河南省洛阳市2019-2020学年高三上学期期中数学试卷2 (含答案解析)

合集下载

2019-2020学年河南省洛阳市汝阳县人教版五年级下册期中教学质量检测数学试卷(含答案解析)

2019-2020学年河南省洛阳市汝阳县人教版五年级下册期中教学质量检测数学试卷(含答案解析)

2019-2020学年河南省洛阳市汝阳县人教版五年级下册期中教学质量检测数学试卷学校:___________姓名:___________班级:___________考号:___________一、填空题二、判断题9.是2的倍数的最大三位数是980。

()10.有一张长21厘米,宽14厘米的长方形彩纸,想用它剪几个大小相同的正方形(彩纸无剩余),正方形的边长最大是7厘米。

()11.两个不同质数的和一定是合数。

()12.一个数的因数一定小于这个数,倍数可能等于这个数。

()13.两个数的最大公因数是6,最小公倍数是90,这两个数可能是18和30,也可能是90和6。

()三、选择题14.下面()说法是正确的.A.含有未知数的式子叫做方程.B.一定大于.C.方程4÷x=0.2的解是20.15.表示方程和等式的关系正确的是()。

A.B.C.16.a和b都是不为0的自然数,a=3b,a和b的最小公倍数是()。

A.a B.b C.ab D.3 17.下面()的结果一定是奇数。

A.偶数个奇数连乘B.偶数个奇数连加C.奇数个偶数连加18.把30分解质因数是()。

A.30=1×2×3×5B.30=2×3×5C.30=3×10四、口算和估算19.直接写得数。

6.3+7=7÷12=42.8-4.28=8.2×0.01=8.2÷0.01= 3.5÷0.5=1-0.01=21.5+9.5=0.32×99+0.32=25×0.07×4=五、解方程或比例20.解方程。

7x-0.4=0.35x-1.5=10.812.6x+x=6.84x÷0.5=1.66x+10.2=25.22x+1.8×0.3=3.54六、其他计算21.直接写出下列各组数的最大公因数和最小公倍数。

