江苏省张家港市2016-2017学年八年级上期中考试数学试题含答案

合集下载

江苏省苏州市张家港2016_2017学年八年级数学上学期期中试卷(含解析)苏科版

江苏省苏州市张家港2016_2017学年八年级数学上学期期中试卷(含解析)苏科版

2016-2017学年江苏省苏州市张家港二中八年级(上)期中数学试卷一、选择题:(每小题3分,共30分.请将选择题的答案填在答题纸相对应的位置上)1.下列平面图形中,不是轴对称图形的是( )A .B .C .D .2.如图,已知∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是( )A .AB=ACB .BD=CDC .∠B=∠CD .∠BDA=∠CDA3.如果一个数的平方根等于它的立方根,则这个数是( )A .0B .1C .﹣1D .±14.下列各式中,正确的是( )A . =±4B .±=4 C . =﹣3 D . =﹣45.在﹣2,,,3.14,,()0中有理数的个数是( )A .5B .4C .3D .26.下列四组线段中,可以构成直角三角形的是( )A .5,6,7B .0.7,2.4,2.5C .1,1,2D .1,,37.到三角形三边的距离相等的点P 应是三角形的三条( )的交点.A .角平分线B .高C .中线D .垂直平分线8.直角三角形两直角边长分别为3和4,则它斜边上的高是( )A .3.5B .2.4C .1.2D .59.如图,在△ABC 中,AO ⊥BC ,垂足为O ,若AO=4,∠B=45°,△ABC 的面积为10,则AC 边长的平方的值是( )A .16B .17C .6D .1810.如图,在△ABC 中,∠ACB=90°,以AC 为一边在△ABC 外侧作等边三角形ACD ,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E ,连接CE ,AB=15cm ,BC=9cm ,P 是射线DE 上的一点.连接PC 、PB ,若△PBC 的周长最小,则最小值为( )A.22cm B.21cm C.24 cm D.27cm二.填空题(每小题3分,共24分.把答案直接填在答题纸相对应的位置上.)11.的算术平方根是.12.若等腰三角形的边长分别为2和6,则它的周长为.13.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,AB=5,则CD= .14.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C= .15.如图,以Rt△ABC的三边向外作正方形,若最大正方形的边长为7cm,以AC为边的正方形的面积为25cm2,则正方形M的面积为cm2.16.如图,在△ABC中,DE是AC的垂直平分线,AE=5cm,△ABC的周长为26cm,则△ABD 的周长为 cm.17.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=5,CD=3,则AB的长是.18.如图,在△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点,如果点P在线段BC 上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动,当一个点停止运动时,另一个点也随之停止运动,当点Q的运动速度为时,能够在某一时刻使△BPD与△CQP全等.三、解答题:本大题共10大题,共76分.解答时应写出必要的计算过程、推演19.求下列各式的值:(1)求y的值:(2y﹣3)2﹣64=0;(2)求x的值:64(x+1)3﹣125=0.20.计算:(1)()2﹣﹣(2)﹣+﹣+()0﹣|﹣1+|.21.(1)已知(x﹣1)的平方根是±3,(x﹣2y+1)的立方根是3,求x2﹣y2的平方根.(2)已知y=+﹣8,求的值.22.尺规作图:如左图,在四边形ABCD内找一点P,使得点P到AB、AD的距离相等,并且点P到点B、C的距离也相等.(不写作法,保留作图痕迹).23.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.24.如图,在三角形纸片ABC中,∠C=90°,AC=6,折叠该纸片使点C落在AB边上的D点处,折痕BE与AC交于点E.若AD=BD,求折痕BE的长.25.已知:如图,在四边形ABCD中,∠ABC=∠ADC=90°,点E是AC的中点,连接BE、BD、DE.(1)求证:△BED是等腰三角形;(2)当∠BAD= °时,△BED是等腰直角三角形.26.已知:如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上的一点,求证:△ACE≌△BCD.27.角平分线上的点到角两边的距离相等.这一性质在解决图形面积问题时有何妙用呢?阅读材料:已知,如图(1),在面积为S的△ABC中,BC=a,AC=b,AB=c,三条角平分线的交点O到三边的距离为r.连接OA、OB、OC,△ABC被划分为三个小三角形.∵S=S△OBC+S△OAC+S△OAB=BC•r+AC•r+AB•r=(a+b+c)•r,∴r=(1)类比推理:若面积为S的四边形ABCD的四条角平分线交于O点,如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求点O到四边的距离r;(2)理解应用:如图(3),在四边形ABCD中,AB∥DC,AB=21,CD=11,AD=BC=13,对角线BD=20,点O1与O2分别为△ABD与△BCD的三条角平分线的交点,设它们到各自三角形三边的距离为r1和r2,求的值.28.如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A﹣B﹣C运动,设点P运动的时间为t秒.(1)当t为何值时,点P与点A的距离为5cm?(2)当t为何值时,△APD是等腰三角形?(3)当t为何值时,(2<t<5),以线段AD、CP、AP的长度为三边长的三角形是直角三角形,且AP是斜边?2016-2017学年江苏省苏州市张家港二中八年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分.请将选择题的答案填在答题纸相对应的位置上)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选:A.2.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA【考点】全等三角形的判定.【分析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.【解答】解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.故选:B.3.如果一个数的平方根等于它的立方根,则这个数是()A.0 B.1 C.﹣1 D.±1【考点】立方根;平方根.【分析】根据立方根和平方根性质可知即可求解.【解答】解:∵只有0的立方根和它的平方根相等,∴一个数的平方根等于它的立方根,则这个数是0.故选A.4.下列各式中,正确的是()A. =±4 B.±=4 C. =﹣3 D. =﹣4【考点】二次根式的混合运算.【分析】根据算术平方根的定义对A进行判断;根据平方根的定义对B进行判断;根据立方根的定义对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣3=,所以C选项正确;D、原式=|﹣4|=4,所以D选项错误.故选:C.5.在﹣2,,,3.14,,()0中有理数的个数是()A.5 B.4 C.3 D.2【考点】零指数幂;有理数;实数.【分析】根据有理数的定义来判断.【解答】解:有理数有﹣2, =2,3.14,,()0=1,共有5个.故本题的答案选A.6.下列四组线段中,可以构成直角三角形的是()A.5,6,7 B.0.7,2.4,2.5 C.1,1,2 D.1,,3【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:A、∵52+62≠72,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;B、∵0.72+2.42=2.52,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;C、12+12≠22,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵12+()2≠32,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选B.7.到三角形三边的距离相等的点P应是三角形的三条()的交点.A.角平分线 B.高C.中线 D.垂直平分线【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边的距离相等解答即可.【解答】解:在同一平面内,到三角形三边距离相等的点是三角形的三条角平分线的交点,故选:A.8.直角三角形两直角边长分别为3和4,则它斜边上的高是()A.3.5 B.2.4 C.1.2 D.5【考点】勾股定理;相似三角形的判定与性质.【分析】依题意作图,如下图所示:根据题意可证△BDC∽△BCA,所以=,由于AC、BC的值已知,所以只需求出AB的值即可求出斜边上的高CD的值,在直角△ABC,可求出斜边AB的值,进而求出CD的值.【解答】解:如下图所示:△ABC中,∠C=90°,CD是斜边AB上的高,AC=4,BC=3在Rt△ABC中,由勾股定理得:AB===5,∵∠C=∠CDB=90°,∠B=∠B,∴△BDC∽△BCA,∴=即:CD=×AC=×4=2.4.所以,本题应选择B.9.如图,在△ABC中,AO⊥BC,垂足为O,若AO=4,∠B=45°,△ABC的面积为10,则AC 边长的平方的值是()A.16 B.17 C.6 D.18【考点】勾股定理.【分析】由三角形的面积可求出BC的长,进而求出CO的长,再利用勾股定理即可求出AC 边长的平方.【解答】解:∵AO=4,△ABC的面积为10,∴BC=5,∵AO⊥BC,∠B=45°,∴AO=BO=4,∴CO=BC﹣BO=1,∴AC2=AO2+CO2=42+12=17,故选:B.10.如图,在△ABC中,∠ACB=90°,以AC为一边在△ABC外侧作等边三角形ACD,过点D 作DE⊥AC,垂足为F,DE与AB相交于点E,连接CE,AB=15cm,BC=9cm,P是射线DE上的一点.连接PC、PB,若△PBC的周长最小,则最小值为()A.22cm B.21cm C.24 cm D.27cm【考点】轴对称-最短路线问题;等边三角形的性质.【分析】根据轴对称求最短路径的知识可得,点C关于DE的对称点和点B的连线与DE的交点即是点P的位置,结合图形及(1)可得点P的位置即是点E的位置,从而可求出此时△PBC的周长.【解答】解:根据轴对称求最短路径的知识,可得当点P与点E重合的时候PB+PC最小,也即△PBC的周长最小,此时PB=PC=AB=cm,故△PBC的最小周长=PB+PC+BC=AB+BC=15+9=24cm.故选C.二.填空题(每小题3分,共24分.把答案直接填在答题纸相对应的位置上.)11.的算术平方根是 2 .【考点】算术平方根.【分析】首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:∵=4,∴的算术平方根是=2.故答案为:2.12.若等腰三角形的边长分别为2和6,则它的周长为14 .【考点】等腰三角形的性质.【分析】题目给出等腰三角形有两条边长为2和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:假设以2为等腰三角形的腰长,则三角形的各边长分别为2,2,6,不符合两边之和大于第三边;所以腰长只能为6,等腰三角形的周长为6+6+2=14.故填14.13.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,AB=5,则CD= 2.5 .【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD.【解答】解:∵∠ACB=90°,D是AB的中点,∴AB=2CD,∴CD=.故答案为:2.514.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C= 40°.