全国2010年7月自学考试复变函数与积分变换试题
复变函数与积分变换2010上卷A及答案

中南大学考试试卷2009-- 2010学年二学期 时间110分钟课程: 复变函数与积分变换 考试形式:闭卷 专业年级: 工程数学08级 总分100分,占总评成绩 70 %注:此页不作答题纸,请将答案写在答题纸上 一、选择题:(5×4')1、函数),(),()(y x iv y x u z f +=在点00iy x z +=处连续的充要条件是( ) A. ),(y x u 在),(00y x 处连续; B. ),(y x v 在),(00y x 处连续; C. ),(y x u 和),(y x v 在),(00y x 处连续;D. ),(),(y x v y x u +在),(00y x 处连续. 2.函数),(),()(y x iv y x u z f +=在点0z 处解析,则命题( )不成立. A. ),(y x u 和),(y x v 仅在0z 处可微且满足C-R 条件.B. 存在点0z 的某一邻域)(0z U ,),(y x u 和),(y x v 在)(0z U 内满足C-R 条件;C. ),(y x u 和),(y x v 在)(0z U 内可微;D. B 与C 同时成立.3. 函数)(z f 在单连通域B 内解析是函数)(z f 沿B 内任一闭曲线C 的积分0)(=⎰Cdz z f 的( ).A. 充分条件;B.必要条件;C. 充分必要条件;D.既非充分条件也非必要条件. 4. 幂级数∑∞=0)(cos n n z in 的收敛半径是( ).A.1;B.2;C.e ;D.e1.5.1=z 是函数11-z e的( ).A.一级极点;B.二级极点;C.可去奇点;D.本性奇点.二、解答下列各题:(8×10')1、试求下列函数的极限: (1)zz iz +→1lim; (2)11lim1--+-→z z z z z z ;2、下列函数何处可导?何处解析?(1)i y x z f 3332)(+=; (2)xshy i xchy z f cos sin )(+=; 3、计算积分1|:|,)1( cos 5>=-⎰r z C dz z zC π。
复变函数与积分变换2010A答案

6)题目六:0是 的:(C)
A孤立奇点B本性奇点C零点D原点
7)题目七:级数 :(C)
A绝对收敛B条件收敛C发散D既不收敛又不发散
二、填空题(每小题2分七小题共14分)
1)题目一:复数-8i的三次单位根是 、、 。(2i)
2)题目二: 。( )
3)题目三:函数 的C-R方程是 。
6)题目六:若函数在D内的朗洛展开式中不含 的负幂项,则 是 的可去奇点。(T)
7)题目七:积分 给出了函数 的拉普拉斯变换.( F )
共页第页
四、计算题(每题5分五小题共25分)
1)题目一:已知调和函数 。求其共轭调和函数 。
2)题目二:计算
3)题目三:求函数 在 的留数。
4)题目四:求函数 的傅立叶变换。
4)题目四:设 在简单正向曲线C及其所围的区域D内出处解析且 ,那么 。
5)题目五:级数 的收敛半径是。
6)题目六:函数 在 解析,则 是 的m阶零点的充分必要条件是 。
7)题目七:傅立叶变换 的逆变换是。
三、判断题判断下面各题叙述的正误。正确在后面括号里用T标记,错误的用F标记(每小题1分七小题共7分)。
1)题目一:两个复数乘积的模和辐角分别等于两复数模与辐角的乘积。(F)
2)题目二:函数 不仅在 可导,则必然在 解析。( F )
3)题目三:函数 在定义域内一点 可导的充分条件是 和 在点 可微且满足C-R方程。(F)
4)题目四:若级数 在 处收敛,则该级数对任意 的z都绝对收敛。( T )
5)题目五: 是 的m阶极点的充分必要条件是 。(T)
设
5)题目五:求正弦函数 的复频函数(其中k为任意复数)。
共页第页
复变函数与积分变换试题和答案