9和10(1)〔90〕18和24()〔〕27和81()〔〕7和13()〔〕20和30()〔〕11和33()〔〕(2)雅雅从()岁到()岁长得最快,长了()厘米。

河南省洛阳市2019-2020学年高二下学期期中考试数学(文)试题 Word版含解析

河南省洛阳市2019-2020学年高二下学期期中考试数学(文)试题 Word版含解析

洛阳市2019——2020学年第二学期期中考试高二数学试卷(文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.第Ⅰ卷(选择题,共60分)注意事项:1.答题前,考生务必将自己的姓名、考号、考试科目涂写在答题卷上.2.考试结束,将答题卷交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足1i z i ⋅=+,则z 的共轭复数的虚部是( ) A. iB. i -C. 1D. 1-【★答案★】C 【解析】 【分析】由题意结合复数的除法法则可得1z i =-,再根据共轭复数、复数虚部的概念即可得解. 【详解】由题意()()21111i ii z i i i i +⋅+===--=-, 所以z 的共轭复数1z i =+,则z 的共轭复数的虚部为1. 故选:C.【点睛】本题考查了复数的运算,考查了共轭复数及复数虚部的概念,属于基础题. 2.用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,反设正确..的是( ) A. 假设三内角都不大于60° B. 假设三内角都大于60° C. 假设三内角至多有一个大于60° D. 假设三内角至多有两个大于60°【★答案★】B 【解析】 【分析】“至少有一个”的否定变换为“一个都没有”,即可求出结论. 【详解】“三角形的内角中至少有一个不大于60°”时, 反设是假设三内角都大于60︒. 故选:B.【点睛】本题考查反证法的概念,注意逻辑用语的否定,属于基础题.3.对下列三种图像,正确的表述为()A. 它们都是流程图B. 它们都是结构图C. (1)、(2)是流程图,(3)是结构图D. (1)是流程图,(2)、(3)是结构图【★答案★】C【解析】试题分析:根据流程图和结构图的定义分别判断三种图形是流程图还是结构图.解:(1)表示的是借书和还书的流程,所以(1)是流程图.(2)表示学习指数函数的一个流程,所以(2)是流程图.(3)表示的是数学知识的分布结构,所以(3)是结构图.故选C.点评:本题主要考查结构图和流程图的识别和判断,属于基础题型.4.有线性相关关系的变量,x y有观测数据(,)(1,2, (15)i ix y i=,已知它们之间的线性回归方程是ˆ511y x=+,若15118 iix ==∑,则151iiy ==∑()A. 17B. 86C. 101D. 255【★答案★】D【解析】【分析】先计算181.215x==,代入回归直线方程,可得5 1.21117y=⨯+=,从而可求得结果.【详解】因为15118 iix ==∑,所以18 1.215x==,代入回归直线方程可求得5 1.21117y=⨯+=,所以1511715255 iiy==⨯=∑,故选D.【点睛】该题考查的是有关回归直线的问题,涉及到的知识点有回归直线一定会过样本中心点,利用相关公式求得结果,属于简单题目.5. 分析法是从要证的不等式出发,寻求使它成立的( ) A. 充分条件 B. 必要条件C. 充要条件D. 既不充分又不必要条件【★答案★】A 【解析】试题分析:本题考查的分析法和综合法的定义,根据定义分析法是从从求证的结论出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件;综合法是指从已知条件出发,借助其性质和有关定理,经过逐步的逻辑推理,最后达到待证结论或需求问题,其特点和思路是“由因导果”,即从“已知”看“可知”,逐步推向“未知”.我们易得★答案★. 解:∵分析法是逆向逐步找这个结论成立需要具备的充分条件; ∴分析法是从要证的不等式出发,寻求使它成立的充分条件 故选A点评:分析法──通过对事物原因或结果的周密分析,从而证明论点的正确性、合理性的论证方法,也称为因果分析,从求证的不等式出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件;综合法是指从已知条件出发,借助其性质和有关定理,经过逐步的逻辑推理,最后达到待证结论或需求问题,其特点和思路是“由因导果”,即从“已知”看“可知”,逐步推向“未知”. 6.有一段演绎推理:“直线平行于平面,则平行于平面内所有直线;已知直线平面,直线∥平面,则∥”的结论显然是错误的,这是因为( )A. 大前提错误B. 小前提错误C. 推理形式错误D. 非以上错误【★答案★】A 【解析】演绎推理,就是从一般性的前提出发,通过推导,得出具体陈述或个别结论的过程,演绎推理一般有三段论形式,本题中直线平行于平面,则平行于平面内所有直线是大前提,它是错误的. 考点:演绎推理.7.如图:图O 内切于正三角形ABC ,则3ABCOABOACOBCOBCSSSSS=++=⋅,即11||3||22BC h r BC ⋅⋅=⋅⋅⋅,3h r =,从而得到结论:“正三角形的高等于它的内切圆的半径的3倍”;类比该结论到正四面体,可得到结论:“正四面体的高等于它的内切球的半径的a 倍”,则实数a =( )A. 5B. 4C. 3D. 2【★答案★】B 【解析】 【分析】利用等体积,即可得出结论.【详解】解:设正四面体的高为h ,底面积为S ,内切球的半径为r , 则11433V Sh Sr ==⋅, 4h r ∴=,则4a =. 故选:B.【点睛】本题考查类比推理,考查等体积方法的运用,考查学生的计算能力,比较基础. 8.观察下列各式,1a b +=,223a b +=,334a b +=,447a b +=,5511a b +=,…,则99a b +=( ) A. 47 B. 76 C. 121 D. 123【★答案★】B 【解析】 【分析】根据题目所给等式,归纳出正确结论.【详解】根据题目所给等式可知:667771118,111829a b a b +=+=+=+=,88182947a b +=+=,99294776a b +=+=.故选:B【点睛】本小题主要考查合情推理,属于基础题. 9.若5P a a =++,23Q a a =+++(0a ≥),则P ,Q 的大小关系是( )A. P Q <B. P Q =C. P Q >D. P ,Q 的大小由a 的取值确定 【★答案★】A 【解析】∵()()()22222525[252232556P Q a a a a a a a a a a -=+++-++++=+-++()且22556a a a a +<++ ,∴22P Q <,又,0P Q >,∴P Q <,故选C.10.阅读如图所示的程序框图,若输入2020m =,则输出S 为输出( )A. 22020B. 21009C. 21010D. 21011【★答案★】D 【解析】 【分析】运行程序,根据循环结构程序框图计算出输出的结果.【详解】运行程序,2020m =,0,1S i ==,1S =,判断是,3,13i S ==+,判断是,……,2019,0132019i S ==++++,判断是,2021,132021i S ==+++,判断否,输出212021132021*********S +=+++=⨯=. 故选:D【点睛】本小题主要考查根据程序框图计算输出结果,属于基础题.11.部分与整体以某种相似的方式呈现称为分形,一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.分形几何学不仅让人们感悟到科学与艺木的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义.如图,由波兰数学家谢尔宾斯基1915年提出的谢尔宾斯基三角形就属于-种分形,具体作法是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形.若在图④中随机选取-点,则此点取自阴影部分的概率为( ) A.928B.1928C.2764D.3764【★答案★】C 【解析】 【分析】根据图①,②,③归纳得出阴影部分的面积与大三角形的面积之比,再用几何概型的概率公式可得★答案★.【详解】依题意可得:图①中阴影部分的面积等于大三角形的面积,图②中阴影部分的面积是大三角形面积的34, 图③中阴影部分的面积是大三角形面积的916, 归纳可得,图④中阴影部分的面积是大三角形面积的2764, 所以根据几何概型的概率公式可得在图④中随机选取-点,则此点取自阴影部分的概率为2764. 故选:C【点睛】本题考查了归纳推理,考查了几何概型的概率公式,属于基础题.12.已知复数z 满|12||2|22z i z i ---++=(i 是虚数单位),若在复平面内复数z 对应的点为Z ,则点Z 的轨迹为( )A. 双曲线B. 双曲线的一支C. 两条射线D. 一条射线【★答案★】B 【解析】 【分析】利用两个复数的差的绝对值表示两个复数对应点之间的距离,得出等式的几何意义,结合双曲线的定义,即可求解.【详解】因为复数z 满|12||2|22z i z i ---++=(i 是虚数单位), 在复平面内复数z 对应的点为Z ,则点Z 到点(1,2)的距离减去到点(2,1)--的距离之差等于22, 而点(1,2)与点(2,1)--之间的距离为32,根据双曲线的定义,可得点Z 表示(1,2)和(2,1)--为焦点的双曲线的一支. 故选:B.【点睛】本题主要考查了复数的几何意义及其应用,其中解答中根据复数模的几何意义,结合双曲线的定义求解是解答的关键,着重考查了分析问题和解答问题的能力.第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分. 13.设复数1z i =+,则22||z z-=___________. 【★答案★】5 【解析】 【分析】利用复数运算化简得到2212z i z-=--,再计算复数模得到★答案★. 【详解】1z i =+,则()()()222211111222i i z i i i i i z -=-+=-+=---=--+, 则2222215z z-=+=.故★答案★为:5.【点睛】本题考查了复数的计算,复数的模,意在考查学生的计算能力和转化能力. 14.我们知道:在平面内,点()00,x y 到直线0Ax By C ++=的距离公式为0022Ax By C d A B++=+,通过类比的方法,可求得在空间中,点()2,4,1到平面2310x y z +++=的距离为___________. 【★答案★】14 【解析】 【分析】利用点到直线的距离公式类比到空间点()000,,x y z 到平面0Ax By Cz D +++=的距离为000222Ax By Cz Dd A B C+++=++,进而可求得点()2,4,1到平面2310x y z +++=的距离.【详解】在平面内,点()00,x y 到直线0Ax By C ++=的距离公式为0022Ax By C d A B++=+,类比到空间中,则点()000,,x y z 到平面0Ax By Cz D +++=的距离为000222Ax By Cz Dd A B C+++=++,因此,点()2,4,1到平面2310x y z +++=的距离为22222431114123d +⨯+⨯+==++.故★答案★为:14.【点睛】本题考查类比推理,考查点到平面的距离的计算,考查推理能力与计算能力,属于基础题. 15.设11()()()()11n ni i f n n i N i+-=+∈-+,则集合{|()}x x f n =的子集个数是___________. 【★答案★】8 【解析】 【分析】化简得到()()()nni f n i =+-,计算结合复数乘方的周期性得到{}{}|()2,0,2x x f n ==-,得到★答案★.【详解】()()()()()()()()22111()()()()()1111111n nn n n n i i i f n i i i i i i i i i -+-=+=+-+-=+-++-+, ()()0(0)2i f i =+-=,()()11(1)0i f i =+-=,()()22(2)2i f i =+-=-, ()()33(3)0i f i =+-=,()()44(4)2i f i =+-=,根据n i 的周期性知{}{}|()2,0,2x x f n ==-,子集个数为328=.故★答案★为:8. 【点睛】本题考查了复数的运算,集合的子集,意在考查学生的计算能力和综合应用能力,周期性的利用是解题的关键. 16.给出下列命题:①线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱; ②用2R 来刻画回归效果,2R 越大,说明模型的拟合效果越好;③根据22⨯列联表中的数据计算得出的2K 的值越大,两类变量相关的可能性就越大; ④在回归分析模型中,残差平方和越小,说明模型的拟合效果越好;⑤从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.