【考点】三角形的外角性质;三角形内角和定理.【分析】先根据等腰三角形的性质及三角形内角和定理可求出∠B的度数,再根据三角形外角的性质可求出∠ADC的度数,再由三角形内角和定理解答即可.【解答】解:∵AB=AD,∠BAD=20°,∴∠B===80°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°,∵AD=DC,∴∠C===40°.15.如图,以Rt△ABC的三边向外作正方形,若最大正方形的边长为7cm,以AC为边的正方形的面积为25cm2,则正方形M的面积为24 cm2.【考点】勾股定理.【分析】由勾股定理求出AB2,即可得出正方形M的面积.【解答】解:∵△ABC是直角三角形,∠BAC=90°,∴AB2=BC2﹣AC2=72﹣25=24(cm2),∴正方形M的面积=AB2=24cm2.故答案为:24.16.如图,在△ABC中,DE是AC的垂直平分线,AE=5cm,△ABC的周长为26cm,则△ABD 的周长为16 cm.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD 的周长=AB+BC,再求解即可.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=2×5=10cm,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵△ABC的周长为26cm,∴AB+BC=26﹣10=16cm,即△ABD的周长为16cm.故答案为:16.17.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=5,CD=3,则AB的长是10 .【考点】角平分线的性质.【分析】作DE⊥AB于E,根据角平分线的性质得到DE=DC,根据勾股定理求出BE,再根据勾股定理计算即可.【解答】解:作DE⊥AB于E,∵AD是∠BAC的平分线,∠ACB=90°,DE⊥AB,∴DE=DC=3,∴AC=AE,由勾股定理得,BE==4,设AC=AE=x,由勾股定理得,x2+82=(x+4)2,解得,x=6,则AB=AE+BE=4=6=10,故答案为:10.18.如图,在△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点,如果点P在线段BC 上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动,当一个点停止运动时,另一个点也随之停止运动,当点Q的运动速度为3或2 时,能够在某一时刻使△BPD与△CQP全等.【考点】等腰三角形的性质;全等三角形的判定.【分析】根据等边对等角可得∠B=∠C,然后表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD与CQ是对应边两种情况讨论求解即可.【解答】解:∵AB=10cm,BC=8cm,点D为AB的中点,∴BD=×12=6cm,设点P、Q的运动时间为t,则BP=3t,PC=(8﹣3t)cm①当BD=PC时,8﹣3t=6,解得:t=,则BP=CQ=3t=2,故点Q的运动速度为:2÷1=2(厘米/秒);②当BP=PC时,∵BC=8cm,∴BP=PC=4cm,∴t=4÷2=2(秒),故点Q的运动速度为6÷2=3(厘米/秒);故答案为:2或3厘米/秒.三、解答题:本大题共10大题,共76分.解答时应写出必要的计算过程、推演19.求下列各式的值:(1)求y的值:(2y﹣3)2﹣64=0;(2)求x的值:64(x+1)3﹣125=0.【考点】立方根;平方根.【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)方程整理后,利用立方根定义开立方即可求出解.【解答】解:(1)方程整理得:(2y﹣3)2=64,开方得:2y﹣3=8或2y﹣3=﹣8,解得:y=5.5或y=﹣2.5;(2)方程整理得:(x+1)3=,开立方得:x+1=,解得:x=.20.计算:(1)()2﹣﹣(2)﹣+﹣+()0﹣|﹣1+|.【考点】实数的运算;零指数幂.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用平方根、立方根定义,零指数幂法则,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)原式=4+3﹣10=﹣3;(2)原式=﹣+2﹣2+1﹣=0.21.(1)已知(x﹣1)的平方根是±3,(x﹣2y+1)的立方根是3,求x2﹣y2的平方根.(2)已知y=+﹣8,求的值.【考点】二次根式有意义的条件;平方根;立方根.【分析】根据平方根和立方根的概念以及二次根式有意义的条件解答即可.【解答】解:∵(x﹣1)的平方根是±3,∴x﹣1=9,解得,x=10,∵(x﹣2y+1)的立方根是3,∴x﹣2y+1=27,解得,y=﹣8,则x2﹣y2=36,则x2﹣y2的平方根是±6;(2)由题意得,x﹣24≥0,24﹣x≥0,解得,x=24,则y=﹣8,故=4.22.尺规作图:如左图,在四边形ABCD内找一点P,使得点P到AB、AD的距离相等,并且点P到点B、C的距离也相等.(不写作法,保留作图痕迹).【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】利用角平分线的作法得出∠A的平分线,再作出线段BC的平分线进而得出答案.【解答】解:如图所示:点P即为所求.23.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】(1)ED是AC的垂直平分线,可得AE=EC;∠A=∠C;已知∠A=36,即可求得;(2)△ABC中,AB=AC,∠A=36°,可得∠B=72°又∠BEC=∠A+∠ECA=72°,所以,得BC=EC=5;【解答】解:(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=5.答:(1)∠ECD的度数是36°;(2)BC长是5.24.如图,在三角形纸片ABC中,∠C=90°,AC=6,折叠该纸片使点C落在AB边上的D点处,折痕BE与AC交于点E.若AD=BD,求折痕BE的长.【考点】翻折变换(折叠问题).【分析】根据折叠的性质得BC=BD,∠CBE=∠ABE,由于BD=AD,所以BC=AB,则根据含30度的直角三角形三边的关系得∠A=30°,可计算出BC=AC=2,然后在Rt△BCE中,利用∠CBE=30°,可计算出CE=BC=2,BE=2CE=4.【解答】解:∵折叠△ABC纸片使点C落在AB边上的D点处,∴BC=BD,∠CBE=∠ABE,∵BD=AD,∴BC=AB,∴∠A=30°,∴BC=AC=×6=2,∵∠ABC=90°﹣∠A=60°,∴∠CBE=∠ABC=30°,在Rt△BCE中,∵∠CBE=30°,∴CE=BC=2,∴BE=2CE=4.25.已知:如图,在四边形ABCD中,∠ABC=∠ADC=90°,点E是AC的中点,连接BE、BD、DE.(1)求证:△BED是等腰三角形;(2)当∠BAD= 45 °时,△BED是等腰直角三角形.【考点】等腰三角形的判定;直角三角形斜边上的中线;等腰直角三角形.【分析】(1)根据直角三角形斜边上中线等于斜边的一半,进而得出答案;(2)利用等边对等角以及三角形外角的性质得出∠DEB=∠DAB,即可得出答案.【解答】解:(1)在△ABC中,∵∠ABC=90°,点E是AC的中点(已知),∴BE=AC(直角三角形斜边上的中线等于斜边的一半).同理,DE=AC,∴BE=DE(等量代换),∴△BED是等腰三角形(等腰三角形的定义);(2)∵AE=ED,∴∠DAE=∠EDA,∵AE=BE,∴∠EAB=∠EBA,∵∠DAE+∠EDA=∠DEC,∠EAB+∠EBA=∠BEC,∴∠DAB=∠DEB,∵△BED是等腰直角三角形,∴∠DEB=90°,∴∠BAD=45°.故答案为:45.26.已知:如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上的一点,求证:△ACE≌△BCD.【考点】全等三角形的判定;等腰直角三角形.【分析】首先根据△ABC和△ECD都是等腰直角三角形,可知EC=DC,AC=CB,再根据同角的余角相等可证出∠1=∠2,再根据全等三角形的判定方法SAS即可证出△ACE≌△BCD.【解答】证明:∵△ABC和△ECD都是等腰直角三角形,∴EC=DC,AC=CB,∵∠ACB=∠DCE=90°,∴∠ACB﹣∠3=∠ECD﹣∠3,即:∠1=∠2,在△ACE和△BCD中,∴△ACE≌△BCD(SAS).27.角平分线上的点到角两边的距离相等.这一性质在解决图形面积问题时有何妙用呢?阅读材料:已知,如图(1),在面积为S的△ABC中,BC=a,AC=b,AB=c,三条角平分线的交点O到三边的距离为r.连接OA、OB、OC,△ABC被划分为三个小三角形.∵S=S△OBC+S△OAC+S△OAB=BC•r+AC•r+AB•r=(a+b+c)•r,∴r=(1)类比推理:若面积为S的四边形ABCD的四条角平分线交于O点,如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求点O到四边的距离r;(2)理解应用:如图(3),在四边形ABCD中,AB∥DC,AB=21,CD=11,AD=BC=13,对角线BD=20,点O1与O2分别为△ABD与△BCD的三条角平分线的交点,设它们到各自三角形三边的距离为r1和r2,求的值.【考点】角平分线的性质;平行线的性质.【分析】(1)已知已给出示例,我们仿照例子,连接OA,OB,OC,OD,则四边形被分为四个小三角形,且每个三角形都以内切圆半径为高,以四边形各边作底,这与题目情形类似.仿照证明过程,r易得;(2)(1)中已告诉我们内切圆半径的求法,如是我们再相比即得结果.但求内切圆半径需首先知道三角形各边边长,根据等腰梯形性质,过点D作AB垂线,进一步易得BD的长,则r1、r2、易得.【解答】解:(1)如图,连接OA、OB、OC、OD,∵S=S△AOB+S△BOC+S△COD+S△AOD=ar+br+cr+dr=(a+b+c)r,∴r=;(2)∵AB∥CD,∴S△ABD:S△BCD=AB:CD=21:11;∵r1==,r2==,∴=: =×==.28.如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A﹣B﹣C运动,设点P运动的时间为t秒.(1)当t为何值时,点P与点A的距离为5cm?(2)当t为何值时,△APD是等腰三角形?(3)当t为何值时,(2<t<5),以线段AD、CP、AP的长度为三边长的三角形是直角三角形,且AP是斜边?【考点】四边形综合题.【分析】(1)分为两种情况:P在BC上,P在DC上,根据勾股定理得出关于t的方程,求出即可;(2)分AD=DP,DP=AP,AD=AP三种情况进行讨论;(3)求出BP=2t﹣4,CP=10﹣2t,根据AP2=AB2+BP2=42+(2t﹣4)2和AD2+CP2=AP2得出方程62+(10﹣2t)2=42+(2t﹣4)2,求出方程的解即可.【解答】解:(1)如图1,若点P在BC上,∵在Rt△ABP中,AP=5,AB=4∴BP=2t﹣4=3,∴t=;如图2,若点P 在DC 上,则在Rt △ADP 中,AP 是斜边,∵AD=6,∴AP >6,∴AP ≠5.综上所述,当t=秒时,点P 与点A 的距离为5cm ;(2)当AD=DP 时,如图3,PC=(10﹣2t )cm ,CD=4cm ,DP=6cm ,∵CD 2+PC 2=DP 2,即42+(10﹣2t )2=62,解得t=5±,即t 1=5+,t 2=5﹣; 当DP=AP 时,如图4,PC=PB=3cm ,∵AB=4cm ,∴AB+BP=4+3=7cm ,∴t=(秒);当AD=AP=6时,PB=2t ﹣4,∵AB 2+BP 2=AP 2,即42+(2t ﹣4)2=62,解得t=2+或t=2﹣(舍去),综上所述,当t=(5±)秒或t=秒时,△APD 是等腰三角形;(3)当2<t <5时,点P 在BC 边上,∵BP=2t ﹣4,CP=10﹣2t ,∴AP 2=AB 2+BP 2=42+(2t ﹣4)2由题意,有AD 2+CP 2=AP 2∴62+(10﹣2t )2=42+(2t ﹣4)2∴t=<5,∴t=.答:当t=秒时,以线段AD 、CP 、AP 的长度为三边长的三角形是直角三角形,且AP 是斜边.。

