变量的理解3.渗透事物是运动的,运动是有规律的辨证思想重难点:变量与常量,对变量的判断,找变量之间的简单关系,试列简单关系式学习过程:(一)学习准备:信息1:当你坐在摩天轮上时,想一想,随着时间的变化,你离开地面的高度是如何变化的?信息2:汽车以60km/h的速度匀速前进,行驶里程为skm,行驶的时间为th,先填写下面的表格,在试用含t的式子表示s.(二)探究新知:问题:(1)每张电影票的售价为10元,如果早场售出票150张,日场售出票205张,晚场售出票310张,三场电影的票房收入各多少元?设一场电影受出票x张,票房收入为y元,怎样用含x的式子表示y?(2) 在一根弹簧的下端悬挂中重物,改变并记录重物的质量,观察并记录弹簧长度的变化规律,如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)?(3)要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含圆面积S的式子表示圆的半径r?(4)用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。

记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律,设长方形的长为xm,面积为Sm2,怎样用含x的式子表示S?归纳:在一个变化过程中,我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。

指出上述问题中的变量和常量。

(三)运用新知:写出下列各问题中所满足的关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?(1)用总长为60m的篱笆围成矩形场地,求矩形的面积S(m2)与一边长x(m)之间的关系式;(2) 购买单价是0.4元的铅笔,总金额y(元)与购买的铅笔的数量n(支)的关系;(3)运动员在4000m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系;(4)银行规定:五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y (元)之间的关系。

八年级数学上册_第十四章 一次函数_本章综合学案人教版

八年级数学上册_第十四章 一次函数_本章综合学案人教版

第十四章 一次函数 14.1 变量与函数 14.1.1 变量知能新视窗知识结构学点博览学点1 变量和常量在一个变化过程中,有些量的值是按照某种规律变化的,我们称它为变量,有些量的数值是始终不变的,我们称它为常量.理解要点:(1)判断一个量是常量还是变量的方法,需看两个方面:①看它是否在一个变化的过程中;②看它在这个变化过程中的取值情况.(2)变量与常量必须存在同一个变化过程中,常量是相对于某一过程或另一个变量而言的.如:圆的半径R 和周长C 的关系式C=2πR 中,其中C 、R 可取不同数值是变量,而圆周率π和2都保持不变,是常量.(3)在某一个变化过程中,变量、常量都可以有多个,常量可以是一个实数,也可以是一个代数式(数值始终保持不变). 学点2 变量与常量的关系常量与变量是相对的,变量是随不同的问题而有所不同,在这个式子中是变量,也许在其它式中就是常量,也就是说一个量是否是变量、常量是相对的,要看具体问题而定。

理解要点:(1)相对性:例如,在汽车行驶中有三个量:路程S ,行驶时间t,速度v ,当速度v 一定时,路程S 与时间t 是变量,速度v 是常量;当行驶时间t 一定时,路程S 与速度v 是变量,行驶的时间是常量;当路程S 一定时,速度v 与时间t 是变量,路程S 是常量.(2)常量也可以是常数,如C=2πR 中π是常数.名师开小灶金考点考点1 判断变化过程中的变量和常量常量和变量是普遍存在的,它们只是相对于某个变化过程而言的两个概念,因此对它的判别应紧扣定义及相应的实际情境.[例1]指出下列各关系式中的常量与变量(1)圆的面积公式S=πr 2(S 是圆的面积,r 是半径)中,变量是 ,常量是 . (2)求补角的公式y=180°-x 中,变量是 ,常量是 . (3)△ABC 的底边是a ,底边的高为h ,则△ABC 的面积S=21ah ,若h 为一定长,则此式中,变量是 ,常量是 .[点拨]根据变量、常量的定义,抓住“变“与”不变”来解答. [解答](1)S 和r ,π (2)y 和x ,180° (3)S 和a,21和h[方法规律]根据实际问题情境,判断“量”的变化与否,数值发生变化的量是变量,否则为常量.考点2 常量和变量的相对性常量是相对于某一过程或另一个变量而言的,绝对的常量是不存在的.[例2](1)设圆柱的底面半径R不变,圆柱的体积V与圆柱的高h的关系式是V=πR2h在这个式子中,常量和变量分别是什么?(2)设圆柱的高h不变,圆柱的体积V与圆柱的底面半径R的关系式是V=πR2h中在这个式子中,常量和变量分别又是什么?[点拨]常量和变量往往是相对的,相对于某个变化过程,并非一成不变。