其中真命题的序号是_______. 【★答案★】②③④ 【解析】 【分析】根据“残差”的意义、线性相关系数和相关指数的意义等统计学知识,逐项判断,即可作出正确的判断.【详解】对①,根据线性相关系数r 的绝对值越接近1,两个变量的线性相关性越强;反之,线性相关性越弱,故①错误;对②,根据用相关指数2R 刻画回归的效果时, 2R 的值越大说明模型的拟合效果就越好,故②正确;对③,2×2列联表中的数据计算得出的2K 越大,“X 与Y 有关系”可信程度越大,相关性就越大,故③正确;对④,根据比较模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果就越好,故④正确;对⑤,新产品没有明显差异,抽取时间间隔相同,故属于系统抽样,故⑤错误. 综上所述,正确的是②③④. 故★答案★为:②③④【点睛】本题解题关键是掌握统计学的基本概念和“残差”的意义、线性相关系数和相关指数的意义,考查了分析能力和计算能力,属于基础题.三、解答题:本大题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤. 17.已知m 为实数,设复数22(56)(253)z m m m m i =++++-. (1)当复数z 为纯虚数时,求m 的值;(2)当复数z 对应的点在直线70x y -+=的上方,求m 的取值范围. 【★答案★】(1)2-.(2)(,4)(4,)-∞-⋃+∞ 【解析】【分析】(1)直接根据复数的类型得到方程,解得★答案★.(2)直线70x y -+=的上方的点的坐标(),x y 应满足70x y -+<,代入数据解不等式得到★答案★.【详解】(1)由题意得:225602530,m m m m ⎧++=⎨+-≠⎩,解得2m =-.(2)复数z 对应的点的坐标为()2256,253m m m m +++-, 直线70x y -+=的上方的点的坐标(),x y 应满足70x y -+<, 即:22(56)(253)70m m m m +-+-+<+,解得4m >或4m <-, ∴m 的取值范围为(,4)(4,)-∞-⋃+∞.【点睛】本题考查了根据复数的类型和复数的对应点的位置求参数,意在考查学生的计算能力和转化能力.18.(1)已知0a b ≥>,求证:332222a b ab a b -≥-;(2)若x ,y 都是正实数,且2x y +>,用反证法证明:12x y +<与12yx+<中至少有一个成立. 【★答案★】(1)证明见解析.(2)证明见解析 【解析】 【分析】(1)利用作差法即可证明.(2)假设12x y +≥,12yx+≥,从而可得12x y +≥,12y x +≥,两不等式相加即可找出矛盾点,即证.【详解】(1)33222222222()()a b ab a b a a b b a b --+=-+-()()(2)a b a b a b =-++,∵0a b ≥>,∴0a b -≥,0a b +>,20a b +>, 从而:()()()20a b a b a b -++≥,∴332222a b ab a b -≥-.(2)假设12x y +≥,12yx+≥, 则12x y +≥,12y x +≥,所以1122x y y x +++≥+,所以2x y ≥+, 与条件2x y +>矛盾,所以假设不成立,即12x y +<与12yx+<中至少有一个成立. 【点睛】本题考查了作差法证明不等式、反证法,反证法关键找出矛盾,属于基础题.19. 为了研究“教学方式”对教学质量的影响,某高中数学老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.(1)学校规定:成绩不低于75分的为优秀.请画出下面的22⨯列联表. 甲班 乙班 合计 优秀 不优秀 合计(2)判断有多大把握认为“成绩优秀与教学方式有关”.下面临界值表仅供参考:0.15 0.10 0.05 0.025 0.010 0.005 0.0012.072 2.7063.841 5.024 6.635 7.879 10.828参考公式:22()()()()()n ad bcKa b c d a c b d-=++++【★答案★】(1)表格解析;(2)有97.5%的把握认为成绩优秀与教学方式有关.【解析】试题分析:解题思路:(1)根据茎叶图中的数据,按不同区间进行填表即可;(2)利用公式求值,结合临界值表进行判断.规律总结:以图表给出的统计题目一般难度不大,主要考查频率直方图、茎叶图、频率分布表给出;利用列联表判定两个变量间的相关性,要正确列出或补充完整列联表,利用公式求值,结合临界值表进行判断.试题解析:(1)甲班乙班合计优秀 6 14 20不优秀14 6 20合计20 20 40(2)=因此,我们有97.5%的把握认为成绩优秀与教学方式有关. 考点:1.茎叶图;2.独立性检验. 20.数列{}n a 中,11a =,*13()3nn na a a N n +=+∈ (1)求234,,a a a ,猜想数列{}n a 的通项公式; (2)证明:数列1{}na 是等差数列. 【★答案★】(1)234331,,452a a a ===,32n a n =+;(2)证明见解析 【解析】 【分析】(1)根据*1131,()3nn na a n a a +==∈+N ,分别令1,2,3n =,即可求解234,,a a a 的值,猜想得出数列的通项公式; (2)由*13()3n n na a n a +=+∈N ,得到11113n n a a +=+,利用等差数列的定义,即可得到证明. 【详解】(1)由题意,数列{}n a 中,11a =,*13()3nn na a n a +=+∈N , 令1n =,可得1213333314a a a ===++; 令2n =,可得2323335a a a ==+; 令3n =,可得343331362a a a ===+; 所以234331,,452a a a ===, 猜想:数列{}n a 的通项公式32n a n =+.(2)由*13()3n nn a a n a +=+∈N ,可得1131133n n n n a a a a ++==+,即11113n n a a +-=(常数), 又由11a =,所以111a ,所以数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,以13为公差的是等差数列. 【点睛】本题主要考查了数列的递推公式的应用,以及利用等差数列的定义的应用,考查了推理与运算能力,属于基础题.21.已知点()1,2A 是椭圆C :22221(0)y x a b a b+=>>上的一点,椭圆C 的离心率与双曲线221x y -=的离心率互为倒数,斜率为2直线l 交椭圆C 于B ,D 两点,且A 、B 、D 三点互不重合.(1)求椭圆C 的方程;(2)若12,k k 分别为直线AB ,AD 的斜率,求证:12k k +为定值.【★答案★】(1)22142y x +=(2)详见解析【解析】 【分析】(1)根据椭圆的定义和几何性质,建立方程,即可求椭圆C 的方程; (2)设直线BD 的方程为2y x m =+,代入椭圆方程,设D (x 1,y 1),B (x 2,y 2),直线AB 、AD 的斜率分别为:,AB AD k k ,则12122211AB AD y y x x k k +=--+--,由此导出结果.【详解】(1)由题意,可得e =c a =22,代入A (1,2)得22211a b+=, 又222a b c =+,解得2,2a b c ===,所以椭圆C 的方程22142y x +=. (2)证明:设直线BD 的方程为y =2x +m ,又A 、B 、D 三点不重合,∴0m ≠, 设D (x 1,y 1),B (x 2,y 2),则由22224y x m x y ⎧=+⎪⎨+=⎪⎩得4x 2+22mx +m 2-4=0 所以△=-8m 2+64>0,所以22-<m <22.x 1+x 2=-22m ,21244m x x -⋅=设直线AB 、AD 的斜率分别为:k AB 、k AD , 则k AD +k AB =121212121222222111y y x x m x x x x x x --+-+=+⋅----+=2222222222042142m m m m --+⋅=-=-++ 所以k AD +k AB =0,即直线AB ,AD 的斜率之和为定值.【点睛】该题考查的是有关直线与椭圆的问题,涉及到的知识点有椭圆方程的求解.直线与椭圆的位置关系,直线斜率坐标公式,属于中档题目. 22.已知函数()ln 1f x x ax =-+.(1)若曲线()y f x =在点()1,(1)A f 处的切线l 与直线4330x y +-=垂直,求实数a 的值;(2)若()0f x ≤恒成立,求实数a 的取值范围;(3)证明:()111ln(1)231n n N n *+>++⋅⋅⋅⋅⋅⋅+∈+ 【★答案★】(1)14a =(2) 1.a ≥(3)证明见解析【解析】【详解】试题分析:(1)利用导数的几何意义求曲线在点()1,(1)A f 处的切线方程,注意这个点的切点;(2)对于恒成立的问题,常用到以下两个结论:()a f x ≥恒成立max ()a f x ⇔≥,()a f x ≤恒成立min ()a f x ⇔≤;(3)证明不等式,注意应用前几问的结论. 试题解析:(1)函数的定义域为()10,,()f x a x+∞'=-, 所以()11f a '=-,又切线l 与直线4330x y +-=垂直, 所以切线l 斜率为34,从而314a -=,解得14a = ,(2)若0a ≤,则()10,f x a x->'=则()f x 在()0,∞+上是增函数 而()()11,0f a f x =-≤不成立,故0.a >若0a >,则当10,x a ⎛⎫∈ ⎪⎝⎭时,()10f x a x '=->; 当1,x a ⎛⎫∈+∞⎪⎝⎭时,()10.f x a x -<'=所以()f x 在10,a ⎛⎤ ⎥⎝⎦上是增函数,在1,a⎡⎫+∞⎪⎢⎣⎭上是减函数,所以()f x 的最大值为1ln .f a a ⎛⎫=-⎪⎝⎭要使()0f x ≤恒成立,只需ln 0a -≤,解得 1.a ≥(3)由(2)知,当1a =时,有()0f x ≤在()0,∞+上恒成立, 且()f x 在(]0,1上是增函数,()10f =所以ln 1x x <-在(]0,1x ∈上恒成立 .令1n x n =+,则1ln1,111n n n n n <-=-+++ 令1,2,3......,n n =则有11211ln,ln ,......,ln .223311n n n <-<-<-++ 以上各式两边分别相加, 得12111lnln ......ln .......231231n n n ⎛⎫+++<-+++ ⎪++⎝⎭ 即1111ln......,1231n n ⎛⎫<-+++ ⎪++⎝⎭故()111ln 1 (231)n n +>++++ 考点:(1)求切线方程;(2)函数在闭区间上恒成立的问题;(3)不等式证明.感谢您的下载!快乐分享,知识无限!。

河南省洛阳市2022-2023学年高二上学期期中考试理科数学试卷(含答案)

河南省洛阳市2022-2023学年高二上学期期中考试理科数学试卷(含答案)
求直线被曲线 ′ 截得的最短的弦长;
(3) 已知点的坐标为(5,3),点在曲线 ′ 上运动,求线段的中点的轨迹方程.
22. (12 分)
如图,长方体 — 1 1 1 1 中, = 2 = 21 ,
点在棱上且1 丄平面1 1

(1)求 的值
21. ( 12 分)
已知两定点 (-4,0), (-1,0),动点 满足 | | = 2 ||,直线 :(2 + 1) + ( + 1) −
5 − 3 = 0.
(1) 求动点的轨迹方程,并说明轨迹的形状;
(2) 记动点的轨迹为曲线,把曲线向右平移 1 个单位长度,向上平移 1 个单位长度后得到曲线 ′ ,
反射光线所在直线的方程.
20. (12 分)
在直角梯形 中, //, = 2 = 2 =2 2,∠ = 900 如图(1). 把△沿
翻折,使得平面 ⊥平面,如图(2).
(1) 求证: ⊥ ;
(2) 若为线段的中点,求点到平面的距离.
所成角的余弦值为
A.
6
B.
3
3
C.
3
15
D.
5
10
5
12. 若圆 2 + 2 − 4 − 4 − 10 = 0至少有三个不同的点到直线: = 的距离为 2 2,则直线的倾斜角
的取值范围是



A.[ 12 , 4 ]
5
B. [ 12 , 12 ]


C. [ 6 , 3 ]
B. - 5
C. 10
D. -10
2.已知(4,1,9),(2,4,3),则线段的长为
A. 39
B.7

2017-2018学年河南省洛阳市高二上学期期中数学试题(解析版)

2017-2018学年河南省洛阳市高二上学期期中数学试题(解析版)