苏科版2016-2017学年八年级(上)期中数学试卷 有答案

苏科版2016-2017学年八年级(上)期中数学试卷 有答案

2016-2017学年八年级(上)期中数学试卷一、选择题1.4的平方根是( )A.2 B.C.±2 D.±2.在﹣0.101001,,,﹣,0中,无理数的个数是( )A.1个B.2个C.3个D.4个3.今年我市参加中考的学生人数约为6.01×104人.对于这个近似数,下列说法正确的是( )A.精确到百分位 B.精确到百位C.精确到十位D.精确到个位4.下列四组线段中,可以构成直角三角形的是( )A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,35.如果在实数范围内有意义,那么x的取值范围是( )A.x≠﹣B.x<﹣C.x≥﹣D.x≥﹣6.与点P(a2+1,﹣a2﹣2)在同一个象限内的点是( )A.(3,2)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)7.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )A.①④B.②③C.①②④ D.①③④8.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为( )A.169 B.25 C.19 D.139.若A(x1,y1)、B(x2,y2)是一次函数y=(a﹣2)x+1图象上的不同的两个点,当x1>x2时,y1<y2,则a的取值范围是( )A.a<0 B.a>0 C.a<2 D.a>210.在直角坐标系中,等腰直角三角形A1B1O、A2B2B1、A3B3B2、…、A n B n B n﹣1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=kx+b的图象上,点B1、B2、B3、…、B n均在x轴上.若点B1的坐标为(1,0),点B2的坐标为(3,0),则点A n的坐标为( )A.(2n﹣1,2n﹣1)B.(2n﹣1,2n﹣1﹣1)C.(2n﹣1,2n﹣1+1)D.(2n﹣1﹣1,2n﹣1)二、填空题11.的平方根为__________.12.已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是__________.13.已知点A(x,1)与点B(2,y)关于y轴对称,则(x+y)2013的值为__________.14.下列说法:①无限小数是无理数;②5的平方根是;③8的立方根是±2;④使代数式有意义的x的取值范围是x≥﹣1;⑤与数轴上的点一一对应的数是有理数.其中正确的是__________(填写序号).15.如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=__________.16.过点(﹣1,﹣3)且与直线y=1﹣x平行的直线是__________.17.如图,函数y=﹣2x和y=kx+b的图象相交于点A(m,3),则关于x的不等式kx+b+2x >0的解集为__________.18.如图所示,在Rt△ABC中,∠C=90°,∠ABC=60°,点D是BC边上的点,BD=2,将△ABC沿直线AD翻折,使点C落在AB边上的点E处.若点P是直线AD上的动点,则△PEB的周长的最小值是__________.三、解答题(共76分)19.计算或化简(1)()2﹣﹣(2)(﹣)﹣1﹣+(1﹣)0﹣|﹣2|20.求下列各式中x的值:(1)(x﹣1)3﹣27=0;(2)(2x+1)2=.21.在△ABC中,AB、BC、AC三边的长分别为、、,(1)请在正方形网格中画出格点△ABC;(2)求出这个三角形ABC的面积.22.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+b+c的平方根.23.已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数y=x的图象相交于点(2,a).(1)求a的值;(2)求一次函数y=kx+b的表达式;(3)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y轴围成的三角形的面积.24.已知点P(m,n)在第一象限,并且在一次函数y=2x﹣1的图象上,求实数m的取值范围.25.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.26.为发展旅游经济,“黄石国家矿山公园”对门票采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m 人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1,y2与x之间的函数图象如图所示.(1)观察图象可知:a=__________;b=__________;m=__________;(2)直接写出y1,y2与x之间的函数关系式;(3)某旅行社导游于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A,B两个团队合计50人,求A,B两个团队各有多少人?27.如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB 为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点D和点C的坐标;(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.28.如图,在平面直角坐标系中,O是坐标原点,点A坐标为(2,0),点B坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC垂直于x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.(1)当b=3时:①求直线AB相应的函数表达式;②当S△QOA=4时,求点P的坐标;(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.2016-2017学年八年级(上)期中数学试卷一、选择题1.4的平方根是( )A.2 B.C.±2 D.±【考点】平方根.【专题】计算题.【分析】原式利用平方根定义计算即可得到结果.【解答】解:∵(±2)2=4,∴4的平方根是±2,故选C【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.2.在﹣0.101001,,,﹣,0中,无理数的个数是( )A.1个B.2个C.3个D.4个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,﹣共2个.故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.今年我市参加中考的学生人数约为6.01×104人.对于这个近似数,下列说法正确的是( )A.精确到百分位 B.精确到百位C.精确到十位D.精确到个位【考点】近似数和有效数字.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位,即可得出答案.【解答】解:数字6.01×104精确到百位;故选B.【点评】此题考查了近似数,对于用科学记数法表示的数,精确到哪一位是需要识记的内容.4.下列四组线段中,可以构成直角三角形的是( )A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,3【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.【点评】本题考查了勾股定理的逆定理的应用,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,难度适中.5.如果在实数范围内有意义,那么x的取值范围是( )A.x≠﹣B.x<﹣C.x≥﹣D.x≥﹣【考点】二次根式有意义的条件.【分析】二次根式有意义被开方数为非负数,即可得出x的取值范围.【解答】解:∵在实数范围内有意义,∴3x+2≥0,解得:x≥﹣.故选C.【点评】本题考查了二次根式有意义的条件,注意掌握二次根式有意义被开方数为非负数.6.与点P(a2+1,﹣a2﹣2)在同一个象限内的点是( )A.(3,2)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)【考点】点的坐标.【分析】根据平方数非负数的性质求出点P的横坐标与纵坐标的正负情况,再根据各象限内点的坐标特征求出点P所在的象限,然后解答即可.【解答】解:∵a2≥0,∴a2+1≥1,﹣a2﹣2≤﹣2,∴点P在第四象限,(3,2),(﹣3,2)(﹣3,﹣2)(3,﹣2)中只有(3,﹣2)在第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )A.①④B.②③C.①②④ D.①③④【考点】估算无理数的大小;算术平方根;无理数;实数与数轴;正方形的性质.【分析】先利用勾股定理求出a=3,再根据无理数的定义判断①;根据实数与数轴的关系判断②;利用估算无理数大小的方法判断③;利用算术平方根的定义判断④.【解答】解:∵边长为3的正方形的对角线长为a,∴a===3.①a=3是无理数,说法正确;②a可以用数轴上的一个点来表示,说法正确;③∵16<18<25,4<<5,即4<a<5,说法错误;④a是18的算术平方根,说法正确.所以说法正确的有①②④.故选C.【点评】本题主要考查了勾股定理,实数中无理数的概念,算术平方根的概念,实数与数轴的关系,估算无理数大小,有一定的综合性.8.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为( )A.169 B.25 C.19 D.13【考点】勾股定理;完全平方公式.【分析】先求出四个直角三角形的面积,再根据再根据直角三角形的边长求解即可.【解答】解:∵大正方形的面积13,小正方形的面积是1,∴四个直角三角形的面积和是13﹣1=12,即4×ab=12,即2ab=12,a2+b2=13,∴(a+b)2=13+12=25.故选B.【点评】注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.9.若A(x1,y1)、B(x2,y2)是一次函数y=(a﹣2)x+1图象上的不同的两个点,当x1>x2时,y1<y2,则a的取值范围是( )A.a<0 B.a>0 C.a<2 D.a>2【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的图象y=(a﹣2)x+1,当a﹣2<0时,y随着x的增大而减小分析即可.【解答】解:因为A(x1,y1)、B(x2,y2)是一次函数y=(a﹣2)x+1图象上的不同的两个点,当x1>x2时,y1<y2,可得:a﹣2<0,解得:a<2.故选C.【点评】本题考查了一次函数图象上点的坐标特征.函数经过的某点一定在函数图象上.解答该题时,利用了一次函数的图象y=kx+b的性质:当k<0时,y随着x的增大而减小;k >0时,y随着x的增大而增大;k=0时,y的值=b,与x没关系.10.在直角坐标系中,等腰直角三角形A1B1O、A2B2B1、A3B3B2、…、A n B n B n﹣1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=kx+b的图象上,点B1、B2、B3、…、B n均在x轴上.若点B1的坐标为(1,0),点B2的坐标为(3,0),则点A n的坐标为( )A.(2n﹣1,2n﹣1)B.(2n﹣1,2n﹣1﹣1)C.(2n﹣1,2n﹣1+1)D.(2n﹣1﹣1,2n﹣1)【考点】一次函数图象上点的坐标特征.【专题】规律型.【分析】首先,根据等腰直角三角形的性质求得点A1、A2的坐标;然后,将点A1、A2的坐标代入一次函数解析式,利用待定系数法求得该直线方程是y=x+1;最后,利用等腰直角三角形的性质推知点B n﹣1的坐标,然后将其横坐标代入直线方程y=x+1求得相应的y值.【解答】解:如图,∵点B1的坐标为(1,0),点B2的坐标为(3,0),∴OB1=1,OB2=3,则B1B2=2.∵△A1B1O是等腰直角三角形,∠A1OB1=90°,∴OA1=OB1=1.∴点A1的坐标是(0,1).同理,在等腰直角△A2B2B1中,∠A2B1B2=90°,A2B1=B1B2=2,则A2(1,2).∵点A1、A2均在一次函数y=kx+b的图象上,∴,解得,,∴该直线方程是y=x+1.∵点A3,B2的横坐标相同,都是3,∴当x=3时,y=4,即A3(3,4),则A3B2=4,∴B3(7,0).同理,B4(15,0),…B n(2n﹣1,0),∴当x=2n﹣1﹣1时,y=2n﹣1﹣1+1=2n﹣1,即点A n的坐标为(2n﹣1﹣1,2n﹣1).故选D.【点评】本题考查了一次函数图象上点的坐标特点,涉及到的知识点有待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及等腰直角三角形的性质.解答该题的难点是找出点B n的坐标的规律.二、填空题11.的平方根为.【考点】平方根;算术平方根.【分析】先计根据平方根的定义直接求解即可.【解答】解:=3,3多的平方根为.故答案为:.【点评】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是5.【考点】勾股定理;直角三角形斜边上的中线.【专题】计算题.【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可.【解答】解:在直角三角形中,两直角边长分别为6和8,则斜边长==10,∴斜边中线长为×10=5,故答案为5.【点评】本题考查了勾股定理在直角三角形中的运用,本题中正确的运用勾股定理根据2直角边求斜边是解题的关键.13.已知点A(x,1)与点B(2,y)关于y轴对称,则(x+y)2013的值为﹣1.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,可得到x、y 的值,进而计算出答案.【解答】解:∵点A(x,1)与点B(2,y)关于y轴对称,∴x=﹣2,y=1,∴(x+y)2013=﹣1,故答案为:﹣1.【点评】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的变化规律.14.下列说法:①无限小数是无理数;②5的平方根是;③8的立方根是±2;④使代数式有意义的x的取值范围是x≥﹣1;⑤与数轴上的点一一对应的数是有理数.其中正确的是②④(填写序号).【考点】无理数;平方根;立方根;实数与数轴;二次根式有意义的条件.【专题】推理填空题.【分析】根据无理数的定义判断即可;根据平方根、立方根的定义求出,即可判断②③;根据二次根式的定义即可判断④;根据实数与数轴上的点能建立一一对应,即可判断⑤.