复变函数与积分变换试题(一)一、填空(3分×10)1.得模ﻩﻩ、幅角ﻩ。
2.-8i得三个单根分别为:、、。
3.Lnz在得区域内连续。
4.得解极域为:ﻩﻩﻩﻩﻩ。
5.得导数ﻩﻩﻩﻩﻩ。
6. ﻩﻩ。
7.指数函数得映照特点就是:ﻩﻩﻩﻩﻩﻩﻩﻩﻩ。
8.幂函数得映照特点就是: ﻩﻩﻩﻩﻩﻩﻩ。
9.若=F [f(t)]、则= F ﻩﻩﻩﻩ。
10.若f(t)满足拉氏积分存在条件、则L [f(t)]= ﻩﻩﻩ。
二、(10分)已知、求函数使函数为解析函数、且f(0)=0。
三、(10分)应用留数得相关定理计算四、计算积分(5分×2)1.2.C:绕点i一周正向任意简单闭曲线。
五、(10分)求函数在以下各圆环内得罗朗展式。
1.2.六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
(2)七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0得解y (t )。
八、(10分)就书中内容、函数在某区域内解析得具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1.ﻩﻩ、ﻩ ﻩ2、ﻩ-i ﻩﻩ2iﻩ-i ﻩ3、ﻩZ 不取原点与负实轴 4、 空集5、ﻩ2z ﻩ6.0 7、将常形域映为角形域ﻩ8、 角形域映为角形域 9、ﻩ ﻩ10、 二、解:∵ﻩ ∴ ﻩ(5分)∵f (0)=0ﻩﻩﻩﻩc =0(3分)∴ﻩﻩ(2分)三、解:原式=(2分)ﻩ(2分)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) =四、1.解:原式ﻩ(3分) z 1=0 ﻩz2=1ﻩ=0ﻩﻩ(2分)2.解:原式=五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)( ﻩﻩ(2分) ﻩ2.解: (1分)ﻩ(2分)六、1.解:∵ﻩ(3分)ﻩ∴结论成立 (2)解:∵ﻩ(2分)ﻩ ∴与1构成傅氏对∴(2分)七、解:∵ﻩﻩ(3分)S (2)-(1):∴ (3分)∴八、解:①定义;②C-R 充要条件Th ; ③v 为u 得共扼函数ﻩ10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导就是f(z)在D 内解析得(ﻩ ﻩ)条件。
复变函数考试题及答案自考

复变函数考试题及答案自考一、选择题(每题2分,共20分)1. 下列哪个选项是复数z = 3 + 4i的共轭复数?A. 3 - 4iB. -3 + 4iC. -3 - 4iD. 3 + 4i答案:A2. 如果复变函数f(z)在点z₀处解析,那么它的导数f'(z₀)等于:A. 极限lim(Δz→0) [f(z₀ + Δz) - f(z₀)] / ΔzB. f(z₀)的实部C. f(z₀)的虚部D. f(z₀)的模答案:A3. Cauchy积分定理适用于:A. 仅在实数域B. 仅在复平面上的简单闭合曲线C. 仅在复平面上的开区域D. 所有以上情况答案:C4. 如果一个复变函数在某区域内除了一个孤立奇点外处处解析,那么这个函数在该区域内:A. 一定有原函数B. 一定没有原函数C. 可能是周期函数D. 以上都不对答案:A5. 复变函数f(z) = u(x, y) + iv(x, y)中,u和v分别表示:A. 实部和虚部B. 模和辐角C. 辐角和模D. 都不对答案:A6. 以下哪个是复变函数的柯西-黎曼方程?A. ∂u/∂x = ∂v/∂yB. ∂u/∂y = -∂v/∂xC. ∂u/∂x = ∂v/∂yD. ∂u/∂y = ∂v/∂x答案:B7. 复变函数的级数展开式中的系数是:A. 常数B. 复数C. 实数D. 以上都不对答案:B8. 如果一个复变函数在某个区域内处处连续,那么它的模:A. 也必定处处连续B. 可能不连续C. 必定不连续D. 以上都不对答案:A9. 复变函数的Taylor级数展开是关于:A. 模的展开B. 辐角的展开C. z的展开D. 共轭复数的展开答案:C10. 下列哪个是复变函数的Laurent级数展开的一个特性?A. 它只能展开在解析函数上B. 它包含负幂项C. 它只能展开在奇点附近D. 以上都是答案:B二、填空题(每题3分,共30分)11. 复数z = 2 - 3i的模是________。
2010年全国自考复变函数与积……2