2017-2018学年河南省洛阳市高二(上)期中数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣6<0},B={x|x2+2x﹣8>0},则A∪B=()A.{x|2<x<3}B.{x|﹣2<x<3}C.{x|x>﹣4或x>2}D.{x|x<﹣4或x >﹣2}2.(5分)△ABC中,==,则△ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形3.(5分)若a,b,c∈R,且a>b,则下列不等式一定成立的是()A.>0 B.(a﹣b)c2>0 C.ac>bc D.a+c≥b﹣c4.(5分)在等比数列{a n}中,a n>0,已知a1=6,a1+a2+a3=78,则a2=()A.12 B.18 C.24 D.365.(5分)设正实数a,b满足2a+3b=1,则的最小值是()A.25 B.24 C.22 D.166.(5分)海中有一小岛,海轮由西向东航行,望见这岛在北偏东75°,航行8n mile以后,望见这岛在北偏东60°,海轮不改变航向继续前进,直到望见小岛在正北方向停下来做测量工作,还需航行()n mile.A.8 B.4 C.D.7.(5分)设等差数列{a n}的公差d≠0,且a2=﹣d,若a k是a6与a k+6等比中项,则k=()A.5 B.6 C.9 D.368.(5分)若函数f(x)=的定义域是R,则实数a的取值范围是()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣∞,﹣2]∪[2,+∞)D.[﹣2,2]9.(5分)已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.10.(5分)设等差数列{a n}的前n项和为S n,S15>0,a8+a9<0,则使<0成立的最小自然数n的值为()A.15 B.16 C.17 D.1811.(5分)在平而直角坐标系中,不等式组表示的平面区域面积为π,若x,y满足上述约束条件,则z=的最小值为()A.﹣1 B.C.D.12.(5分)已知数列{a n}中,a1=2,若a n+1﹣a n=a n2,设T m=,若T m<2018,则正整数m的最大值为()A.2019 B.2018 C.2017 D.2016二、填空题:本题共4个小题,每小题5分,共20分.x<0|2<x<3}B.{x|-2<x<3}C.{x|x>13.(5分)不等式组表示的平面区域内的整点坐标是.14.(5分)已知△ABC的内角A,B,C的对边分别为a,b,c,若a=2且sinA+cosA=2,则角C的大小为.15.(5分)如图所示,在圆内接四边形ABCD中,AB=6,BC=3,CD=4,AD=5,则四边形ABCD的面积为.16.(5分)已知数列{a n}中,a1=l,S n为其前n项和,当n≥2时,2a n+S n2=a n S n成立,则S10=.三、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或盐酸步骤.17.(10分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=﹣ac.(1)求B;(2)若,,求a,c.18.(12分)已知方程x2+2(a+2)x+a2﹣1=0.(1)当该方程有两个负根时,求实数a的取值范围;(2)当该方程有一个正根和一个负根时,求实数a的取值范围.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}的通项公式;(2){b n}为各项非零的等差数列,其前n项和S n=n2,求数列的前n项和T n.20.(12分)某市园林局将一块三角形地块ABC的一个角AMN建设为小游园,已知A=120°,AB,AC的长度均大于400米,现要在边界AM,AN处建设装饰墙,沿MN建设宽1.5米的健康步道.(1)若装饰墙AM,AN的总长度为400米,AM,AN 的长度分别为多少时,所围成的三角形地块AMN的面积最大?(2)若AM段装饰墙墙髙1米,AN段装饰墙墙髙1.5米,AM段装饰墙造价为每平方米150元,AN段装饰墙造价为每平方米100元,建造装饰墙用了90000元.若建设健康步道每100米需5000元,AM,AN的长度分别为多少时,所用费用最少?21.(12分)已知△ABC为锐角三角形,角A,B,C的对边分别为a,b,c且(b2+c2﹣a2)tanA=bc.(1)求角A的大小;(2)若a=,求2b﹣c的取值范围.22.(12分)设数列{a n}的前n项和为S n,且S n=4﹣a n﹣.(1)令b n=2n﹣1•a n,证明数列{b n}为等差数列,并求{b n}的通项公式;(2)是否存在n∈N*,使得不等式成立,若存在,求出λ的取值范围,若不存在,请说明理由.2017-2018学年河南省洛阳市高二(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣6<0},B={x|x2+2x﹣8>0},则A∪B=()A.{x|2<x<3}B.{x|﹣2<x<3}C.{x|x>﹣4或x>2}D.{x|x<﹣4或x >﹣2}【分析】解不等式得出集合A、B,根据并集的定义写出A∪B.【解答】解:集合A={x|x2﹣x﹣6<0}={x|(x+2)(x﹣3)<0}={x|﹣2<x<3},B={x|x2+2x﹣8>0}={x|(x+4)(x﹣2)>0}={x|x<﹣4或x>2},则A∪B={x|x<﹣4或x>﹣2}.故选:D.【点评】本题考查了解不等式与集合的运算问题,是基础题.2.(5分)△ABC中,==,则△ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形【分析】由,利用正弦定理可得tanA=tanB=tanC,再利用三角函数的单调性即可得出.【解答】解:由正弦定理可得:=,又,∴tanA=tanB=tanC,又A,B,C∈(0,π),∴A=B=C=,则△ABC是等边三角形.故选:D.【点评】本题考查了正弦定理、三角函数的单调性,考查了推理能力与计算能力,属于中档题.3.(5分)若a,b,c∈R,且a>b,则下列不等式一定成立的是()A.>0 B.(a﹣b)c2>0 C.ac>bc D.a+c≥b﹣c【分析】对于A,根据不等式的性质即可判断,举反例即可判断B,C,D【解答】解:A、∵a﹣b>0,c2>0,∴>0B、∵a﹣b>0,∴(a﹣b)2>0,又c2≥0,∴(a﹣b)2c≥0,本选项不一定成立,C、c=0时,ac=bc,本选项不一定成立;D、当a=﹣1,b=﹣2,c=﹣3时,a+c=﹣4,b﹣c=1,显然不成立,本选项不一定成立;故选A【点评】此题考查了不等式的性质,利用了反例的方法,是一道基本题型.4.(5分)在等比数列{a n}中,a n>0,已知a1=6,a1+a2+a3=78,则a2=()A.12 B.18 C.24 D.36【分析】先求出公比q,即可求出答案.【解答】解:设公比为q,由a1=6,a1+a2+a3=78,可得6+6q+6q2=78,解得q=3或q=﹣4(舍去),∴a2=6q=18,故选:B【点评】本题考查了等比数列的通项公式,属于基础题.5.(5分)设正实数a,b满足2a+3b=1,则的最小值是()A.25 B.24 C.22 D.16【分析】直接利用函数的关系式及均值不等式求出函数的最小值.【解答】解:正实数a,b满足2a+3b=1,则=(2a+3b)()=+9≥13+12=25,故的最小值为25.故选:D.【点评】本题考查的知识要点:函数的关系式的恒等变换,均值不等式的应用.6.(5分)海中有一小岛,海轮由西向东航行,望见这岛在北偏东75°,航行8n mile以后,望见这岛在北偏东60°,海轮不改变航向继续前进,直到望见小岛在正北方向停下来做测量工作,还需航行()n mile.A.8 B.4 C.D.【分析】作出示意图,根据等腰三角形锐角三角函数的定义即可求出继续航行的路程.【解答】解:设海岛位置为A,海伦开始位置为B,航行8n mile后到达C处,航行到D处时,海岛在正北方向,由题意可知BC=8,∠ABC=15°,∠BCA=150°,∠ADC=90°,∠ACD=30°,∴∠BAC=15°,∴AC=BC=8,∴CD=AC•cos∠ACD=4.故选C.【点评】本题考查了解三角形的应用,属于基础题.7.(5分)设等差数列{a n}的公差d≠0,且a2=﹣d,若a k是a6与a k+6等比中项,则k=()A.5 B.6 C.9 D.36【分析】运用等差数列的通项公式,以及等比数列的中项的性质,化简整理解方程即可得到k的值.【解答】解:等差数列{a n}的公差d≠0,且a2=﹣d,可得a1=a2﹣d=﹣2d,则a n=a1+(n﹣1)d=(n﹣3)d,若a k是a6与a k+6的等比中项,即有a k2=a6a k+6,即为(k﹣3)2d2=3d•(k+3)d,由d不为0,可得k2﹣9k=0,解得k=9(0舍去).故选:C.【点评】本题考查等差数列的通项公式和等比数列中项的性质,考查化简整理的运算能力,属于基础题.8.(5分)若函数f(x)=的定义域是R,则实数a的取值范围是()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣∞,﹣2]∪[2,+∞)D.[﹣2,2]【分析】要使函数有意义,则2﹣1≥0,解得即可.【解答】解:要使函数有意义,则2﹣1≥0,即x2+ax+1≥0,∴△=a2﹣4≤0,解得﹣2≤a≤2,故选:D【点评】本题考查了函数的定义域和不等式的解法,属于基础题.9.(5分)已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.【分析】已知等式利用正弦定理化简,再利用诱导公式及两角和与差的正弦函数公式化简,求出tanB的值,确定出B的度数,利用三角形面积公式求出ac的值,利用余弦定理,基本不等式可求b的最小值.【解答】解:由正弦定理得到:sinA=sinCsinB+sinBcosC,∵在△ABC中,sinA=sin[π﹣(B+C)]=sin(B+C),∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,∴cosBsinC=sinCsinB,∵C∈(0,π),sinC≠0,∴cosB=sinB,即tanB=1,∵B∈(0,π),∴B=,=acsinB=ac=1+,∵S△ABC∴ac=4+2,由余弦定理得到:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac≥2ac﹣ac=4,当且仅当a=c时取“=”,∴b的最小值为2.故选:A.【点评】此题考查了正弦、余弦定理,基本不等式以及三角形的面积公式,熟练掌握定理及公式是解本题的关键,属于中档题.10.(5分)设等差数列{a n}的前n项和为S n,S15>0,a8+a9<0,则使<0成立的最小自然数n的值为()A.15 B.16 C.17 D.18【分析】由于S15==15a8>0,a8+a9<0,可得a8>0,a9<0,进而得出.【解答】解:∵S15==15a8>0,a8+a9<0,∴a8>0,a9<0,∴S16==8(a8+a9)<0,则使<0成立的最小自然数n的值为16.故选:B.【点评】本题考查了等差数列的通项公式与求和公式及其性质、不等式的性质,考查了推理能力与计算能力,属于中档题.11.(5分)在平而直角坐标系中,不等式组表示的平面区域面积为π,若x,y满足上述约束条件,则z=的最小值为()A.﹣1 B.C.D.【分析】由约束条件作出可行域,由z==1+,而的几何意义为可行域内的动点与定点P(﹣3,2)连线的斜率.结合直线与圆的位置关系求得答案.【解答】解:∵不等式组(r为常数)表示的平面区域的面积为π,∴圆x2+y2=r2的面积为4π,则r=2.由约束条件作出可行域如图,由z==1+,而的几何意义为可行域内的动点与定点P(﹣3,2)连线的斜率.设过P的圆的切线的斜率为k,则切线方程为y﹣2=k(x+3),即kx﹣y+3k+2=0.由=2,解得k=0或k=﹣.∴z=的最小值为1﹣=﹣.故选:C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.12.(5分)已知数列{a n}中,a1=2,若a n+1﹣a n=a n2,设T m=,若T m<2018,则正整数m的最大值为()A.2019 B.2018 C.2017 D.2016=a n2+a n=a n(a n+1)≥6,推导出=,从而【分析】a n+1,进而T m=m﹣(﹣)<m﹣,由此能求出正整数m的最大值.【解答】解:由a n﹣a n=a n2,得a n+1=a n2+a n=a n(a n+1)≥6,+1∴=,∴=﹣,∴++…+=(﹣)+(﹣)+…+(﹣)=﹣∈(0,),∵,∴T m==m﹣(﹣)=m﹣+<m﹣+=m﹣∵T m<2018,∴m﹣<2018,∴m<2018+∴正整数m的最大值为2018,故选:B【点评】本题考查了数列递推关系、放缩法,考查了推理能力与计算能力,属于中档题.二、填空题:本题共4个小题,每小题5分,共20分.x<0|2<x<3}B.{x|-2<x<3}C.{x|x>13.(5分)不等式组表示的平面区域内的整点坐标是(﹣1,1).【分析】先根据不等式组画出可行域,再验证哪些当横坐标、纵坐标为整数的点是否在可行域内.【解答】解:根据不等式组画出可行域如图:由图象知,可行域内的点的横坐标为整数时x=﹣1,纵坐标可能为﹣1或﹣2即可行域中的整点可能有(﹣1,1)、(﹣1,2),经验证点(﹣1,1)满足不等式组,(﹣1,2)不满足不等式组,∴可行域中的整点为(﹣1,1),故答案为:(﹣1,1),【点评】本题考查一元二次不等式表示的区域,要会画可行域,同时要注意边界直线是否能够取到,还要会判断点是否在可行域内(点的坐标满足不等式组时,点在可行域内).属简单题.14.(5分)已知△ABC的内角A,B,C的对边分别为a,b,c,若a=2且sinA+cosA=2,则角C的大小为.【分析】利用三角恒等变换求出A,再利用正弦定理得出C.【解答】解:∵sinA+cosA=2,即2sin(A+)=2,∵0<A<π,∴A+=,即A=,由正弦定理得:,即,∴sinC=,∴C=或C=(舍).故答案为:.【点评】本题考查了正弦定理,属于基础题.15.(5分)如图所示,在圆内接四边形ABCD 中,AB=6,BC=3,CD=4,AD=5,则四边形ABCD 的面积为 6.【分析】利用余弦定理可求BD 2=5﹣4cosA=25+24cosA ,解得cosA=,结合范围0<A <π,利用同角三角函数基本关系式可求sinA ,利用三角形面积公式即可计算得解.【解答】解:∵四边形ABCD 圆内接四边形, ∴∠A +∠C=π,∵连接BD ,由余弦定理可得BD 2=AB 2+AD 2﹣2AB•AD•cosA=36+25﹣2×6×5cosA=61﹣60cosA , 且BD 2=CB 2+CD 2﹣2CB•CD•cos (π﹣A ) =9+16+2×3×4cosA=25+24cosA , ∴61﹣60cosA=25+24cosA , ∴cosA= 又0<A <π, ∴sinA=.∴S 四边形ABCD =S △ABD +S △CBD =AB•AD•sinA +CD•CB•sin (π﹣A )=×6×5×+×3×4×=6,故答案为:6【点评】本题主要考查了余弦定理,同角三角函数基本关系式,三角形面积公式的应用,考查了转化思想和数形结合思想的应用,属于中档题.16.(5分)已知数列{a n}中,a1=l,S n为其前n项和,当n≥2时,2a n+S n2=a n S n成立,则S10=.S n=S n﹣1﹣S n,可得数列{}是首项为1,公差为的等【分析】由已知得S n﹣1差数列,从而能求【解答】解:∵2a n+S n2=a n S n,∴S n2=a n(S n﹣2),a n=S n﹣S n﹣1(n≥2),∴S n2=(S n﹣S n﹣1)(S n﹣2),S n=S n﹣1﹣S n,…①即S n﹣1•S n≠0,由题意S n﹣1•S n,得﹣=,将①式两边同除以S n﹣1∵a1=l,∴=1∴数列{}是首项为1,公差为的等差数列,∴=1+(n﹣1)=(n+1)∴S n=,∴S10=,故答案为:【点评】本题考查数列的递推公式和前n项和,属于中档题三、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或盐酸步骤.17.(10分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=﹣ac.(1)求B;(2)若,,求a,c.【分析】(1)直接利用关系式的恒等变换,转化为余弦定理的形式,进一步求出B的值.(2)利用正弦定理已知条件求出结果.【解答】解:(1)△ABC中,角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=﹣ac.则:,由于:0<B<π,解得:B=.(2)由于,所以:a=2c,由及a2+c2﹣b2=﹣ac.得到:a2+c2+ac=7.解得:a=2,c=1.【点评】本题考查的知识要点:余弦定理的应用,正弦定理的应用.18.(12分)已知方程x2+2(a+2)x+a2﹣1=0.(1)当该方程有两个负根时,求实数a的取值范围;(2)当该方程有一个正根和一个负根时,求实数a的取值范围.【分析】(1)当方程有两个负根时,利用判别式△≥0和根与系数的关系求出a的取值范围;(2)根据方程有一个正根和一个负根时,对应二次函数满足f(0)<0,由此求出实数a的取值范围.【解答】解:方程x2+2(a+2)x+a2﹣1=0的判别式为△=4(a+2)2﹣4(a2﹣1)=16a+20,当△=16a+20≥0时,设方程x2+2(a+2)x+a2﹣1=0两个实数根为x1、x2,则x1+x2=﹣2(a+2),x1x2=a2﹣1;(1)∵方程x2+2(a+2)x+a2﹣1=0有两个负根,∴,解得,即a>1或﹣≤a<﹣1,∴实数a的取值范围是[﹣,﹣1)∪(1,+∞);(2)∵方程x2+2(a+2)x+a2﹣1=0有一个正根和一个负根,∴对应二次函数满足f(0)=a2﹣1<0,解得﹣1<a<1,∴实数a的取值范围是(﹣1,1).【点评】本题考查了一元二次方程根的分布情况以及判别式和根与系数的关系应用问题,是中档题.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}的通项公式;(2){b n}为各项非零的等差数列,其前n项和S n=n2,求数列的前n项和T n.【分析】(1)设数列{a n}的公比为q,(q>0),由题意列方程组求得首项和公比,则数列{a n}的通项公式可求;(2)由{b n}的前n项和求得通项,代入,然后利用错位相减法求其前n项和T n.【解答】解:(1)设数列{a n}的公比为q,(q>0),由a1+a2=6,a1a2=a3,得,解得a1=q=2.∴;(2)当n=1时,b1=S1=1,当n≥2时,b n=S n﹣S n﹣1=n2﹣(n﹣1)2=2n﹣1,∴,∴,,∴=,∴.【点评】本题考查数列递推式,考查了错位相减法求数列的前n项和,是中档题.20.(12分)某市园林局将一块三角形地块ABC的一个角AMN建设为小游园,已知A=120°,AB,AC的长度均大于400米,现要在边界AM,AN处建设装饰墙,沿MN建设宽1.5米的健康步道.(1)若装饰墙AM,AN的总长度为400米,AM,AN 的长度分别为多少时,所围成的三角形地块AMN的面积最大?(2)若AM段装饰墙墙髙1米,AN段装饰墙墙髙1.5米,AM段装饰墙造价为每平方米150元,AN段装饰墙造价为每平方米100元,建造装饰墙用了90000元.若建设健康步道每100米需5000元,AM,AN的长度分别为多少时,所用费用最少?(1)设AM=x米,AN=y米,则x+y=400,△AMN的面积S=xysin120°=xy,【分析】利用基本不等式,可得结论;(2)由题意得,即x+y=600,要使竹篱笆用料最省,只需MN最短,利用余弦定理求出MN,即可得出结论.【解答】解:设AM=x米,AN=y米,则(1)x+y=400,A=120°,△AMN的面积S=xysin120°=xy≤,当且仅当x=y=200时取等号;(2)由题意得150x+1.5y•100=90000,即x+y=600,要使竹篱笆用料最省,只需MN最短,所以MN2=x2+y2﹣2xycos120°=x2+y2+xy=(x+y)2+y2﹣xy=360000﹣xy所以x=y=300时,MN有最小值300.∴AM=AN=300米时,所用费用最少为3×5000=15000元.【点评】本题考查利用数学知识解决实际问题,考查三角形面积的计算,余弦定理的运用,属于中档题.21.(12分)已知△ABC为锐角三角形,角A,B,C的对边分别为a,b,c且(b2+c2﹣a2)tanA=bc.(1)求角A的大小;(2)若a=,求2b﹣c的取值范围.【分析】(1)利用余弦定理列出关系式,代入已知等式变形求出sinA的值,即可确定出角A的大小;(2),由(1)可得A,由正弦定理可得,从而利用三角函数恒等变换的应用可得2b﹣c=2sin(B﹣),结合B的范围B,可得2b﹣c 取值范围.【解答】解:(1)由(b2+c2﹣a2)tanA=bc.及余弦定理b2+c2﹣a2=2bccosA,得sinA=∵△ABC为锐角三角形,∴A=.(2)由正弦定理可得,∴2b﹣c=4sinB﹣2sinC=4sinB﹣2sin()=3sinB﹣cosB=2sin(B﹣).∵△ABC为锐角三角形,∴,∴∴,2∴2b﹣c的取值范围为(0,3)【点评】本题主要考查了三角函数恒等变换的应用,考查了正弦定理,正弦函数的图象和性质在解三角形中的应用,属于中档题.22.(12分)设数列{a n}的前n项和为S n,且S n=4﹣a n﹣.(1)令b n=2n﹣1•a n,证明数列{b n}为等差数列,并求{b n}的通项公式;(2)是否存在n∈N*,使得不等式成立,若存在,求出λ的取值范围,若不存在,请说明理由.【分析】(1)由已知可得2a n=a n﹣1+,故2n﹣1•a n=2n﹣2•a n﹣1+1,进而可得数列{b n}为等差数列,并得到{b n}的通项公式;(2)存在n=1,使得不等式成立,且9≤λ≤10,利用对勾函数和反比例函数的图象性质,可得答案.【解答】解:(1)∵数列{a n}的前n项和为S n,且S n=4﹣a n﹣.∴当n=1时,a1=S1=4﹣a1﹣,即a1=1,=4﹣a n﹣1﹣.当n≥2时,S n﹣1则a n=S n﹣S n﹣1=a n﹣1﹣a n﹣,即2a n=a n﹣1+,故2n﹣1•a n=2n﹣2•a n﹣1+1,即2n﹣1•a n﹣2n﹣2•a n﹣1=1,∵b n=2n﹣1•a n,即{b n}是以1为首项,以1为公差的等差数列;即b n=n;(2)由(1)知:⇔,根据对勾函数的性质,可得:在n=3时取最小值,由反比例函数的性质,可得:在n=1时取最大值10;当n=1时,9≤λ≤10;当n=2时,6≤λ≤5,不存在满足条件的λ值;当n=3时,≤λ≤,不存在满足条件的λ值;当n≥4时,不存在满足条件的λ值;综上可得:存在n=1,使不等式成立,9≤λ≤10.【点评】本题考查的知识点是数列与不等式及函数的综合应用,难度中档.。