【解答】解:无限循环小数是有理数,∴①错误;5的平方根是±,∴②正确;8的立方根是2,∴③错误;要使有意义,必须x+1≥0,即x≥﹣1,∴④正确;与数轴上的点一一对应的数是实数,∴⑤错误;故答案为:②④.【点评】本题考查了无理数、平方根、立方根、实数与数轴、二次根式有意义的条件等知识点的应用,能熟练地运用进行说理是解此题的关键.15.如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=2.【考点】坐标与图形变化-平移.【专题】计算题;压轴题.【分析】根据平移前后的坐标变化,得到平移方向,从而求出a、b的值.【解答】解:∵A(1,0)转化为A1(2,a)横坐标增加了1,B(0,2)转化为B1(b,3)纵坐标增加了1,则a=0+1=1,b=0+1=1,故a+b=1+1=2.故答案为:2.【点评】本题考查了坐标与图形的变化﹣﹣﹣平移,找到坐标的变化规律是解题的关键.16.过点(﹣1,﹣3)且与直线y=1﹣x平行的直线是y=﹣x+2.【考点】两条直线相交或平行问题.【专题】计算题.【分析】设所求直线解析式为y=kx+b,根据两直线平行的问题得到k=﹣1,然后把点(﹣1,3)代入y=﹣x+b中计算出b的值,从而得到所求直线解析式.【解答】解:设所求直线解析式为y=kx+b,∵直线y=kx+b与直线y=1﹣x平行,∴k=﹣1,把点(﹣1,3)代入y=﹣x+b得1+b=3,解得b=2,∴所求直线解析式为y=﹣x+2.故答案为y=﹣x+2.【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.17.如图,函数y=﹣2x和y=kx+b的图象相交于点A(m,3),则关于x的不等式kx+b+2x >0的解集为x>﹣.【考点】一次函数与一元一次不等式.【分析】首先将点A的坐标代入正比例函数中求得m的值,然后结合图象直接写出不等式的解集即可.【解答】解:∵函数y=﹣2x经过点A(m,3),∴﹣2m=3,解得:m=﹣,则关于x的不等式kx+b+2x>0可以变形为kx+b>﹣2x,由图象得:kx+b>﹣2x的解集为x>﹣,故答案为:x>﹣.【点评】本题考查了一次函数与一元一次不等式的知识,解题的关键是求得m的值,然后利用数形结合的方法确定不等式的解集.18.如图所示,在Rt△ABC中,∠C=90°,∠ABC=60°,点D是BC边上的点,BD=2,将△ABC沿直线AD翻折,使点C落在AB边上的点E处.若点P是直线AD上的动点,则△PEB的周长的最小值是3+.【考点】翻折变换(折叠问题).【分析】连接CE,交AD于M,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP 的值最小,此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC 和BE长,代入求出即可.【解答】解:如图,连接CE,交AD于M,∵沿AD折叠C和E重合,∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD,∴AD垂直平分CE,即C和E关于AD对称,BD=2,∴CD=DE=,∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,∵∠DEA=90°,∴∠DEB=90°,∵∠BAC=30°,∴∠B=60°,∵DE=,∴BE=1,即BC=2+,∴△PEB的周长的最小值是BC+BE=2++1=3+.故答案为:3+.【点评】本题考查了折叠性质,等腰三角形性质,轴对称﹣最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P点的位置.三、解答题(共76分)19.计算或化简(1)()2﹣﹣(2)(﹣)﹣1﹣+(1﹣)0﹣|﹣2|【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】(1)原式利用平方根及立方根定义计算即可得到结果;(2)原式第一项利用负指数幂法则计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)原式=4+3﹣10=﹣3;(2)原式=﹣2﹣+1﹣2+=﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.求下列各式中x的值:(1)(x﹣1)3﹣27=0;(2)(2x+1)2=.【考点】立方根;平方根.【分析】(1)先整理成x3=a的形式,再直接开立方解方程即可;(2)直接开平方法解方程即可.【解答】解(1)(x﹣1)3﹣27=0,(x﹣1)3=27,x﹣1=3,x=4;(2)(2x+1)2=,2x+1=4,或2x+1=﹣4,x1=,x2=﹣.【点评】此题主要考查了利用立方根和平方根的性质解方程.要灵活运用使计算简便.21.在△ABC中,AB、BC、AC三边的长分别为、、,(1)请在正方形网格中画出格点△ABC;(2)求出这个三角形ABC的面积.【考点】勾股定理.【专题】作图题.【分析】(1)根据题意画出图形即可;(2)根据三角形的面积=正方形的面积﹣三个角上三角形的面积即可得出结论.【解答】解:(1)如图所示;(2)S△ABC=3×3﹣×1×2﹣×1×3﹣×2×3=9﹣1﹣﹣3=.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.22.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+b+c的平方根.【考点】平方根;立方根;估算无理数的大小.【分析】首先根据平方根与立方根的概念可得2a﹣1与3a+b﹣9的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+b+c,根据平方根的求法可得答案.【解答】解:根据题意,可得2a﹣1=9,3a+b﹣9=8;故a=5,b=2;又∵2<<3,∴c=2,∴a+b+c=5+2+2=9,∴9的平方根为±3.【点评】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.23.已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数y=x的图象相交于点(2,a).(1)求a的值;(2)求一次函数y=kx+b的表达式;(3)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y轴围成的三角形的面积.【考点】两条直线相交或平行问题.【专题】计算题.【分析】(1)把(2,a)代入正比例函数解析式即可得到a的值;(2)把(﹣1,﹣5)、(2,1)代入y=kx+b中可得关于k、b的方程组,然后解方程组求出k、b即可;(3)先利用描点法画哈图象,再求出两直线与y轴的交点坐标,然后根据三角形面积公式求解.【解答】解:(1)把(2,a)代入y=x得a=1;(2)把(﹣1,﹣5)、(2,1)代入y=kx+b得,解得,所以一次函数解析式为y=2x﹣3;(3)如图,直线y=2x﹣3与y轴的交点坐标为(0,﹣3),直线y=x与y轴的交点为原点,这两条直线与y轴围成的三角形的面积=×3×2=3.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.24.已知点P(m,n)在第一象限,并且在一次函数y=2x﹣1的图象上,求实数m的取值范围.【考点】一次函数图象上点的坐标特征.【分析】根据第一象限的特点和一次函数的点的坐标解答即可.【解答】解:把x=m,y=n代入一次函数的解析式可得:n=2m﹣1,因为点P在第一象限,可得:,解得:m>0.5.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.25.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.【考点】全等三角形的判定与性质;勾股定理.【专题】证明题.【分析】(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=2AE,从而得证;(2)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.【解答】(1)证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,,∴△ADC≌△BDF(ASA),∴BF=AC,∵AB=BC,BE⊥AC,∴AC=2AE,∴BF=2AE;(2)解:∵△ADC≌△BDF,∴DF=CD=,在Rt△CDF中,CF===2,∵BE⊥AC,AE=EC,∴AF=CF=2,∴AD=AF+DF=2+.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质,勾股定理的应用,以及线段垂直平分线上的点到线段两端点的距离相的性质,熟记各性质并准确识图是解题的关键.26.为发展旅游经济,“黄石国家矿山公园”对门票采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m 人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1,y2与x之间的函数图象如图所示.(1)观察图象可知:a=6;b=8;m=10;(2)直接写出y1,y2与x之间的函数关系式;(3)某旅行社导游于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A,B两个团队合计50人,求A,B两个团队各有多少人?【考点】一次函数的应用.【分析】(1)根据函数图象,用购票款数除以定价的款数,计算即可求出a的值;用第11人到20人的购票款数除以定价的款数,计算即可求出b的值,由图可求m的值;(2)利用待定系数法求正比例函数解析式求出y1,分x≤10与x>10,利用待定系数法求一次函数解析式求出y2与x的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50﹣n),然后分0≤n≤10与n>10两种情况,根据(2)的函数关系式列出方程求解解即可.【解答】解:(1)∵=0.6,∴非节假日打6折,a=6,∵=0.8,∴节假日打8折,b=8,由图可知,10人以上开始打折,所以,m=10;(2)设y1=k1x,∵函数图象经过点(0,0)和(10,300),∴10k1=300,∴k1=30,∴y1=30x;0≤x≤10时,设y2=k2x,∵函数图象经过点(0,0)和(10,500),∴10k1=500,∴k1=50,∴y1=50x,x>10时,设y2=kx+b,∵函数图象经过点(10,500)和,∴,∴,∴y2=40x+100;∴y2=;(3)设A团有n人,则B团的人数为(50﹣n),当0≤n≤10时,50n+30(50﹣n)=1900,解得n=20(不符合题意舍去),当n>10时,40n+100+30(50﹣n)=1900,解得n=30,∴50﹣n=50﹣30=20,答:A团有30人,B团有20人.故答案为:a=6;b=8;m=10.【点评】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,准确识图获取必要的信息并理解打折的意义是解题的关键,(3)要注意分情况讨论.27.如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB 为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点D和点C的坐标;(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.【考点】一次函数综合题.【专题】综合题.【分析】(1)对于直线解析式,分别令x=0与y=0求出对应y与x的值,确定出A与B的坐标,得到OA与OB的长,利用勾股定理求出AB的长即可;(2)过D作DE垂直于x轴,过C作CF垂直于y轴,根据四边形ABCD的正方形,得到四条边相等,四个角为直角,利用同角的余角相等得到三个角相等,利用AAS得到三角形EDA,三角形AOB以及三角形BFC全等,利用全等三角形的对应边相等得到DE=OA=BF=4,AE=OB=CF=2,进而求出OE与OF的长,即可确定出D与C的坐标;(3)找出B关于y轴的对称点B′,连接DB′,交x轴于点M,此时BM+MD=DM+MB′=DB′最小,即△BDM周长最小,设直线DB′解析式为y=kx+b,把D与B′坐标代入求出k与b 的值,确定出直线DB′解析式,令y=0求出x的值,确定出此时M的坐标即可.【解答】解:(1)对于直线y=x+2,令x=0,得到y=2;令y=0,得到x=﹣4,∴A(﹣4,0),B(0,2),即OA=4,OB=2,则AB==2;(2)过D作DE⊥x轴,过C作CF⊥y轴,∵四边形ABCD为正方形,∴AB=BC=AD,∠ABC=∠BAD=∠BFC=∠DEA=∠AOB=90°,∵∠FBC+∠ABO=90°,∠ABO+∠BAO=90°,∠DAE+∠BAO=90°,∴∠FBC=∠OAB=∠EDA,∴△DEA≌△AOB≌△BFC(AAS),∴AE=OB=CF=2,DE=OA=FB=4,即OE=OA+AE=4+2=6,OF=OB+BF=2+4=6,则D(﹣6,4),C(﹣2,6);(3)如图所示,连接BD,找出B关于y轴的对称点B′,连接DB′,交x轴于点M,此时BM+MD=DM+MB′=DB′最小,即△BDM周长最小,∵B(0,2),∴B′(0,﹣2),设直线DB′解析式为y=kx+b,把D(﹣6,4),B′(0,﹣2)代入得:,解得:k=﹣1,b=﹣2,∴直线DB′解析式为y=﹣x﹣2,令y=0,得到x=﹣2,则M坐标为(﹣2,0).【点评】此题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,全等三角形的判定与性质,正方形的性质,对称性质,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键.28.如图,在平面直角坐标系中,O是坐标原点,点A坐标为(2,0),点B坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC垂直于x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.(1)当b=3时:①求直线AB相应的函数表达式;②当S△QOA=4时,求点P的坐标;(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)①利用待定系数法求解即可,②由①知点P坐标为(a,﹣a+3),可求出点Q坐标,再利用S△QOA=×|OA|×|﹣a+3|求出a的值,即可得出点P的坐标.(2)分两种情况①当∠QAC=90°且AQ=AC时,QA∥y轴,②,当∠AQC=90°且QA=QC 时,过点Q作QH⊥x轴于点H,分别求解即可.【解答】解:(1)①设直线AB的函数表达式为:y=kx+b(k≠0),将A(2,0),B(0,3)代入得,解得,所以直线AB的函数表达式为y=﹣x+3,②由①知点P坐标为(a,﹣a+3),∴点Q坐标为(﹣a,﹣a+3),。