2010年全国自考复变函数与积分变换模拟试卷(十)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A. AB. BC. CD. D答案:D2.A. z=0B. z=1C. z=-1D. 无奇点答案:A3.A. |z|<1B. |z|>1C. |z|=1D. 不确定答案:A4. 复数-1+i的模是()A. AB. BC. CD. D 答案:D5.A. 0B. 1C. eD. 1/e 答案:D6.A. 1B. 2C. 3D. 4答案:C7.A. AB. BC. CD. D答案:D8.A. 0B. 1C. 2D. 6πi 答案:D9.A. 绝对收敛B. 收敛C. 发散D. 不能确定答案:A10.A. δ(t)costB. δ(t)-costC. δ(t)(1-sint)D. δ(t)-sint答案:D二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1. 题中横线处答案为:___答案:2. 题中横线处答案为:___答案:3. 题中横线处答案为:___答案:4. 题中横线处答案为:___答案:5. 题中横线处的答案为:___答案:6πi6. 题中横线处答案为:___答案:三、计算题(本大题共8小题,共52分)1.答案:2. 已知F(ω)=π[δ(ω+ω0)+δ(ω-ω0)]为函数f(t)的傅氏变换,求f(t).答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:四、综合题(下列3个小题中,第1题必做,第2、3题中只选做一题。
每小题8分,共16分)1.答案:2.答案:3.答案:。
复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。
2、k 为任意整数,则34+k 的值为 。
3、复数i i (1)-的指数形式为 。
4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。
(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。
自考复变函数与积分变换试题试卷真题

复变函数与积分变换试题一、单项选择题(本大题共15小题,每小题2分,共30分)1.z=2-2i ,|z 2|=( )A.2B.8C.4D.82.复数方程z=cost+isint 的曲线是( )A.直线B.圆周C.椭圆D.双曲线3.Re(e 2x+iy )=( )A.e 2xB.e yC.e 2x cosyD.e 2x siny4.下列集合为有界单连通区域的是( )A.0<|z-3|<2B.Rez>3C.|z+a|<1D.π≤<πargz 215.设f(z)=x 3-3xy 2+(ax 2y-y 3)i 在Z 平面上解析,则a=( )A.-3B.1C.2D.36.若f(z)=u(x ,y)+iv(x ,y)在Z 平面上解析,v(x,y)=e x (ycosy+xsiny),则u(x ,y)=()A.e x (ycosy-xsiny)B.e x (xcosy-xsiny)C.e x (ycosy-ysiny)D.e x (xcosy-ysiny) 7.⎰=-3|i z |zdz =( )A.0B.2πC.πiD.2πi 8.⎰=---11212z z sinzdz |z |=( ) A.0 B.2πisin1C.2πsin1D.1sin 21i π9.⎰302dz zcosz =( ) A.21sin9 B.21cos9 C.cos9D.sin9 10.若f(z)=tgz ,则Res[f(z),2π ]=( ) A.-2πB.-πC.-1D.0 11.f(z)=2i)z(z cosz -在z=1处泰勒展开式的收敛半径是( ) A.0B.1C.2D.3 12.z=0为函数cosz 1的( ) A.本性奇点B.极点C.可去奇点D.解析点 13.f(z)=)z )(z (121--在0<|z-2|<1内的罗朗展开式是( ) A.∑∞=-01n n n z )( B.∑∞=-021n n z )z ( C.∑∞=-02n n )z ( D.∑∞=---0121n n n )z ()(14.线性变换ω=iz z i +-( ) A.将上半平面Imz>0映射为上半平面Im ω>0B.将上半平面Imz>0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<115.函数f(t)=t 的傅氏变换J [f(t)]为( )A.δ(ω)B.2πi δ(ω)C.2πi δ'(ω)D.δ'(ω)二、填空题(本大题共5小题,每小题2分,共10分)16.若z 1=e 1+i π,z 2=3+i ,则z 1·z 2=________.17.若cosz=0,则z=________.18.设f ′(z)=⎰==ζ<-ζζζL )z (f L )|z (|,则|:|, 55d ζz)( cos e 2________. 19.幂级数∑∞=1n n n z n !n 的收敛半径是________.20.线性映射ω=z 是关于________的对称变换.三、计算题(本大题共8小题,每小题5分,共40分)21.计算复数z=327-的值.22.已知调和函数v=arctg xy ,x>0,求f ′(z),并将它表示成z 的函数形式. 23.设f(z)=x 2+axy+by 2+i(-x 2+2xy+y 2)为解析函数,试确定a ,b 的值.24.求积分I=⎰+C dz z i 的22值,其中C :|z|=4为正向. 25.求积分I=⎰+C zdz )i z (e 的42值,其中C :|z|=2为正向. 26.利用留数计算积分I=⎰C zsinzdz ,其中C 为正向圆周|z|=1. 27.将函数f(z)=ln(3+z)展开为z 的泰勒级数.28.将函数f(z)=()22+z z 在圆环域0<|z|<2内展开为罗朗级数. 四、综合题(下列3个小题中,第29小题必做,第30、31小题中只选做一题。
高等教育自学考试-复变函数与积分变换试题与答案-课程代码