2019-2020学年河南省洛阳市偃师市七年级下学期期中数学试卷 (解析版)

2019-2020学年河南省洛阳市偃师市七年级下学期期中数学试卷 (解析版)

2019-2020学年河南省洛阳市偃师市七年级第二学期期中数学试卷一、选择题1.下列运用等式的性质对等式进行的变形中,正确的是()A.若x=y,则x﹣5=y+5B.若a=b,则ac=bcC.若=则2a=3b D.若x=y,则=2.下列方程中,是一元一次方程的为()A.2x﹣y=1B.x2﹣y=2C.﹣2y=3D.y2=43.若关于x的方程3x+2a=12和方程2x﹣4=12的解相同,则a的值为()A.4B.8C.6D.﹣64.解方程时,去分母正确的是()A.2x+1﹣(10x+1)=1B.4x+1﹣10x+1=6C.4x+2﹣10x﹣1=6D.2(2x+1)﹣(10x+1)=15.将方程2x﹣3y﹣4=0变形为用含有y的式子表示x是()A.2x=3y+4B.x=y+2C.3y=2x﹣4D.y=6.若(a+b)2011=﹣1,a﹣b=1,则a2011+b2011的值是()A.2B.1C.0D.﹣17.下列在数轴上表示不等式2x﹣6>0的解集正确的是()A.B.C.D.8.不等式组的解集为()A.x<3B.x≥2C.2≤x<3D.2<x<39.关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3B.m>3C.m<3D.m≥310.已知|2x﹣y﹣3|+(2x+y+11)2=0,则()A.B.C.D.二、填空题(每题3分,共15分)11.不等式ax>b的解集是x<,则a的取值范围是.12.一种饮料重约300克,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量最少为克.13.当a=时,关于x的方程﹣=1的解是x=﹣1.14.若5x﹣5的值与2x﹣9的值互为相反数,则x=.15.已知关于x,y的二元一次方程组的解为,则a﹣2b=.三、解答题(75分)16.解方程:x﹣=﹣117.解方程组:(1)(2)18.解不等式组:,并把解集在数轴上表示出来:19.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?20.已知关于x,y的方程组和有相同解,求(﹣a)b值.21.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B 商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?22.某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服.(1)该店订购这两款运动服,共有哪几种方案?(2)若该店以甲款每套400元,乙款每套300元的价格全部出售,哪种方案获利最大?23.已知方程组的解x为非正数,y为负数.(1)求a的取值范围;(2)化简|a﹣3|+|a+2|;(3)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解为x<1?参考答案一、选择题(每题3分,共30分)1.下列运用等式的性质对等式进行的变形中,正确的是()A.若x=y,则x﹣5=y+5B.若a=b,则ac=bcC.若=则2a=3b D.若x=y,则=【分析】根据等式的基本性质对各选项进行逐一分析即可.解:A、不符合等式的基本性质,故本选项错误;B、不论c为何值,等式成立,故本选项正确;C、∵=,∴•6c=•6c,即3a=2b,故本选项错误;D、当a≠b时,等式不成立,故本选项错误.故选:B.2.下列方程中,是一元一次方程的为()A.2x﹣y=1B.x2﹣y=2C.﹣2y=3D.y2=4【分析】根据一元一次方程的定义对各选项进行逐一分析即可.解:A、2x﹣y=1是二元一次方程,故本选项错误;B、x2﹣y=2是二元二次方程,故本选项错误;C、﹣2y=3是一元一次方程,故本选项正确;D、y2=4是一元二次方程,故本选项错误.故选:C.3.若关于x的方程3x+2a=12和方程2x﹣4=12的解相同,则a的值为()A.4B.8C.6D.﹣6【分析】先求方程2x﹣4=12的解,再代入3x+2a=12,求得a的值.解:解方程2x﹣4=12,得x=8,把x=8代入3x+2a=12,得:3×8+2a=12,解得a=﹣6.故选:D.4.解方程时,去分母正确的是()A.2x+1﹣(10x+1)=1B.4x+1﹣10x+1=6C.4x+2﹣10x﹣1=6D.2(2x+1)﹣(10x+1)=1【分析】去分母的方法是方程两边同时乘以各分母的最小公倍数6,在去分母的过程中注意分数线右括号的作用,以及去分母时不能漏乘没有分母的项.解:方程两边同时乘以6得:4x+2﹣(10x+1)=6,去括号得:4x+2﹣10x﹣1=6.故选:C.5.将方程2x﹣3y﹣4=0变形为用含有y的式子表示x是()A.2x=3y+4B.x=y+2C.3y=2x﹣4D.y=【分析】将y看做已知数求出x即可.解:方程2x﹣3y﹣4=0,解得:x=y+2.故选:B.6.若(a+b)2011=﹣1,a﹣b=1,则a2011+b2011的值是()A.2B.1C.0D.﹣1【分析】利用乘方的意义,结合题意列出方程组,求出方程组的解得到a与b的值,代入原式计算即可求出值.解:∵(a+b)2011=﹣1,a﹣b=1,∴,解得:,则原式=0﹣1=﹣1.故选:D.7.下列在数轴上表示不等式2x﹣6>0的解集正确的是()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.解:∵2x﹣6>0,∴2x>6,则x>3,故选:A.8.不等式组的解集为()A.x<3B.x≥2C.2≤x<3D.2<x<3【分析】先求出每个不等式的解集,再求出不等式组的解集即可.解:∵解不等式①得:x<3,解不等式②得:x≥2,∴不等式组的解集为2≤x<3,故选:C.9.关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3B.m>3C.m<3D.m≥3【分析】不等式组中第一个不等式求出解集,根据已知不等式组的解集确定出m的范围即可.解:不等式组变形得:,由不等式组的解集为x<3,得到m的范围为m≥3,故选:D.10.已知|2x﹣y﹣3|+(2x+y+11)2=0,则()A.B.C.D.【分析】利用非负数的性质列出方程组,求出方程组的解即可.解:∵|2x﹣y﹣3|+(2x+y+11)2=0,∴,①+②得:4x=﹣8,即x=﹣2,②﹣①得:2y=﹣14,即y=﹣7,则方程组的解为,故选:D.二、填空题(每题3分,共15分)11.不等式ax>b的解集是x<,则a的取值范围是a<0.【分析】不等式的两边同时除以一个数,不等号的方向改变,则这个数为负数.解:∵ax>b的解集是x<,方程两边除以a时不等号的方向发生了变化,∴a<0,故答案为a<0.12.一种饮料重约300克,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量最少为 1.5克.【分析】根据题意求出蛋白质含量的最小值即可.解:∵某种饮料重约300g,罐上注有“蛋白质含量≥0.5%”,∴蛋白质含量的最小值=300×0.5%=1.5克,∴白质的含量不少于1.5克.故答案是:1.5.13.当a=﹣1时,关于x的方程﹣=1的解是x=﹣1.【分析】把x=﹣1代入方程计算即可求出a的值.解:把x=﹣1代入方程得:﹣=1,去分母得:2+3﹣a=6,解得:a=﹣1.故答案为:﹣1.14.若5x﹣5的值与2x﹣9的值互为相反数,则x=2.【分析】由5x﹣5的值与2x﹣9的值互为相反数可知:5x﹣5+2x﹣9=0,解此方程即可求得答案.解:由题意可得:5x﹣5+2x﹣9=0,∴7x=14,∴x=2.15.已知关于x,y的二元一次方程组的解为,则a﹣2b=2.【分析】首先把x、y的值代入,可得关于a、b的方程组,再利用减法消元可消去未知数b,解出a的值,然后把a的值代入②可得b的值,进而可得方程组的解,然后可得答案.解:把代入得:,①+②得:3a=4,a=,把a=代入①得:b=﹣,则a﹣2b=+=2,故答案为:2.三、解答题(75分)16.解方程:x﹣=﹣1【分析】根据解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1依次求解可得.解:12x﹣3(x﹣2)=2(5x﹣7)﹣12,12x﹣3x+6=10x﹣14﹣12,∴x=32.17.解方程组:(1)(2)【分析】(1)把①变形为y=4﹣2x③,再把③代入②可消去未知数y,解出x的值,然后把x的值代入③可得y的值,进而可得方程组的解;(2)首先化简两个方程,再利用减法消元求出方程组的解即可.解:(1),由①得:y=4﹣2x③,将③代入②中,2(4﹣2x)+1=5x,解得:x=1,把x=1代入③中,y=2,∴方程组的解为:.(2)原方程组可化为,①×3﹣②×4得:y=2,将y=2代入①得:x=2,∴方程组的解为:.18.解不等式组:,并把解集在数轴上表示出来:【分析】首先分别求得两个不等式的解集,然后在数轴上表示出来,公共部分即为不等式组的解集.注意在解不等式系数化一时:(1)系数为正,不等号的方向不变,(2)系数为负,不等号的方向改变.解:不等式可化为:,即;在数轴上可表示为:∴不等式组的解集为﹣2≤x<0.19.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?【分析】两个等量关系为:加工的甲部件的人数+加工的乙部件的人数=85;3×16×加工的甲部件的人数=2×加工的乙部件的人数×10.解:设加工的甲部件的有x人,加工的乙部件的有y人.,由②得:12x﹣5y=0③,①×5+③得:5x+5y+12x﹣5y=425,即17x=425,解得x=25,把x=25代入①解得y=60,所以答:加工的甲部件的有25人,加工的乙部件的有60人.20.已知关于x,y的方程组和有相同解,求(﹣a)b值.【分析】因为两个方程组有相同的解,故只要将两个方程组中不含有a,b的两个方程联立,组成新的方程组,求出x和y的值,再代入含有a,b的两个方程中,解关于a,b 的方程组即可得出a,b的值.解:因为两组方程组有相同的解,所以原方程组可化为,解方程组(1)得,代入(2)得,解得:.所以(﹣a)b=(﹣2)3=﹣8.21.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B 商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?【分析】(1)设A种商品的单价为x元、B种商品的单价为y元,根据等量关系:①购买60件A商品的钱数+30件B商品的钱数=1080元,②购买50件A商品的钱数+20件B商品的钱数=880元分别列出方程,联立求解即可.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,根据不等关系:①购买A、B两种商品的总件数不少于32件,②购买的A、B两种商品的总费用不超过296元可分别列出不等式,联立求解可得出m的取值范围,进而讨论各方案即可.解:(1)设A种商品的单价为x元、B种商品的单价为y元,由题意得:,解得.答:A种商品的单价为16元、B种商品的单价为4元.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,由题意得:,解得:12≤m≤13,∵m是整数,∴m=12或13,故有如下两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件.22.某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服.(1)该店订购这两款运动服,共有哪几种方案?(2)若该店以甲款每套400元,乙款每套300元的价格全部出售,哪种方案获利最大?【分析】(1)找到关键描述语“用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服”,进而找到所求的量的不等关系,列出不等式组求解.(2)根据利润=售价﹣成本,分别求出甲款,乙款的利润相加后再比较,即可得出获利最大方案.解:设该店订购甲款运动服x套,则订购乙款运动服(30﹣x)套,由题意,得(1分)(1)解这个不等式组,得∵x为整数,∴x取11,12,13∴30﹣x取19,18,17答:方案①甲款11套,乙款19套;②甲款12套,乙款18套;③甲款13套,乙款17套.(2)解法一:设该店全部出售甲、乙两款运动服后获利y元,则y=(400﹣350)x+(300﹣200)(30﹣x)=50x+3000﹣100x=﹣50x+3000∵﹣50<0,∴y随x增大而减小∴当x=11时,y最大.解法二:三种方案分别获利为:方案一:(400﹣350)×11+(300﹣200)×19=2450(元)方案二:(400﹣350)×12+(300﹣200)×18=2400(元)方案三:(400﹣350)×13+(300﹣200)×17=2350(元)∵2450>2400>2350∴方案一即甲款11套,乙款19套,获利最大答:甲款11套,乙款19套,获利最大.23.已知方程组的解x为非正数,y为负数.(1)求a的取值范围;(2)化简|a﹣3|+|a+2|;(3)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解为x<1?【分析】(1)求出不等式组的解集即可得出关于a的不等式组,求出不等式组的解集即可;(2)根据a的范围去掉绝对值符号,即可得出答案;(3)求出a<﹣,根据a的范围即可得出答案.解:(1)∵①+②得:2x=﹣6+2a,x=﹣3+a,①﹣②得:2y=﹣8﹣4a,y=﹣4﹣2a,∵方程组的解x为非正数,y为负数,∴﹣3+a≤0且﹣4﹣2a<0,解得:﹣2<a≤3;(2)∵﹣2<a≤3,∴|a﹣3|+|a+2|=3﹣a+a+2=5;(3)2ax+x>2a+1,(2a+1)x>2a+1,∵不等式的解为x<1∴2a+1<0,∴a<﹣,∵﹣2<a≤3,∴a的值是﹣1,∴当a为﹣1时,不等式2ax+x>2a+1的解为x<1.。