江苏省镇江市2016-2017学年八年级数学上期中试题含答案

江苏省镇江市2016-2017学年八年级数学上期中试题含答案

2016~2017学年度第一学期八年级数学期中考试一.选择题(每题3分,共24分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A. B. C. D .2.如图,△ABC ≌△CDA ,AB=4,BC=6,AC=5,则AD 的长为 ( ) A .4 B .5 C .6 D .不确定3.如图,用直尺和圆规作一个角等于已知角,其作图的依据是 ( )A .SASB .ASAC .AASD .SSSA第2题 第3题 4.等腰三角形两边长分别为4和12,则这个等腰三角形的第三边为( )A .4或12B .16C .12D .45.点P 到△ABC 三个顶点的距离相等,则点P 应是△ABC 的三条 的交点。

( ) A .高 B .角平分线 C .中线 D .边的垂直平分线 6.∠AOB 的平分线上一点P 到OA 的距离为6,Q 是OB 上任一点,则 ( ) A .PQ>6 B .PQ ≥6 C .PQ<6 D .PQ ≤6第6题 第7题 第8题7.如图,OA =OB ,∠A =∠B ,有下列3个结论:①△ACE ≌△BDE ,②△AOD 和△BOC 关于直线OE 成轴对称B③点E 在∠O 的平分线上,其中正确的结论是( ) A .只有① B .只有② C .只有①② D .有①②③8.如图,在△ABC 中,AD 平分∠BAC ,且AB AC ,下列结论正确的是( )A .AB-AC DB-CDB .AB-AC=DB-CDC .AB-AC DB-CD D .AB-AC 与DB-CD 的大小关系不确定 二.填空题(每题2分,共20分)9.在线段、角、三角形、圆中,轴对称图形有 个. 10.如图, 一扇窗户打开后,用窗钩 A B可将其固定, 这里所运用的几何原理是 .11.如图:已知∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF若“ASA”为依据,还要添加的条件为__________.第10题 第11题 第12题 第13题12.如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12cm 2,则图中阴影部分的面积是 cm 2.13.如图,△OAD ≌△OBC,且∠O=72°,∠C=20°,则∠DAC = °. 14.如图,△ABC 中,AB=AC,DE 是AB 的垂直平分线,△BCE 的周长为16,BC=5, 则AB = .15.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于_______.第14题 第15题 第17题 第18题A16.等腰三角形的一个内角为50°,则它的底角为°.17.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是__________°.18.已知在△ABC中,∠C =900,AC=BC,作与△ABC只有一条公共边且与△ABC全等的三角形,这样的三角形一共能作出个.三.解答题(共76分)19.(8分)如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)△ABC的面积为__________;(2)在图中作出△ABC关于直线MN的对称图形△A′B′C′.(3)利用网格纸,在MN上找一点P,使得PB+PC的距离最短.( 保留痕迹)20.(8分) 尺规作图如图,已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.(不写画图过程,保留作图痕迹,并写出结论..)21.(8分)如图,已知CB=CE,∠B=∠E,∠1=∠2.求证:AB=DE.B22.(10分)根据所给条件,求下列图形中的未知边的长度.(1)求图1中BC的长.(2)求图2中BC的长.23. (10分)如图,已知AC⊥AB,DB⊥AB,AC=BE,CE=DE,(1)证明:△ACE≌△BED;(2)试猜想线段CE与DE位置关系,并证明你的结论.24.(10分)如图,已知在△ABC中,AB=AC,AB的垂直平分线DE交AC于点E,CE的垂直平分线正好经过点B,与AC相交于点F,求∠A的度数.25.(10分)如图,点D、E在BC上,且AB=AC,AD=AE,求证:BD=CE.26.(12分)如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A →B→C的路径运动,且速度为每秒2 cm/s,设运动的时间为t秒.(1)出发几秒后,△B CP是等腰直角三角形?请说明理由。