第14章一次函数全章学案

第14章一次函数全章学案

14.1.1—14.1.2 变量与函数学习目标1.掌握常量和变量、自变量和因变量(函数)基本概念;2、确定函数式与函数值。

重(难)点:确定函数式与函数值。

学习过程一、情境引入问题1如图是某地一天内的气温变化图.看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?解:(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃;(2)这一天中,最高气温是5℃.最低气温是-4℃;(3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低.从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢?二、探究归纳问题2银行对各种不同的存款方式都规定了相应的利率,下表是2007年7月中国工商银行为“整存整取”的存款方式规定的年利率:观察上表,说说随着存期x的增长,相应的年利率y是如何变化的.解:随着存期x的增长,相应的年利率y也随着增长.问题3收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值:观察上表回答:(1)波长l和频率f数值之间有什么关系?(2)波长l越大,频率f就________.解(1)l 与f的乘积是一个定值,即lf=300 000,或者说f=l300000(2)波长l越大,频率f就越小.问题4圆的面积随着半径的增大而增大.如果用r表示圆的半径,S表示圆的面积则S与r之间满足下列关系:S=_________.利用这个关系式,试求出半径为1 cm、1.5 cm、2 cm、2.6 cm、3.2 cm时圆的面积,并将结果填入下表:由此可以看出,圆的半径越大,它的面积就_________.解S=πr2.圆的半径越大,它的面积就越大.在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量,y是因变量,此时也称y是x的函数.问题的研究过程中,还有一种量,它的取值始终保持不变,我们称之为常量,如问题3中的300 000,问题4中的π等.三、实践应用例1 下表是某市2000年统计的该市男学生各年龄组的平均身高.(1)从表中你能看出该市14岁的男学生的平均身高是多少吗?(2)该市男学生的平均身高从哪一岁开始迅速增加?(3)上表反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?解(1)平均身高是146.1cm;(2)约从14岁开始身高增加特别迅速;(3)反映了该市男学生的平均身高和年龄这两个变量之间的关系,其中年龄是自变量,平均身高是因变量.例2写出下列各问题中的关系式,并指出其中的常量与变量:(1)圆的周长C 与半径r 的关系式;(2)火车以60千米/时的速度行驶,它驶过的路程s (千米)和所用时间t (时)的关系式;(3)n 边形的内角和S 与边数n 的关系式.解 (1)C =2π r ,2π是常量,r 、C 是变量;(2)s =60t ,60是常量,t 、s 是变量;(3)S =(n -2)×180,2、180是常量,n 、S 是变量.四、确定函数式与函数值问题1 已知比y 的20%大7的数是x ,写出y 关于x 的函数关系式,并求出当x =6时函数y 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第14章一次函数复习学案
本章内容:变量与函数(单值对应)的概念,函数的三种表示方法(列表法解析式法图象法)及相互间的转换,正比例函数和一次函数的概念、图象性质及应用举例,函数与方程(组)一次不等式(组)的联系
1、下列函数中一次函数有()个
y = x , y=x+1 , y=|x|+8 , y=-
x
1
A 1个
B 2个
C 3个
D 4个
2、(2005年杭州市)已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图像经过()
A.第一、二、三象限B.第一、二、四象限
C.第二、三、四象限D.第一、三、四象限
3、如图,一次函数y=kx+b的图象经过A、B两点,则kx+b>0的解集是()A.x>0 B.x>2
C.x>﹣3 D.﹣3<x<2
4、一次函数的图象如图,则()
A k>0 b>0
B k>0,b<0
C k<0,b>0
D k<0,b>0
7.已知直线y=2x+m不经过第二象限,那么实数m的取值范围是 _.
8.一次函数的图象与直线y =-2
3
x+4平行,且由它沿y轴向下平移4个单位得到,则一
次函数的表达式为 ____ .
9.一次函数y=2x+3与坐标轴的交点为,与坐标轴围成的三角形的面积为典型例题
例1已知一次函数y=3
2x+m和y=-1
2
x+n的图象交于点A(-2,0)且与y轴的交点分
别为B、C两点,求△ABC的面积.巩固练习:
1.在边长为4的正方形ABCD的边BC上,有一点P从B点运动到C点,设PB=x,四边形APCD的面积为y,写出y与自变量x的函数关系式,并且在直角坐标系中画出它的图象.
2.已知等腰三角形周长为20,写出底边长y关于腰长x的函数解析式(x为自变量),并写出自变量取值范围,画出函数图象.
3.已知A(8,0)及在第一象限的动点P(x,y),且x+y=10,设△OPA的面积为S.(1)求S关于x的函数解析式;(2)求x的取值范围;(3)求S=12时P点坐标;(4)画出函数S的图象.
4、如图,直线L 、L 相交于点A,L 与x轴的交点坐标为(-1,0),L 与y轴的交点坐标为(0,-2),结合图象解答下列问题:
⑴求出直线L 表示的一次函数的表达式;
⑵当x为何值时, L 、L 表示的两个一次函数的函数值都大于0?
1.有一卖报人,从报社批进某种证券报是每份1.5元,卖出的价格是每份2元,卖不掉的报纸以每份1元的价格退回报社,在30天的时间里有20天每天可卖出150份,其余10天只能卖出100份,但这30天每天从报社批进的份数必须相同.•设卖报人每天从报社批出x份报纸,月利润为y元.
(1)写出y与x的函数关系式;
(2)画出此函数的图象;
(3)此卖报人应该每天从报社批进多少份报纸时才能使月利润最高?最高利润是多少?2.某果品公司欲请汽车运输公司或火车货运站将60吨水果从A地运到B地。

已知汽车和火车从A地到B地的运输路程均为s千米。

这两家运输单位在运输过程中,除都要收取
1
y2(元)(用含s的式子表示);
(2) 为减少费用,你认为果品公司应选择哪家运输单位运送这批水果更为合算?。

相关文档
最新文档