精品人教版2019-2020学年九年级数学上册期中模拟试卷(二)解析版

精品人教版2019-2020学年九年级数学上册期中模拟试卷(二)解析版

人教版2019-2020学年九年级数学上册期中模拟试卷(二)一.选择题(共8小题,满分6分)1.一元二次方程x2=3x的解为()A.x=0B.x=3C.x=0或x=3D.x=0 且x=32.方程2x2+5=7x根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根3.将抛物线y=﹣3x2先向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是()A.y=﹣3(x﹣1)2﹣2B.y=﹣3(x﹣1)2+2C.y=﹣3(x+1)2﹣2D.y=﹣3(x+1)2+24.(3分)如图,∠CAB=25°,CA、CB是等腰△ABC的两腰,将△ABC绕点A顺时针进行旋转,得到△ADE.当点B恰好在DE的延长线时,则∠EAB的度数为()A.155°B.130°C.105°D.75°5.在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°后得到点P′,则点P′的坐标是()A.(﹣2,3)B.(3,﹣2)C.(﹣3,2)D.(2,﹣3)6.如图,∠AOB=100°,点C在⊙O上,且点C不与A、B重合,则∠ACB的度数为()A.50°B.80°或50°C.130°D.50°或130°7.如图,A,B,C三点在⊙O上,且∠BOC=100°,则∠A的度数为()A.40°B.50°C.80°D.100°8.(3分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个二.填空题(共8小题,满分18分)9.(3分)当a=时,(a﹣3)x|a|﹣1﹣x=5是关于x的一元二次方程.10.(3分)平面直角坐标系中,一点P(﹣2,3)关于原点的对称点P′的坐标是.11.(3分)二次函数y=﹣x2﹣2x+3的最大值是.12.(3分)已知抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,则a+c=.13.(3分)已知关于x的方程x2+kx﹣3=0的一个根是x=﹣1,则另一根为.14.(3分)如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为.15.如图,P是⊙O的直径AB延长线上的一点,PC切⊙O于点C,∠APC的平分线交AC于点D.若∠APC=40°,则∠CDP=.16.如图,已知点C是的一点,圆周角∠ACB为125°,则圆心角∠AOB=度.三.解答题(共2小题,满分16分,每小题8分)17.(8分)解方程与不等式:(1)(x﹣3)(x﹣2)+33=(x+9)(x+1)(2)(2x+3)(2x﹣3)<4(x﹣2)(x+3)18.(8分)已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.四.解答题(共2小题)19.如图,在正方形网格中,△ABC的三个顶点都在格点上,点O也在格点上.(1)画△A'B'C',使△A'B'C'与△ABC关于直线OP成轴对称,点A的对应点是A';(2)画△A''B''C'',使△A''B''C''与△A'B'C'关于点O成中心对称,点A'的对应点是A''.20.在平面直角坐标系中,O为原点,点A(2,0),点B(0,),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.如图,若α=90°,求AA′的长.五.解答题(共2小题,满分20分,每小题10分)21.(10分)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△OA′B′的面积.22.(10分)如图,在⊙O中,直径AB经过弦CD的中点E,点M在OD上,AM的延长线交⊙O于点G,交过D 的直线于F,且∠BDF=∠CDB,BD与CG交于点N.(1)求证:DF是⊙O的切线;(2)连结MN,猜想MN与AB的位置有关系,并给出证明.六.解答题(共2小题,满分20分,每小题10分)23.(10分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?24.(10分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?七.解答题(共1小题)25.在矩形ABCD中,AB=6,AD=8,点E是对角线BD上一动点.(1)如图1,当CE⊥BD时,求DE的长;(2)如图2,作EM⊥EN分别交边BC于M,交边CD于N,连MN.①若,求tan∠ENM;②若E运动到矩形中心O,连CO.当CO将△OMN分成两部分面积比为1:2时,直接写出CN的长.八.解答题(共1小题)26.如图,已知关于x的二次函数y=﹣x2+bx+c(c>0)的图象与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求出二次函数的关系式;(2)点P为线段MB上的一个动点,过点P作x轴的垂线PD,垂足为D.若OD=m,△PCD的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)探索线段MB上是否存在点P,使得△PCD为直角三角形?如果存在,求出P的坐标;如果不存在,请说明理由.参考答案与试题解析一.选择题(共8小题,满分6分)1.【解答】解:方程移项得:x2﹣3x=0,分解因式得:x(x﹣3)=0,解得:x=0或x=3,故选:C.2.【解答】解:方程化为2x2﹣7x+5=0,因为△=(﹣7)2﹣4×2×5=9>0,所以方程有两个不相等的实数根.故选:A.3.【解答】解:将抛物线y=﹣3x2向左平移1个单位所得直线解析式为:y=﹣3(x+1)2;再向下平移2个单位为:y=﹣3(x+1)2﹣2,即y=﹣3(x+1)2﹣2.故选:C.4.【解答】解:∵CA=CB,∴∠CBA=∠CAB=25°,∵△ABC绕点A顺时针进行旋转,得到△ADE.点B恰好在DE的延长线上,∴∠D=∠ABC=25°,∠DAE=∠BAC=25°,AD=AB,∴∠ABD=25°,∴∠ABD=∠CAB,∴AC∥BD,∴∠D+∠DAC=180°,∴∠EAB=180°﹣25°﹣25°﹣25°=105°.故选:C.5.【解答】解:如图,过P、P′两点分别作x轴,y轴的垂线,垂足为A、B,∵线段OP绕点O顺时针旋转90°,∴∠POP′=∠AOB=90°,∴∠AOP=∠P′OB,且OP=OP′,∠P AO=∠P′BO=90°,∴△OAP≌△OBP′,即P′B=P A=3,BO=OA=2,∴P′(3,﹣2).故选:B.6.【解答】解:当点C在优弧上时,∠AC′B=∠AOB=×100°=50°,当点C在劣弧上时,∠ACB=(360°﹣∠AOB)=×(360°﹣100°)=130°.故选:D.7.【解答】解:由题意得∠A=∠BOC=×100°=50°.故选:B.8.【解答】解:①由图象开口可知:a>0,c<0,∵>0,∴b<0,∴abc>0,故①正确;②由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故②正确;③抛物线与x轴交于点A(﹣1,0),B(2,0),∴抛物线的对称轴为:x=,∴<1,∴2a+b>0,故③正确;④由图象可知顶点坐标的纵坐标小于﹣2,故④错误;⑤由③可知抛物线的对称轴为x=,∴由图象可知:x<时,y随着x的增大而减小,故⑤正确;⑥由图象可知:x=1时,y<0,∴a+b+c<0,故⑥错误;故选:B.二.填空题(共8小题,满分18分)9.【解答】解:∵(a﹣3)x|a|﹣1﹣x=5是关于x的一元二次方程,∴a﹣3≠0,|a|﹣1=2,解得:a=﹣3,即当a=﹣3时,(a﹣3)x|a|﹣1﹣x=5是关于x的一元二次方程,故答案为:﹣3.10.【解答】解:根据中心对称的性质,得点P(﹣2,﹣3)关于原点对称点P′的坐标是(2,﹣3).故答案为:(2,﹣3).11.【解答】解:∵y=﹣x2﹣2x+3=y=﹣(x2+2x+1﹣1)+3=﹣(x+1)2+4,∴当x=﹣1时,y取得最大值4,故答案为:4.12.【解答】解:∵抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,∴抛物线y=ax2+x+c经过(﹣1,0),∴a﹣1+c=0,∴a+c=1,故答案为1.13.【解答】解:设方程的另一个根为x2,则﹣1×x2=﹣3,解得:x2=3,故答案为:3.14.【解答】解:过点C作CE⊥x轴于点E,∵OB=2,AB⊥x轴,点A在直线y=x上,∴AB=2,OA==4,∴RT△ABO中,tan∠AOB==,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴∠D=∠AOB=∠OBD=60°,AO=CD=4,∴△OBD是等边三角形,∴DO=OB=2,∠DOB=∠COE=60°,∴CO=CD﹣DO=2,在RT△COE中,OE=CO•cos∠COE=2×=1,CE=CO•sin∠COE=2×=,∴点C的坐标为(﹣1,),故答案为:(﹣1,).15.【解答】解:如图,连接OC,∵PC为圆O的切线,∴PC⊥OC,即∠PCO=90°,∴∠CPO+∠COP=90°,∵OA=OC,∴∠A=∠ACO=∠COP,∵PD为∠APC的平分线,∴∠APD=∠CPD=∠CPO,∴∠CDP=∠APD+∠A=(∠CPO+∠COP)=45°.故答案为:45°.16.【解答】解:在优弧AB上取点D,连接AD,BD,∵∠ACB=125°,∴∠ADB=180°﹣125°=55°,∴∠AOB=110°,故答案为:110.三.解答题(共2小题,满分16分,每小题8分)17.【解答】解:(1)x2﹣5x+6+33=x2+10x+9,x2﹣5x﹣x2﹣10x=9﹣6﹣33,﹣15x=﹣30,x=2;(2)4x2﹣9<4(x2+x﹣6),4x2﹣9<4x2+4x﹣24,4x2﹣4x2﹣4x<﹣24+9,﹣4x<﹣15,x>.18.【解答】解:(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.四.解答题(共2小题)19.【解答】解:(1)如图所示,△A'B'C'为所求三角形;(2)如图所示,△A''B''C''为所求三角形.20.【解答】解:∵点A(2,0),点B(0,),∴OA=2,OB=.在Rt△ABO中,由勾股定理得AB=.根据题意,△A′BO′是△ABO绕点B逆时针旋转900得到的,由旋转是性质可得:∠A′BA=90°,A′B=AB=,∴AA′==.五.解答题(共2小题,满分20分,每小题10分)21.【解答】解:(1)设抛物线顶点式y=a(x+1)2+4将B(2,﹣5)代入得:a=﹣1∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3)令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0)(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0)当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位故A'(2,4),B'(5,﹣5)∴S△OA′B′=×(2+5)×9﹣×2×4﹣×5×5=15.22.【解答】(1)证明:∵直径AB经过弦CD的中点E,∴AB⊥CD,.∴∠BOD=2∠CDB.∵∠BDF=∠CDB,∴∠BOD=∠CDF,∵∠BOD+∠ODE=90°,∴∠ODE+∠CDF=90°,即∠ODF=90°,∴DF是⊙O的切线;(2)猜想:MN∥AB.证明:连结CB.∵直径AB经过弦CD的中点E,∴,.∴∠CBA=∠DBA,CB=BD.∵OB=OD,∴∠DBA=∠ODB.∴∠AOD=∠DBA+∠ODB=2∠DBA=∠CBD,∵∠BCG=∠BAG,∴△CBN∽△AOM,∴.∵AO=OD,CB=BD,∴,∴,∵∠ODB=∠MDN,∴△MDN∽△ODB,∴∠DMN=∠DOB,∴MN∥AB.六.解答题(共2小题,满分20分,每小题10分)23.【解答】解:(1)设每次降价的百分率为x.40×(1﹣x)2=32.4x=10%或190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率啊10%;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y元,由题意,得(40﹣30﹣y)(4×+48)=510,解得:y1=1.5,y2=2.5,∵有利于减少库存,∴y=2.5.答:要使商场每月销售这种商品的利润达到510元,且更有利于减少库存,则每件商品应降价2.5元.24.【解答】解:(1)根据题意得y=(70﹣x﹣50)(300+20x)=﹣20x2+100x+6000,∵70﹣x﹣50>0,且x≥0,∴0≤x<20;(2)∵y=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.七.解答题(共1小题)25.【解答】解:(1)∵矩形ABCD中,AB=6,AD=8∴∠BCD=90°,BC=AD=8,CD=AB=6∴BD==10∵CE⊥BD∴∠CED=∠BCD=90°∵∠CDE=∠BDC∴△CDE∽△BDC∴∴DE=(2)①如图1,过点M作MF⊥BD于点F,过点N作NG⊥BD于点G∵,BD=10∴BD=BE+DE=3DE+DE=4DE=10∴DE=,BE=设MF=a,NG=b∵∠BFM=∠C=90°,∠FBM=∠CBD∴△FBM∽△CBD∴∴BF==a∴EF=BE﹣BF=a同理可证:△GDN∽△CDB∴∴DG==b∴EG=DE﹣DG=b∵EM⊥EN∴∠MEN=∠MFE=∠NGE=90°∴∠MEF+∠NEG=∠MEF+∠EMF=90°∴∠EMF=∠NEG∴△EMF∽△NEG∴∴EF•EG=NG•MF∴(a)(b)=ba整理得:16a=90﹣27b∴在Rt△MEN中,tan∠ENM==②如图2,过点M作MF⊥BD于点F,MP⊥OC于点P,过点N作NG⊥BD于点G,NQ⊥OC于点Q,设OC 与MN交点为H∵点O为矩形中心,BD=10∴OB=OD=OC=BD=5由①可得,设MF=a,NG=b,则BF==a,DG==b,OF•OG=NG•MF∴OF=OB﹣BF=5﹣a,OG=OD﹣DG=5﹣b∴(5﹣a)(5﹣b)=ab整理得:16a=60﹣9b∴=设CN=5x∵∠NCQ=∠BDC,∠NQC=∠BCD=90°∴△NCQ∽△BDC∴=∴CQ=CN=3x,NQ=CN=4x∴OQ=OC﹣CQ=5﹣3x∵∠MPO=∠MON=∠OQN=90°∴∠MOP+∠NOQ=∠NOQ+∠ONQ=90°∴∠MOP=∠ONQ∴△MOP∽△ONQ∴i)若S△OMH=2S△ONH,且两三角形都以OH为底∴MP=2NQ=8x∴解得:x=∴CN=ii)若2S△OMH=S△ONH,则MP=NQ=2x∴解得:x=∴CN=综上所述,CN的长为或.八.解答题(共1小题)26.【解答】解:(1)∵OB=OC=3,∴B(3,0),C(0,3)∴,解得1分∴二次函数的解析式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴M(1,4)设直线MB的解析式为y=kx+n,则有解得:,∴直线MB的解析式为y=﹣2x+6∵PD⊥x轴,OD=m,∴点P的坐标为(m,﹣2m+6)S三角形PCD=×(﹣2m+6)•m=﹣m2+3m(1≤m<3);(3)∵若∠PDC是直角,则点C在x轴上,由函数图象可知点C在y轴的正半轴上,∴∠PDC≠90°,在△PCD中,当∠DPC=90°时,当CP∥AB时,∵PD⊥AB,∴CP⊥PD,∴PD=OC=3,∴P点纵坐标为:3,代入y=﹣2x+6,∴x=,此时P(,3).∴线段BM上存在点P(,3)使△PCD为直角三角形.当∠P′CD′=90°时,△COD′∽△D′CP′,此时CD′2=CO•P′D′,即9+m2=3(﹣2m+6),∴m2+6m﹣9=0,解得:m=﹣3±3,∵1≤m<3,∴m=3(﹣1),∴P′(3﹣3,12﹣6)综上所述:P点坐标为:(,3),(3﹣3,12﹣6).。

2019-2020学年河南省洛阳市九年级上学期期末考试数学试卷及答案解析

2019-2020学年河南省洛阳市九年级上学期期末考试数学试卷及答案解析

2019-2020学年河南省洛阳市九年级上学期期末考试数学试卷一、选择题(每小题3分,共30分).
1.(3分)下列图形是中心对称图形的是()
A.B.C.D.
2.(3分)一元二次方程x(x﹣2)=2﹣x的根是()
A.﹣1B.2C.1和2D.﹣1和2
3.(3分)下列事件中,是随机事件的是()
A.两条直线被第三条直线所截,同位角相等
B.任意一个四边形的外角和等于360°
C.早上太阳从西方升起
D.平行四边形是中心对称图形
4.(3分)二次函数图象上部分点的坐标对应值列表如下:则该函数图象的对称轴是()x……﹣3﹣2﹣101……
y……﹣17﹣17﹣15﹣11﹣5……
A.x=﹣3B.x=﹣2.5C.x=﹣2D.x=0
5.(3分)在同平面直角坐标系中,函数y=x﹣1与函数y=1
x的图象大致是()
A.B.
C.D.
6.(3分)某果园2017年水果产量为100吨,2019年水果产量为144吨,则该果园水果产量的年平均增长率为()
A.10%B.20%C.25%D.40%
第1 页共23 页。