2016-2017学年第一学期八年级期中联考数学试题参考答案

2016-2017学年第一学期八年级期中联考数学试题参考答案

2016-2017学年八年级第一学期期中联考数学试卷参考答案一、选择题(每题3分,共30分)1C;2C;3D;4A;5A;6C;7B;8B;9A;10B二.填空题(每题4分,共24分)11 148°.12 -8a3b613 -4 14 20 15 8 16 60°17.解:(x+1)(x﹣1)﹣x(1﹣x)-2x2,=x2-1-x+x2-2x2……………4 分=-1-x ………5分当x=2时,原式=-1-2=-3.………6 分18.如图,AC=BD且∠A=∠B,求证:AO=BO.证明:∵在△AOC和△BOD中∴△AOC≌△BOD(AAS),…………4 分∴AO=BO.………6 分19.评分说明:1.全对6分;2.只画对一种得2分3.P点坐标2分、四、解答题(本大题共21分.解答应写出文字说明、证明过程或演算步骤.)20解:∵∠BAC=100°,∠B=40°,∴∠ACB=180°﹣∠B﹣∠BAC=40°,………1分∴∠ACB=∠B,………2…分∴AC=AB=3,………3分…∵∠D=30°,∴∠DAC=∠ACB﹣∠D=30°………4分∴∠DAC=∠D,………5分∴CD=AC=3.…………7分21如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,EF⊥AB于点F,且AB=DE.(1)求证:△ACB≌△EBD;(2)若DB=8,求AC的长.(1)证明:∵∠DEB+∠ABC=90°,∠A+∠ABC=90°,∴∠DEB=∠A,………2分在△ACB和△EBD中,,∴△ACB≌△EBD,(AAS);………4分(2)解:∵△ACB≌△EBD,∴BC=DB,AC=EB,………5分∵E是BC的中点,∴EB=,………6分∵DB=8,BC=DB,∴BC=8,∴AC=EB==4.………7分解:连接AF………1分∵AB=AC, ∠BAC=120°∴∠B=∠C=30°………2分∵AC的垂直平分线EF∴AF=CF=3………4分∴∠C=∠EAF=30°∴∠BAF=120°-30°=90°………5分又∵∠B=30°∴BF=2AF=6cm………7分五、解答题(本大题共27分.解答应写出文字说明、证明过程或演算步骤.)23.证明:(1)如图1,在等边△ABC中,AB=BC=AC,∴∠ABC=∠ACB=∠A=60°,………1分∵AE=EB,AE=BD∴BD=BE∴∠EDB=∠DEB=∠A BC=30°………2分∵BC=AC,AE=EB∴∠ECB=∠ACB=30°………3分∴∠EDB=∠ECB,∴EC=ED;………4分(2)如图2,∵EF∥BC,∴∠AEF=∠ABC=60°,∠AFE=∠C=60°,………5分∴△AEF为等边三角形;………6分(3)答EC=ED ;理由:∵∠AEF=∠ABC=60°,∴∠EFC=∠DBE=120°,∵AB=AC,AE=AF ,∴AB﹣AE=AC ﹣AF ,即BE=FC ,………7分在△DBE 和△EFC 中,,∴△DBE≌△EFC(SAS ),………8分∴ED=EC.………9分24:评分说明:(1)过程省略 2分(2)共5分 画对辅助线延长AD,BE 交于P ……1分证到△ABE ≌△APE,得BE=EP …3分证到△DEP ≌△CEB,得DE=CE ……5分(3)面积 48 ……2分E CB A D P25在△ABC中,∠ACB=90°,AC=BC,AB=8,CD⊥AB,垂足为D,M为边AB上任意一点,点N在射线CB上(点N与点C不重合),且MC=MN,NE⊥AB,垂足为E.评分说明解:(1)CD=4.………1分(2)ME=4.………1分(3)共7分答:ME的长度不会改变理由:①如图2所示,若点N在BC上(与B不重合),∵AC=BC,∴∠ACB=90°,∴∠A=∠B=45°.∵AC=BC,CD⊥AB,AB=8,∴CD=BD=4,即∠BCD=45°.∵MN=MN,∴∠MCN=∠MNC.∵∠MCN=∠MCD+∠BCD,∠MNC=∠B+∠BMN,∴∠MCD=∠NME.在△MCD与△NME中,,∴△MCD≌△NME(AAS),∴ME=CD=4.……3分②当点N与点B重合时,点M与点D重合,此时,ME=MN=4.……4分③如图3所示,若点N在边CB上,可知点M在线段BD上,且点E在边AB的延长线上.∵∠ABC=∠MNC+∠BMN=45°,∠BCD=∠MCD+∠MNC=45°,MC=MN,∴∠MCN=∠MNC,∴∠MCD=∠BMN.在△MCD与△NME中,,∴△MCD≌△NME(AAS),∴ME=CD=4.……6分综上所述:由①②③可知,当点M在边AB上移动时,线段ME的长不变,ME=4.…7分.。

【苏科版】2016-2017学年八年级数学上期中试题(含答案)

【苏科版】2016-2017学年八年级数学上期中试题(含答案)

2016/2017学年度第一学期期中考试试卷八年级数学试题注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分)1.下列大学的校徽图案是轴对称图形的是(▲ )A.清华大学 B.北京大学 C.中国人民大学 D.浙江大学2.如图,已知AB=AD,添加下列一个条件后,仍无法判定△ABC≌△ADC的是(▲ )A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°3.如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是(▲ )A.SSS B.SAS C.SSA D.ASA4.根据下列已知条件,能唯一画出△ABC的是(▲ )A.AB=3,BC=4,CA=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6(第2题)(第3题)(第5题)5.等腰三角形的周长为13 cm,其中一边长为3 cm.则该等腰三角形的底长为(▲ )A.3 cm或5 cm B.3 cm或7 cm C.3 cm D.5 cm6.如果a、b、c是一个直角三角形的三边,则a:b:c可以等于(▲ )A.1:2:4 B.2:3:4 C.3:4:7 D.5:12:13 7.如图,在△ABC中,∠ABC=45°,F是高AD和高BE的交点,若FD=4,AF=2.则线段BC的长度为(▲ )A.6 B.8 C.10 D.128.如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=3,则CE2+CF2的值为(▲ )A.36 B.9 C.6 D.18(第7题)(第8题)二、填空题(本大题共10小题,每小题3分,共30分)9.如图,△OAD≌△OBC,且OA=2,OC=6,则BD= ▲ .10.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=25°,则∠2的度数为▲ .(第9题)(第10题)(第11题)(第12题)11.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=▲ .12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是▲ .(填上一个条件即可)13.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是▲ .14.如图,点D在边BC上,DE⊥AB,DF⊥BC,垂足分别为点E、D,BD=CF,BE=CD.若∠AFD=140°,则∠EDF=▲ .15.如图,∠BAC =100°,若MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ = ▲ .(第13题) (第14题) (第15题) (第16题)16.如图,AB //CD ,O 为∠BAC 、∠ACD 的平分线的交点,OE ⊥AC 于E ,且OE =1,则AB 与CD之间的距离等于 ▲ .17.一个直角三角形的两边长分别为3、4,则它的第三条边的平方是 ▲ .18.把两个三角板如图甲放置,其中90ACB DEC ∠=∠=︒,45A ∠=︒,30D ∠=︒,斜边12AB =,14CD =,把三角板DCE 绕着点C 顺时针旋转15︒得到△11D CE (如图乙),此时AB 与1CD 交于点O ,则线段1AD 的长度为 ▲ .乙甲D 1ACB ABE DE 1CO(第18题)三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、推理过程或演算步骤) 19.(8分)如图,△ABC 与△C B A '''关于直线l 对称,若∠A =76°,∠C '=48°.求∠B 的度数.20.(8分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内再涂黑4个小正方形,使它们成为轴对称图形.21.(8分)如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =36°.求∠BAC ,∠C 的度数.22.(8分)如图,△ABC 中,AB =AC ,两条角平分线BD 、CE 相交于点O .(1)证明:△ABD ≌△ACE ; (2)证明:OB =OC .23.(10分)如图,AD ∥ BC ,∠ A =90°,以点B 为圆心、BC 长为半径作弧,交射线AD 于点E ,连接BE ,过点C 作CF ⊥BE ,垂足为F .求证:AB =FC .FEDCBADEOCBA24.(10分)如图,在△ABC中,∠BAC=90°,AB=20,AC=15,AD⊥BC,垂足为D.求AD,BD的长25.(10分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长为14 cm,AC=6 cm,求DC长.26.(10分)如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时,△PQB是以BP为底的等腰三角形?27.(12分)如图,△ABC和△CDE都是等边三角形,且点B、C、D在同一条直线上,BE交AC于F,AD交CE于H,连接FH.(1)求证:△ACD≌△BCE;(2)求证:AH=BF;(3)求证:△CFH为等边三角形.28.(12分)(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在DC上方作等边△DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(3)深入探究:<Ⅰ>如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.<Ⅱ>如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,<Ⅰ>中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.2016/2017学年度第一学期期中考试试卷八年级数学答题纸二、填空题(共10小题,每题3分,共30分)三、解答题19.(8分)20.(8分)21.(8分)22.(8分)DEOCBA23.(10分)FE DCBA24.(10分)25.(10分)26.(10分)2016/2017学年度第一学期期中考试八年级数学答案一、选择题B C D C C D C A二、填空题9.4 10.70°11.50°12.BE=CE(或∠BAE=∠CAE,或∠ABE=∠ACE)13.914.50°15.20°16.2 17.25或7 18.10 三、解答题19.56°20.略 21.72°;54° 22.略23.略24.12,16 25.35°,4 26.5,6 27.略28.(1)AF=BD.证明如下:∵△ABC是等边三角形(已知),∴BC=AC,∠BCA=60°(等边三角形的性质).同理知,DC=CF,∠DCF=60°.∴∠BCA﹣∠DCA=∠DCF﹣DCA,即∠BCD=∠ACF.在△BCD和△ACF中,∵BC=AC,∠BCD=∠ACF,DC=CF,∴△BCD≌△ACF(SAS).∴BD=AF(全等三角形的对应边相等).(2)AF=BD仍然成立.通过证明△BCD≌△ACF,即可证明AF=BD.(3)<Ⅰ>AF+BF′=AB.证明如下:由(1)知,△BCD≌△ACF(SAS),则BD=AF.同理△BCF′≌△ACD(SAS),则BF′=AD.∴AF+BF′=BD+AD=AB.<Ⅱ> <Ⅰ>中的结论不成立,新的结论是AF=AB+BF′.证明如下:在△BCF′和△ACD中,∵BC=AC,∠BC F′=∠ACD,F′C=DC,∴△BCF′≌△ACD(SAS).∴BF′=AD(全等三角形的对应边相等).又由(2)知,AF=BD,∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′.。

2016-2017学年八年级上学期期中考试数学试题(word版有答案)

2016-2017学年八年级上学期期中考试数学试题(word版有答案)