2019-2020学年河南省洛阳市涧西区东升第三中学八年级(下)期中数学试卷 解析版

2019-2020学年河南省洛阳市涧西区东升第三中学八年级(下)期中数学试卷  解析版

2019-2020学年河南省洛阳市涧西区东升三中八年级(下)期中数学试卷一.选择题(共10小题)1.(3分)下列各式中一定是二次根式的是()A.B.C.D.2.(3分)若y=+﹣3,则P(x,y)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列计算正确的是()A.=﹣2B.C.D.4.(3分)如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm5.(3分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,下列结论中正确的是()A.AB=CD B.BO=OD C.∠BAD=∠BCD D.AB⊥AC6.(3分)若一次函数y=kx+b的图象与直线y=﹣x+1平行,且过点(8,2),则此一次函数的解析式为()A.y=﹣x﹣2B.y=﹣x﹣6C.y=﹣x﹣1D.y=﹣x+10 7.(3分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5D.48.(3分)如图,一个圆桶,底面直径为16cm,高为18cm,一只小虫从下底部点A爬到上底B处,则小虫所爬的最短路径长是(π取3)()A.50cm B.40cm C.30cm D.20cm9.(3分)如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB 于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.B.C.D.10.(3分)甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共5小题)11.(3分)若式子有意义,则x的取值范围是.12.(3分)如图,在▱ABCD中,AB=3,BC=5,以点B的圆心,以任意长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则DE的长为.13.(3分)一蜡烛高20厘米,点燃后平均每小时燃掉4厘米,则蜡烛点燃后剩余的高度h (厘米)与燃烧时间t(时)之间的关系式是h=(0≤t≤5).14.(3分)已知关于x的一次函数y=mx+n的图象如图所示,则可化简为.15.(3分)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处,已知AD=3,当点F为线段OC的三等分点时,点E的坐标为.三.解答题(共8小题)16.计算:(1);(2).17.已知a=﹣,b=+,求下列各式的值;(1)+;(2)a2b+ab2.18.实验中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,求这块四边形空地的面积是多少?19.如图,在一棵树CD的6m高处B有两只猴子,其中一只猴子爬下树走到离树12m处的池塘的A处,另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,请问这棵树有多高?20.如图,函数y=﹣2x+3与y=﹣x+m的图象交于P(n,﹣2).(1)求出m、n的值;(2)直接写出不等式﹣x+m>﹣2x+3的解集;(3)求出△ABP的面积.21.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=时,四边形MENF是正方形(只写结论,不需证明).22.某学校计划在总费用为3200元的限额内,租用汽车送312名学生和8名教师集体外出活动,每辆汽车上至少要有1名教师;现有甲乙两种大客车,它们的载客量和租金如下表:甲种客车乙种客车载客量(单位:人/辆)4530租金(单位:元/辆)400280(1)通过计算与分析后,直接写出共需租用辆汽车;(2)求出有哪几种租车方案;(3)求出最节省的租车费用是多少元.23.已知正方形ABCD与正方形CEFG(点C、E、F、G按顺时针排列),M是AF的中点,连接DM,EM.(1)如图1,点E在CD上,点G在BC的延长线上,求证:DM=EM,DM⊥EM.简析:由M是AF的中点,AD∥EF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即≌.由全等三角形性质,易证△DNE是三角形,进而得出结论.(2)如图2,E在BC的延长线上,点G在BC上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形CEFG的顶点C、E、F、G按顺时针排列.若点E 在直线CD上,则DM=;若点E在直线BC上,则DM=.2019-2020学年河南省洛阳市涧西区东升三中八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题)1.(3分)下列各式中一定是二次根式的是()A.B.C.D.【分析】根据二次根式的性质:二次根式中的被开方数必须是非负数,否则二次根式无意义,逐一判断.【解答】解:A、被开方数为负数,二次根式无意义,故选项错误;B、6>0,被开方数是正数,故选项正确C、是三次根式,故选项错误;D、当x=﹣2时,二次根式无意义,故选项错误;故选:B.2.(3分)若y=+﹣3,则P(x,y)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用二次根式有意义的条件得出x的值,进而得出P点坐标的位置.【解答】解:∵y=+﹣3,∴x=2,则y=﹣3,∴P(2,﹣3)在第四象限.故选:D.3.(3分)下列计算正确的是()A.=﹣2B.C.D.【分析】根据二次根式的运算法则即可求出答案.【解答】解:(A)原式=2,故A错误.(B)与不是同类二次根式,故B错误.(C)原式=,故C错误.故选:D.4.(3分)如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm【分析】解答此题只要把原来的图形补全,构造出直角三角形解答.【解答】解:延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15﹣3)2+(20﹣4)2=122+162=400,所以BC=20.则剪去的直角三角形的斜边长为20cm.故选:D.5.(3分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,下列结论中正确的是()A.AB=CD B.BO=OD C.∠BAD=∠BCD D.AB⊥AC【分析】由平行四边形的性质容易得出结论.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BO=OD,∠BAD=∠BCD,∴选项A、B、C、正确,D不一定正确;故选:D.6.(3分)若一次函数y=kx+b的图象与直线y=﹣x+1平行,且过点(8,2),则此一次函数的解析式为()A.y=﹣x﹣2B.y=﹣x﹣6C.y=﹣x﹣1D.y=﹣x+10【分析】根据平行直线的解析式的k值相等求出k,然后把点P(﹣1,2)的坐标代入一次函数解析式计算即可得解.【解答】解:∵一次函数y=kx+b的图象与直线y=﹣x+1平行,∴k=﹣1,∵一次函数过点(8,2),∴2=﹣8+b解得b=10,∴一次函数解析式为y=﹣x+10.故选:D.7.(3分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5D.4【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【解答】解:∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S菱形ABCD=,∴,∴DH=,故选:A.8.(3分)如图,一个圆桶,底面直径为16cm,高为18cm,一只小虫从下底部点A爬到上底B处,则小虫所爬的最短路径长是(π取3)()A.50cm B.40cm C.30cm D.20cm【分析】先将圆柱的侧面展开为一矩形,而矩形的长就是底面周长的一半,高就是圆柱的高,再根据勾股定理就可以求出其值.【解答】解:展开圆柱的侧面如图,根据两点之间线段最短就可以得知AB最短.由题意,得AC=3×16÷2=24,在Rt△ABC中,由勾股定理,得AB==30cm.故选:C.9.(3分)如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB 于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.B.C.D.【分析】先求证四边形AFPE是矩形,再根据直线外一点到直线上任一点的距离,垂线段最短,利用面积法可求得AP最短时的长,然后即可求出AM最短时的长.【解答】解:连接AP,在△ABC中,AB=6,AC=8,BC=10,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,∴EF=AP.∵M是EF的中点,∴AM=AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,∴S△ABC=,∴,∴AP最短时,AP=,∴当AM最短时,AM=AP=.故选:A.10.(3分)甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,故④不正确;综上可知正确的有①②③共三个,故选:C.二.填空题(共5小题)11.(3分)若式子有意义,则x的取值范围是x≥且x≠1.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:2x﹣1≥0且x﹣1≠0,解得:x≥且x≠1.故答案为:x≥且x≠1.12.(3分)如图,在▱ABCD中,AB=3,BC=5,以点B的圆心,以任意长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则DE的长为2.【分析】根据作图过程可得得BE平分∠ABC;再根据角平分线的性质和平行四边形的性质可证明∠AEB=∠CBE,证出AE=AB=3,即可得出DE的长.,【解答】解:根据作图的方法得:BE平分∠ABC,∴∠ABE=∠CBE∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD﹣AE=5﹣3=2;故答案为:2.13.(3分)一蜡烛高20厘米,点燃后平均每小时燃掉4厘米,则蜡烛点燃后剩余的高度h(厘米)与燃烧时间t(时)之间的关系式是h=20﹣4t(0≤t≤5).【分析】蜡烛点燃后平均每小时燃掉4厘米,则t小时燃掉4t厘米,已知蜡烛的总高度,即可表达出剩余的高度.【解答】解:∵蜡烛点燃后平均每小时燃掉4厘米,∴t小时燃掉4t厘米,由题意知:h=20﹣4t.14.(3分)已知关于x的一次函数y=mx+n的图象如图所示,则可化简为n.【分析】根据一次函数图象与系数的关系,确定m、n的符号,然后由绝对值、二次根式的化简运算法则解得即可.【解答】解:根据图示知,关于x的一次函数y=mx+n的图象经过第一、二、四象限,∴m<0;又∵关于x的一次函数y=mx+n的图象与y轴交于正半轴,∴n>0;∴=n﹣m﹣(﹣m)=n.故答案是:n.15.(3分)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处,已知AD=3,当点F为线段OC的三等分点时,点E的坐标为(3,)或(3,).【分析】设CE=x,分两种情况讨论:①当CF=1时,OF=2;②当CF=2时,OF=1,在Rt△CEF中,依据勾股定理可得CE2+CF2=EF2,据此可得方程,即可得到CE的长,进而得出点E的坐标.【解答】解:∵AD=OC=3=AF,而点F为线段OC的三等分点,∴CF=1或2,设CE=x,①当CF=1时,OF=2,在Rt△AOF中,AO==,∴CD=,DE=﹣x=EF,∵Rt△CEF中,CE2+CF2=EF2,∴x2+12=(﹣x)2,解得x=,即CE=,∴E(3,);②当CF=2时,OF=1,在Rt△AOF中,AO==2,∴CD=,DE=﹣x=EF,∵Rt△CEF中,CE2+CF2=EF2,∴x2+22=(2﹣x)2,解得x=,即CE=,∴E(3,);故答案为:(3,)或(3,).三.解答题(共8小题)16.计算:(1);(2).【分析】(1)先进行二次根式的除法运算,然后化简后合并即可;(2)利用完全平方公式计算.【解答】解:(1)原式=3﹣2+=+3;(2)原式=2+2+1﹣2+2=5.17.已知a=﹣,b=+,求下列各式的值;(1)+;(2)a2b+ab2.【分析】(1)先通分,值代入即可计算.(2)提公因式法后,代入即可计算.【解答】解:∵a=﹣,b=+,∴a+b=2,ab=2,(1)原式===.(2)原式=ab(a+b)=2×=4.18.实验中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,求这块四边形空地的面积是多少?【分析】根据勾股定理,可以得到AC的长,然后根据勾股定理的逆定理,可以得到△ACB的形状,然后即可得到四边形ABCD的面积.【解答】解:连接AC,∵AD=8米,CD=6米,∠ADC=90°,∴AC===10米,∵AB=26米,BC=24米,∴BC2+AC2=102+242=100+576=676,AB2=262=676,∴BC2+AC2=AB2,∴△ACB是直角三角形,∠ACB=90°,∴四边形ABCD的面积是:==96(平方米),即这块四边形空地的面积是96平方米.19.如图,在一棵树CD的6m高处B有两只猴子,其中一只猴子爬下树走到离树12m处的池塘的A处,另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,请问这棵树有多高?【分析】由题意知AD+DB=BC+CA,设BD=x米,则AD=(18﹣x)米,且在直角△ACD中CD2+CA2=AD2,代入勾股定理公式中即可求x的值,树高CD=6+x.【解答】解:由题意知AD+DB=BC+CA,且CA=12米,BC=6米,设BD=x米,则AD=(18﹣x)米,在Rt△ACD中:CD2+CA2=AD2,即(18﹣x)2=(6+x)2+122,解得x=3,故树高为CD=6+3=9米.答:树高为9米.20.如图,函数y=﹣2x+3与y=﹣x+m的图象交于P(n,﹣2).(1)求出m、n的值;(2)直接写出不等式﹣x+m>﹣2x+3的解集;(3)求出△ABP的面积.【分析】(1)根据凡是函数图象经过的点必能满足解析式把P点坐标代入y=﹣2x+3可得n的值,进而可得P点坐标,再把P点坐标代入y=﹣x+m可得m的值;(2)根据函数图象可直接得到答案;(3)首先求出A、B两点坐标,进而可得△ABP的面积.【解答】解:(1)∵y=﹣2x+3过P(n,﹣2).∴﹣2=﹣2n+3,解得:n=,∴P(,﹣2),∵y=﹣x+m的图象过P(,﹣2).∴﹣2=﹣×+m,解得:m=﹣;(2)不等式﹣x+m>﹣2x+3的解集为x>;(3)∵当y=﹣2x+3中,x=0时,y=3,∴A(0,3),∵y=﹣x﹣中,x=0时,y=﹣,∴B(0,﹣),∴AB=3;∴△ABP的面积:AB×=×=.21.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=2:1时,四边形MENF是正方形(只写结论,不需证明).【分析】(1)根据矩形的性质可得AB=CD,∠A=∠D=90°,再根据M是AD的中点,可得AM=DM,然后再利用SAS证明△ABM≌△DCM;(2)四边形MENF是菱形.首先根据中位线的性质可证明NE∥MF,NE=MF,可得四边形MENF是平行四边形,再根据△ABM≌△DCM可得BM=CM进而得ME=MF,从而得到四边形MENF是菱形;(3)当AD:AB=2:1时,四边形MENF是正方形,证明∠EMF=90°根据有一个角为直角的菱形是正方形得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.证明如下:∵E,F,N分别是BM,CM,CB的中点,∴NE∥MF,NE=MF.∴四边形MENF是平行四边形.由(1),得BM=CM,∴ME=MF.∴四边形MENF是菱形.(3)解:当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM.∵AD:AB=2:1,∴AM=AB.∵∠A=90,∴∠ABM=∠AMB=45°.同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°.∵四边形MENF是菱形,∴菱形MENF是正方形.故答案为:2:1.22.某学校计划在总费用为3200元的限额内,租用汽车送312名学生和8名教师集体外出活动,每辆汽车上至少要有1名教师;现有甲乙两种大客车,它们的载客量和租金如下表:甲种客车乙种客车载客量(单位:人/辆)4530租金(单位:元/辆)400280(1)通过计算与分析后,直接写出共需租用8辆汽车;(2)求出有哪几种租车方案;(3)求出最节省的租车费用是多少元.【分析】(1)根据题意和表格中的数据可以得到需要租用多少辆汽车,本题得以解决;(2)根据(1)中的结果和表格中的数据可以得到有几种租车方案,并写出相应的租车方案;(3)根据题意可以得到租车费用和租用甲种客车的函数关系式,然后根据一次函数的性质即可得到最节省的租车费用是多少元.【解答】解:(1)如果全部租用甲种客车,则需要(312+8)÷45=7(辆),如果全部租用乙种客车,则需要(312+8)÷30=10(辆),∵汽车辆数为整数,且有8名教师,每辆汽车上至少要有1名教师,∴共租用8辆汽车,故答案为:8;(2)设租用x辆甲种客车,则租用乙种客车(8﹣x)辆,则租车费用y=400x+280(8﹣x)=120x+2240,∵,解得,5≤x≤8,∵x为整数,∴x=6或7或8,∴共有3种租车方案,方案一:6辆甲种客车,2辆乙种客车;方案二:7辆甲种客车,1辆乙种客车;方案三:8辆甲种客车;(3)∵y=120x+2240中,k=120>0,∴y随x的增大而增大,∴当x=6时,y有最小值,最节省的租车费用是2960元,答:最节省的租车费用是2960元.23.已知正方形ABCD与正方形CEFG(点C、E、F、G按顺时针排列),M是AF的中点,连接DM,EM.(1)如图1,点E在CD上,点G在BC的延长线上,求证:DM=EM,DM⊥EM.简析:由M是AF的中点,AD∥EF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即△AMN≌△FME.由全等三角形性质,易证△DNE是等腰直角三角形,进而得出结论.(2)如图2,E在BC的延长线上,点G在BC上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形CEFG的顶点C、E、F、G按顺时针排列.若点E 在直线CD上,则DM=或4;若点E在直线BC上,则DM=.【分析】(1)根据全等三角形的性质推出MN=ME,AN=EF=EC,推出DN=DE,因为∠EDH=90°,可得DM⊥EM,DM=ME;(2)结论不变,证明方法类似;(3)分别分两种情况讨论,由全等三角形的性质和直角三角形的性质可求解.【解答】解:(1)如图1,延长EM交AD于点N,∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ADE=∠DEF=90°,AD=CD,∴AD∥EF,在△MNA和△MEF中,,∴△MNA≌△MEF(ASA),∴MN=ME,AN=EF=EC,∴DN=DE,且∠EDN=90°,∴△DEN是等腰直角三角形,∴DM=ME,DM⊥EM;故答案为:△AMN,△FME,等腰直角;(2)结论仍成立,如图2,延长EM交DA的延长线于点H,∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ADE=∠DEF=90°,AD=CD,∴AD∥EF,∴∠MAH=∠MFE,∵AM=MF,∠AMH=∠FME,∴△AMH≌△FME(ASA),∴MH=ME,AH=EF=EC,∴DH=DE,∵∠EDH=90°,∴DM⊥EM,DM=ME;(3)若点E在直线CD上,由(1)(2)可知,DE=AB﹣CE=2,或DE=AB+CE=8,∵DM⊥EM,DM=ME,∴DE=DM,若点E在直线BC上,如图3,当点E在BC延长线上时,延长EM交DA于点H,连接DH,∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ADC=∠GCE=90°=∠BAD,AD=CD,∴AD∥EF,∴∠MAH=∠MFE,∵AM=MF,∠AMH=∠FME,∴△AMH≌△FME(ASA),∴MH=ME,AH=EF=EC,∵AH=CE,∠HAD=∠ECD,AD=CD,∴△ADH≌△CDE(SAS),∴DH=DE,∠ADH=∠CDE,∵∠ADH+∠HDC=90°,∴∠EDN=90°,且HM=ME,∴DM⊥EM,DM=ME,∴DE=DM,∵AB=CD=5,CE=3,∴DE===,∴DM=如图4,若点E在线段BC上时,延长EM,BA交于点H,连接DH,同理可求DM=,故答案为:或4,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省洛阳市2019-2020学年高三上学期期中数学试卷2
一、选择题(本大题共12小题,共60.0分)
1.已知集合A={x|−3<x<1},B={x|(x+1)(x−3)≤0},则A∩B=()
A. (−3,3]
B. [−3,1)
C. (−1,3)
D. [−1,1)
2.若复数(a+i)(2+i)(i为虚数单位)为纯虚数,则实数a=()
A. −2
B. 2
C. −1
2D. 1
2
3.已知直线l:3x+4y+m=0(m>0)被圆C:x2+y2+2x−2y−6=0截得的弦长是圆心C到直
线l的距离的2倍,则m=()
A. 6
B. 8
C. 9
D. 11
4.在四棱锥P−ABCD中,底面ABCD是直角梯形,BA⊥AD,AD//BC,AB=BC=2,PA=3,
PA⊥底面ABCD,E是棱PD上异于P,D的动点,设PE
ED
=m,则“0<m<2”是“三棱锥C−ABE的体积不小于1”的()
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
5.双曲线C:x2
4−y2
2
=1的离心率为()
A. √2
2B. √6
2
C. √2
4
D. √6
4
6.若某几何体的三视图(单位:cm)如图所示,其中左视图是一个边长为2的正三角形,则这个几
何体的体积是()
A. 2cm 3
B. √3cm 3
C. 3√3cm 3
D. 3cm 3
7. 已知sin (α+π
3
)+sinα=−
4√3
5
,则cos (α−π
3)=( )
A. −4
5
B. −3
5
C. 4
5
D. 3
5
8. 设实数x ,y 满足{x −y ≥0
x +y ≤1x +2y ≥1
则z =2x −3y 的最大值为( )
A. −1
3
B. −1
2
C. 2
D. 3
9. 设a =log 36,b =log 510,c =log 714,则( )
A. a >b >c
B. a >c >b
C. c >a >b
D. c >b >a
10. 若函数f (x )=sinωx (ω>0)在区间[0,π
3]上单调递增,在区间[π3,π
2]上单调递减,则ω=( )
A. 3
B. 2
C. 2
3
D. 3
2
11. 已知椭圆C :
x 2a 2
+y 2
b 2=1,点F 1,F 2是椭圆的左右焦点,点A 是椭圆上的点,▵AF 1F 2的内切圆
的圆心为M ,若MF 1⃗⃗⃗⃗⃗⃗⃗⃗ +MF 2⃗⃗⃗⃗⃗⃗⃗⃗ +MA ⃗⃗⃗⃗⃗⃗ =0⃗ ,则椭圆的离心率为( )
A. 1
2
B. √2
2 C. √32
D. √2−1
12. 已知函数
,若关于x 的方程f(x)−t =0有3个不同的实数
根,则实数t 的取值范围是( )
A. [0,1]
B. (0,1)
C.
D.
二、填空题(本大题共4小题,共20.0分)
13. 已知a ⃗ =(3,−4),b ⃗ =(2,3),则2|a ⃗ |−3a ⃗ ⋅b ⃗ = ______ .
14. 已知等比数列{a n }的各项均为正数,a 6+a 5=4,a 4+a 3−a 2−a 1=1,则a 1的值为______.
15.正方体ABCD−A1B1C1D1的棱长为2,P是面对角线BC1的中点,Q是底面ABCD上一动点,则
D1P+PQ的最小值为.
16.若函数在在[1,2]上单调递增,则实数a的取值范围是__________.
三、解答题(本大题共7小题,共82.0分)
17.已知S n为等差数列{a n}的前n项和,且a1=1,S7=28.记b n=[lg a n],其中[x]表示不超过x的
最大整数,如[0.9]=0,[lg99]=1.
(1)求b1,b11,b101;
(2)求数列{b n}的前1000项的和.
18.已知a,b,c分别是△ABC三个内角A,B,C的对边,且2asin(C+π
)=√3b.
3
(1)求角A的值.
(2)若b=3,c=4,点D在BC边上,AD=BD,求AD的长.
19.如图,在四棱锥P−ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,
AB//CD,∠ADC=90°,AB=2,AD=4,DC=3,PA=5,E∈PC,AC∩BD=F.
(1)若CE
EP =3
2
,求证:EF//平面PAB;
(2)若FE⊥PC,求二面角E−DB−C的平面角的余弦值.
20.已知抛物线C:x2=2py(p>0)的焦点为F,M(−2,y0)是C上一点,且|MF|=2.
(Ⅰ)求C的方程;
(Ⅱ)过点F的直线与抛物线C相交于A,B两点,分别过点A,B两点作抛物线C的切线l1,l2,两条切线相交于点P,点P关于直线AB的对称点Q,判断四边形PAQB是否存在外接圆,如果存在,求出外接圆面积的最小值;如果不存在,请说明理由.
21.已知函数f(x)=ax2−(a+2)x+lnx,其中a∈R.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若对于任意x2>x1>0,f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范围
22.在直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的
极坐标方程为ρ=sinθ+cosθ,点P的曲线C上运动.
(I)若点Q在射线OP上,且|OP|⋅|OQ|=4,求点Q的轨迹的直角坐标方程;
),求△MOP面积的最大值.
(Ⅱ)设M(4,3π
4
23.已知函数f(x)=|x−a|+m|x+a|.
(Ⅰ)当m=a=−1时,求不等式f(x)≥x的解集;
(Ⅱ)不等式f(x)≥2(0<m<1)恒成立时,实数a的取值范围是{a|a≤−3或a≥3},求实数m 的集合.
-------- 答案与解析 --------
1.答案:D
解析:解:∵集合A={x|−3<x<1},
B={x|(x+1)(x−3)≤0}={x|−1≤x≤3},
∴A∩B={x|−1≤x<1}=[−1,1).
故选:D.
先求出集合A和B,由此能求出A∩B.
本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.答案:D
解析:
本题考查了复数的运算法则、纯虚数的定义,考查了推理能力与计算能力,属于基础题.利用复数的运算法则、纯虚数的定义即可得出.
解:由题意可知:(a+i)(2+i)=(2a−1)+(2+a)i,
∵复数为纯虚数,∴2+a≠0,2a−1=0,
∴a=1
2
.
故选D.
3.答案:C
解析:
本题考查直线与圆的位置关系,圆心到直线的距离,求出圆心为(−1,1),半径为2√2,利用圆心到直
线的距离d=|−3+4+m|
5=2√2×√2
2
,即可求出结论.
解:圆C:x2+y2+2x−2y−6=0,可化为(x+1)2+(y−1)2=8,圆心为(−1,1),半径为2√2.
由题意得,圆心到直线的距离d=|−3+4+m|
5=2√2×√2
2

∵m>0,∴m=9.
故选C.
4.答案:B
解析:
本题考查充要条件的判断及棱锥体积的求解,过E作EH⊥AD得到V C−ABE=V E−ABC=2
3
EH即可求解.
解析:
解:过E作EH⊥AD,H为垂足,则EH⊥面ABCD
∴V C−ABE=V E−ABC,所以三棱锥C−ABE的体积为2
3
EH,
若三棱锥C−ABE的体积不小于1,则EH≥3
2

又PA=3,∴PE
ED
=m≤1.
即“0<m<2”是“三棱锥C−ABE的体积不小于1”的必要不充分条件.
故选B.
5.答案:B
解析:解:双曲线C:x2
4−y2
2
=1,可得a=2,b=√2,则c=√6.
双曲线的离心率为:√6
2

故选:B.
利用双曲线方程求出a,b,c,然后求解离心率即可.本题考查双曲线的简单性质的应用,是基础题.。

相关文档
最新文档