CAD BE2016-2017学年第一学期期中教学质量检测卷八年级 数学试卷(时间100分钟,总分100分)得分:一、选择题(本题共10小题,每小题3分,共30分) 1、下列各数中是无理数的是( )ABCD 2、在△ABC 中AB=1、、BC=2则这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 3、设1a =,a 在两个相邻整数之间,则这两个数是( ) A .1和2B .2和3C .3和4D .4和54、函数y kx =的图象经过点P (3,-1)则k 的值为( )A .3B .-3C .13D .13-5)A .12±B .12C .D 6、面积为9㎝2的正方形以对角线为边长的正方形面积为( )A .18㎝2B .20㎝2C .24㎝2D .28㎝27、若点A (2,m )在x 轴上,则点B (m-1,m+1)在( )A .第一象限B.第二象限C .第三象限D .第四象限8、下列计算正确的是( )A=B=C4=D =9、函数已知一次函数y kx b =+,y 随x 的增大而减小,且kb <0则在直角坐标系内大致图象是(A B C D10、“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x 千克,付款金额为y 元,则y 与x 的函数关系的图象大致是( )A B C D 二、填空题(本大题8小题,每小题3分共24分)11、在电影院5排3号用(5,3)表示,那么6排2号可表示为。

12= ;= 。

13、一次函数21y x =-的图象经过点(a ,3),则a = 。

14、已知x 轴上的点P 到y 轴的距离为3,则P 点坐标为 。

152(3)0b +=,则M (,)a b 关于x 轴对称的点的坐标为 。

16、写出一个图象不经过第二象限的一次函数表达式 。

17、已知过点A (52,2)a a -+,B (1,4)a a --的直线与y 轴平行,则a 的值为 。

江苏省苏州市八年级数学上学期期中试卷(含解析) 苏科版-苏科版初中八年级全册数学试题

江苏省苏州市八年级数学上学期期中试卷(含解析) 苏科版-苏科版初中八年级全册数学试题

某某省某某市2016-2017学年八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个2.16的平方根是()A.4 B.±4 C.D.±3.与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点B.三条角平分线的交点C.三条高的交点 D.三边的垂直平分线的交点4.在,﹣,0.,,,(﹣1)0,﹣,0.1010010001…等数中,无理数的个数为()A.1 B.2 C.3 D.45.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,126.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或187.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④ B.②③ C.①②④D.①③④8.如图,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,F为BC的中点,DE=5,BC=8,则△DEF的周长是()A.21 B.18 C.13 D.159.如图,长方形ABCD中,AB=9,BC=6,将长方形折叠,使A点与BC的中点F重合,折痕为EH,则线段BE的长为()A.B.4 C.D.510.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50° B.60° C.70° D.80°二、填空题(本大题共8小题,每小题3分,共24分)11.的平方根是.×104,它是精确到位.13.已知等腰三角形的一个内角等于50°,则它的底角是°.14.若一正数的两个平方根分别是2a﹣1与2a+5,则这个正数等于.15.已知△ABC的三边长a、b、c满足,则△ABC一定是三角形.16.如图,DE是△ABC中AC边上的垂直平分线,若BC=9,AB=11,则△EBC的周长为.17.如图,E为正方形ABCD边AB上一点,BE=3AE=3,P为对角线BD上一个动点,则PA+PE 的最小值是.18.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有个.三、解答题19.(8分)计算或化简:(1)()2﹣﹣(2)+(1﹣)0﹣(﹣)﹣1.20.(8分)求下列各式中x的值:(1)(x﹣1)3+27=0;(2)9(x﹣1)2=16.21.(5分)已知5x﹣1的平方根是±3,4x+2y+1的立方根是1,求4x﹣2y的平方根.22.(5分)作图题:如图,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你用直尺和圆规画出灯柱的位置点P.(保留作图痕迹)23.(5分)如图网格图中,每个小正方形的边长均为1,每个小格的顶点叫做格点.(1)请在图1中,画一个格点三角形,使它的三边长都是有理数;(2)请在图2中,画一个格点三角形,使它的三边长都是无理数;(3)图3中的△ABC的面积为.24.(5分)已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?25.(6分)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.26.(6分)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来.于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为在的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)如果的小数部分为a,的整数部分为b,求a+b﹣的值.(2)已知10+=2x+y,其中x是整数,且0<y<1,求3x﹣y的值.27.(8分)如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒4cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.2016-2017学年某某省某某市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【解答】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.【点评】本题考查了轴对称与轴对称图形的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.16的平方根是()A.4 B.±4 C.D.±【考点】平方根.【分析】直接利用平方根的定义计算即可.【解答】解:∵±4的平方是16,∴16的平方根是±4.故选B【点评】此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.3.与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点B.三条角平分线的交点C.三条高的交点 D.三边的垂直平分线的交点【考点】线段垂直平分线的性质.【分析】可分别根据线段垂直平分线的性质进行思考,首先满足到A点、B点的距离相等,然后思考满足到C点、B点的距离相等,都分别在各自线段的垂直平分线上,于是答案可得.【解答】解:如图:∵OA=OB,∴O在线段AB的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,∵OA=OC,∴O在线段AC的垂直平分线上,又三个交点相交于一点,∴与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点.故选:D.【点评】此题考查了线段垂直平分线的性质;题目比较简单,只要熟知线段垂直平分线的性质即可.分别思考,两两满足条件是解答本题的关键.4.在,﹣,0.,,,(﹣1)0,﹣,0.1010010001…等数中,无理数的个数为()A.1 B.2 C.3 D.4【考点】无理数;零指数幂.【分析】由于无理数就是无限不循环小数,利用无理数的概念即可判定选择项.【解答】解:无理数为:,﹣,,0.1010010001…;故选D【点评】此题要熟记无理数的概念及形式.初中X围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,12【考点】勾股数.【分析】根据勾股定理的逆定理对四个答案进行逐一判断即可.【解答】解:A、∵62+82=102=100,∴能构成直角三角形;B、52+122=132=169,∴能构成直角三角形;C、92+402=412=1681,∴能构成直角三角形;D、∵72+92≠122,∴不能构成直角三角形.故选D.【点评】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.6.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或18【考点】等腰三角形的性质;三角形三边关系.【分析】由于等腰三角形的两边长分别是3和6,没有直接告诉哪一条是腰,哪一条是底边,所以有两种情况,分别利用三角形的周长的定义计算即可求解.【解答】解:∵等腰三角形的两边长分别是3和6,∴①当腰为6时,三角形的周长为:6+6+3=15;②当腰为3时,3+3=6,三角形不成立;∴此等腰三角形的周长是15.故选C.【点评】此题主要考查了三角形的周长的计算,也利用了等腰三角形的性质,同时也利用了分类讨论的思想.7.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④ B.②③ C.①②④D.①③④【考点】估算无理数的大小;算术平方根;无理数;实数与数轴;正方形的性质.【分析】先利用勾股定理求出a=3,再根据无理数的定义判断①;根据实数与数轴的关系判断②;利用估算无理数大小的方法判断③;利用算术平方根的定义判断④.【解答】解:∵边长为3的正方形的对角线长为a,∴a===3.①a=3是无理数,说法正确;②a可以用数轴上的一个点来表示,说法正确;③∵16<18<25,4<<5,即4<a<5,说法错误;④a是18的算术平方根,说法正确.所以说法正确的有①②④.故选C.【点评】本题主要考查了勾股定理,实数中无理数的概念,算术平方根的概念,实数与数轴的关系,估算无理数大小,有一定的综合性.8.如图,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,F为BC的中点,DE=5,BC=8,则△DEF的周长是()A.21 B.18 C.13 D.15【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半求出DF、EF,再根据三角形的周长的定义解答.【解答】解:∵CD⊥AB,F为BC的中点,∴DF=BC=×8=4,∵BE⊥AC,F为BC的中点,∴EF=BC=×8=4,∴△DEF的周长=DE+EF+DF=5+4+4=13.故选C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,是基础题,熟记性质并准确识图是解题的关键.9.如图,长方形ABCD中,AB=9,BC=6,将长方形折叠,使A点与BC的中点F重合,折痕为EH,则线段BE的长为()A.B.4 C.D.5【考点】翻折变换(折叠问题).【分析】根据折叠的性质得到EF=AE=9﹣BE,由线段中点的性质得到BF=BC=3,根据勾股定理列方程即可得到结论.【解答】解:∵将长方形折叠,使A点与BC的中点F重合,∴EF=AE=9﹣BE,∵BF=BC=3,在Rt△BEF中,EF2=BE2+BF2,即(9﹣BE)2=BE2+32,解得:BE=4.故选B.【点评】本题考查了翻折变换﹣折叠问题,勾股定理,熟记折叠的性质是解题的关键.10.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50° B.60° C.70° D.80°【考点】轴对称-最短路线问题.【分析】据要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=50°,进而得出∠AEF+∠AFE=2(∠AA′E+∠A″),即可得出答案.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=50°,∴∠EAF=130°﹣50°=80°,故选:D.【点评】本题考查的是轴对称﹣最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出E,F的位置是解题关键.二、填空题(本大题共8小题,每小题3分,共24分)11.的平方根是±.【考点】平方根.【分析】由=3,再根据平方根定义求解即可.【解答】解:∵ =3,∴的平方根是±.故答案为:±.【点评】本题主要考查平方根与算术平方根,掌握平方根定义是关键.×104,它是精确到百位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】×104精确到百位.故答案为百.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.13.已知等腰三角形的一个内角等于50°,则它的底角是50°或65°°.【考点】等腰三角形的性质.【分析】等腰三角形的两个底角相等,已知一个内角是50°,则这个角可能是底角也可能是顶角.要分两种情况讨论.【解答】解:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故答案是:50°或65°.【点评】本题考查了等腰三角形的性质,分类讨论是正确解答本题的关键.14.若一正数的两个平方根分别是2a﹣1与2a+5,则这个正数等于9 .【考点】平方根.【分析】根据正数的两个平方根互为相反数列方程求出a,再求出一个平方根,然后平方即可.【解答】解:∵一正数的两个平方根分别是2a﹣1与2a+5,∴2a﹣1+2a+5=0,解得a=﹣1,∴2a﹣1=﹣2﹣1=﹣3,∴这个正数等于(﹣3)2=9.故答案为:9.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.15.已知△ABC的三边长a、b、c满足,则△ABC一定是等腰直角三角形.【考点】等腰直角三角形;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根;勾股定理的逆定理.【分析】先根据非负数的性质求出a、b、c的值,再根据三角形的三边关系进行判断即可.【解答】解:∵△ABC的三边长a、b、c满足,∴a﹣1=0,b﹣1=0,c﹣=0,∴a=1,b=1,c=.∵a2+b2=c2,∴△ABC一定是等腰直角三角形.【点评】本题考查的知识点是:一个数的算术平方根与某个数的绝对值以及另一数的平方的和等于0,那么算术平方根的被开方数为0,绝对值里面的代数式的值为0,平方数的底数为0及勾股定理的逆定理.16.如图,DE是△ABC中AC边上的垂直平分线,若BC=9,AB=11,则△EBC的周长为20 .【考点】线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到EA=EC,根据三角形的周长公式计算即可.【解答】解:∵DE是AC边上的垂直平分线,∴EA=EC,∴△EBC的周长=BC+BE+EC=BC+BE+EA=BC+AB=20.故答案为:20.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.如图,E为正方形ABCD边AB上一点,BE=3AE=3,P为对角线BD上一个动点,则PA+PE 的最小值是 5 .【考点】轴对称-最短路线问题.【分析】连接EC,则EC的长就是PA+PE的最小值.【解答】解:连接EC.∵BE=3AE=3,∴AB=4,则BC=AB=4,在直角△BCE中,CE===5.故答案是:5.【点评】本题考查了轴对称,理解EC的长是PA+PE的最小值是关键.18.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有 4 个.【考点】利用轴对称设计图案.【分析】因为顶点都在小正方形上,故可分别以大正方形的两条对角线AB、EF及MN、CH为对称轴进行寻找.【解答】解:分别以大正方形的两条对角线AB、EF及MN、CH为对称轴,作轴对称图形:则△ABM、△ANB、△EHF、△EFC都是符合题意的三角形,故答案为:4.【点评】此题考查了利用轴对称涉及图案的知识,关键是根据要求顶点在格点上寻找对称轴,有一定难度,注意不要漏解三、解答题19.计算或化简:(1)()2﹣﹣(2)+(1﹣)0﹣(﹣)﹣1.【考点】实数的运算;零指数幂;负整数指数幂.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用零指数幂、负整数指数幂法则,以及二次根式性质计算即可得到结果.【解答】解:(1)原式=4+3﹣10=﹣3;(2)原式=2+1+2=2+3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.求下列各式中x的值:(1)(x﹣1)3+27=0;(2)9(x﹣1)2=16.【考点】立方根;平方根.【分析】根据平方根和立方根的定义解答.【解答】解:(1)(x﹣1)3+27=0,解得:x=﹣2;(2)9(x﹣1)2=16,解得:或x=﹣.【点评】本题主要考查了平方根和立方根的概念,关键是根据平方根和立方根的定义计算.21.已知5x﹣1的平方根是±3,4x+2y+1的立方根是1,求4x﹣2y的平方根.【考点】立方根;平方根.【分析】根据平方根的定义可得5x﹣1=9,计算出x的值;再根据立方根定义可得4x+2y+1=1,进而计算出y的值,然后可得4x﹣2y的值,再算平方根即可.【解答】解:∵5x﹣1的算术平方根为3,∴5x﹣1=9,∴x=2,∵4x+2y+1的立方根是1,∴4x+2y+1=1,∴y=﹣4,∴4x﹣2y=4×2﹣2×(﹣4)=16,∴4x﹣2y的平方根是±4.【点评】此题主要考查了立方根和平方根,关键是掌握如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根;如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.22.作图题:如图,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你用直尺和圆规画出灯柱的位置点P.(保留作图痕迹)【考点】作图—应用与设计作图.【分析】直接作出线段DC的垂直平分线,再作出∠AOB的平分线,进而得出其交点即可.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.23.如图网格图中,每个小正方形的边长均为1,每个小格的顶点叫做格点.(1)请在图1中,画一个格点三角形,使它的三边长都是有理数;(2)请在图2中,画一个格点三角形,使它的三边长都是无理数;(3)图3中的△ABC的面积为.【考点】勾股定理.【分析】由于正方形的边长为1,连接铬点的线段,可通过勾股定理计算出其边长.根据题目要求,3、4、5符合(1)要求的三角形,例如、3、2符合(2)要求的三角形.(3)三角形的面积=矩形的面积﹣3个小直角三角形的面积.【解答】解:(1)(2)如右图所示.(3)三角形的面积=22﹣2×﹣﹣=故答案为:【点评】本题考查了铬点三角形、勾股定理及三角形的面积公式.知道3、4、5能组成三角形,会把不规则的图形转化成规则图形求面积是解决本题的关键.24.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?【考点】勾股定理的应用.【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD 中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.【解答】解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=,==36.所以需费用36×200=7200(元).【点评】通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.25.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.【考点】全等三角形的判定与性质;角平分线的性质.【分析】(1)求出∠E=∠DFC=90°,根据全等三角形的判定定理得出Rt△BED≌Rt△CFD,推出DE=DF,根据角平分线性质得出即可;(2)根据全等三角形的性质得出AE=AF,BE=CF,即可求出答案.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴在Rt△BED和Rt△CFD中∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BED≌Rt△CFD,∴AE=AF,CF=BE=4,∵AC=20,∴AE=AF=20﹣4=16,∴AB=AE﹣BE=16﹣4=12.【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.26.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来.于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为在的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)如果的小数部分为a,的整数部分为b,求a+b﹣的值.(2)已知10+=2x+y,其中x是整数,且0<y<1,求3x﹣y的值.【考点】估算无理数的大小;算术平方根.【分析】(1)根据题意得出a=﹣2,b=5,代入可得;(2)由2=且3<<4知13<10+<14,从而得出x=、y=﹣3,再代入计算即可.【解答】解:(1)根据题意得:a=﹣2,b=5,则原式=﹣2+5﹣=3;(2)∵2=,且3<<4,∴13<10+<14,∴2x=13,y=10+﹣13=﹣3,即x=,则3x﹣y=3×﹣(﹣3)=﹣2.【点评】此题主要考查了无理数的估算能力,解题关键是估算无理数的整数部分和小数部分,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.27.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒4cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.【考点】三角形综合题;角平分线的性质;等腰三角形的判定与性质;勾股定理的应用;三角形中位线定理.【分析】(1)设存在点P,使得PA=PB,此时PA=PB=4t,PC=8﹣4t,根据勾股定理列方程即可得到t的值;(2)过P作PE⊥AB,设CP=x,根据角平分线的性质和勾股定理列方程式进行解答即可;(3)分类讨论:当CP=CB时,△BCP为等腰三角形,若点P在AC上,根据AP的长即可得到t的值,若点P在AB上,根据P移动的路程易得t的值;当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,根据等腰三角形的性质得BD=CD,则可判断PD为△ABC的中位线,则AP=AB=5,易得t的值;当BP=BC=6时,△BCP为等腰三角形,易得t的值.【解答】解:(1)∵△ABC中,∠ACB=90°,AB=10cm,BC=6cm,∴由勾股定理得AC==8,如图,连接BP,当PA=PB时,PA=PB=4t,PC=8﹣4t,在Rt△PCB中,PC2+CB2=PB2,即(8﹣4t)2+62=(4t)2,解得:t=,∴当t=时,PA=PB;(2)解:如图1,过P作PE⊥AB,又∵点P恰好在∠BAC的角平分线上,且∠C=90°,AB=10cm,BC=6cm,∴CP=EP,∴△ACP≌△AEP(HL),∴AC=8cm=AE,BE=2,设CP=x,则BP=6﹣x,PE=x,∴Rt△BEP中,BE2+PE2=BP2,即22+x2=(6﹣x)2解得x=,∴CP=,∴CA+CP=8+=,∴t=÷4=(s);(3)①如图2,当CP=CB时,△BCP为等腰三角形,若点P在CA上,则4t=8﹣6,解得t=(s);②如图3,当BP=BC=6时,△BCP为等腰三角形,∴AC+CB+BP=8+6+6=20,∴t=20÷4=5(s);③如图4,若点P在AB上,CP=CB=6,作CD⊥AB于D,则根据面积法求得CD=4.8,在Rt△BCD中,由勾股定理得,BD=3.6,∴PB=2BD=7.2,∴CA+CB+BP=8+6+7.2=21.2,÷4=5.3(s);④如图5,当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,则D为BC的中点,∴PD为△ABC的中位线,∴AP=BP=AB=5,∴AC+CB+BP=8+6+5=19,∴t=19÷4=(s);综上所述,t为s时,△BCP为等腰三角形.【点评】本题以动点问题为背景,考查了等腰三角形的判定与性质、角平分线的性质、勾股定理、三角形面积的计算以及全等三角形的判定与性质等知识的综合应用,熟练掌握等腰三角形的判定与性质,进行分类讨论是解决问题的关键.解题时需要作辅助线构造直角三角形以及等腰三角形.。

2016~2017学年第一学期八年级期中考试数学试卷及答案

2016~2017学年第一学期八年级期中考试数学试卷及答案

2017学年第一学期八年级期中考试数学试卷(答题时间:90分钟满分:100分)一、 CAABD DBBCB二、(11) 120,60︒︒ (12) 〈 (13)(3,2) ( 14)4 (15)36三、(16)解:16、①解:原式=24222+-····················2分=25····················4分②解:原式=12+···················2分=3+··················4分 ③解:原式=4)3()7(22--····················2分 =437--····················3分=0····················4分④解:原式=3333632-⨯+····················2分 =333232-+····················3分=3····················4分(17)略(18)过程略(每个1.5分)A (0,BCD ( 19、(答案不唯一)答:是平行四边形···················1分 理由:如图,连接DB ,与AC 交于O 点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档