全国2010年4月高等教育自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.arg(-1+i 3)=( ) A.-3π B.3π C.π23 D.π23+2n π 2.w =|z |2在z =0( )A.不连续B.可导C.不可导D.解析3.设z =x +iy ,则下列函数为解析函数的是( )A.f (z )=x 2-y 2+i 2xyB.f (z )=x -iyC.f (z )=x +i 2yD.f (z )=2x +iy 4.设C 为由z =-1到z =l 的上半圆周|z |=1,则⎰C z z d ||=( ) A.2πiB.0C.1D.2 5.设C 为正向圆周|z |=1,则⎰-C z z z )2(d =( ) A.-πiB.0C.πiD.2πi 6.设C 为正向圆周|z |=2,则⎰-C izi z z e 3)(d z =( )A.0B.e -1C.2πiD.-πe -1i7.z =0是3sin z z的极点,其阶数为( )A.1B.2C.3D.48.以z=0为本性奇点的函数是( ) A.z z sin B.2)1(1-z z C.z 1e D.1e 1-z9.设f (z )的罗朗展开式为-11)1(22---z z +(z -1)+2(z -l)2+…+n (z -1)n +…则Res[f (z ),1]=() A.-2 B.-1C.1D.210.设z =a 为解析函数f (z )的m 阶零点,则函数)()(z f z f '在z =a 的留数为( )A.-mB.-m +lC.m -1D.m二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。
错填、不填均无分。
11.|z -i |=|z -1|的图形是_______________.12.设z =i i ,则Im z =_______________.13.设C 为由点z =-l-i 到点z =l+i 的直线段,则⎰C z 3d z =_______________.14.设C 是顶点为z=±21,z=±i 56的菱形的正向边界,则⎰-C i z e 2dz=______________.15.设C 为正向圆周|z|=1,则⎰C z cos z d z =_________.16.函数21-z 在点z =4的泰勒级数的收敛半径为_________.三、计算题(本大题共8小题,共52分)17.设z =x +iy ,求复数11+-z z 的实部与虚部.(6分)18.求复数i 8-4i 25+i 的模.(6分)19.求f (z )=(z -1)2e z 在z =1的泰勒展开式.(6分)20.求f (z )=)2)(1(2--z z 在圆环域1<|z|<2内的罗朗展开式.(6分) 21.求解方程cos z =2.(7分)22.设z =x +iy ,试证v (x ,y )=x 2+2xy -y 2为调和函数,并求解析函数f (z )=u (x ,y )+iv (x ,y ).(7分)23.设C 为正向圆周|z-2|=1,求⎰-C z z z 2)2(e d z .(7分) 24.设C 为正向圆周|z|=1,求⎰C z1sin d z .(7分) 四、综合题(下列3个小题中,第25题必做,第26、27题中只选做一题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 中国自考人()——700门自考课程 永久免费、完整 在线学习 快快加入我们吧!
全国2010年7月自学考试复变函数与积分变换试题
课程代码:02199
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.arg =+i i
3( ) A.-3π B.-3π
+2πk ,(k =0,±1,±2) C.3π D.3π
+2πk ,(k =0,±1,±2)
2.设D ={z |0<|z +2i |2},则D 为( )
A.有界单连通区域
B.有界多连通区域
C.无界单连通区域
D.无界多连通区域
3.ln(-4-3i )=( )
A.ln5+i (-π+arctg 43)
B.ln5+i (π+arctg 43
)
C.ln5+i (-π+arctg 34
) D.ln5+i (π+arctg 34
)
4.设f (z )=u (x ,y )+iv (x ,y ),(z =x +iy ,z 0=x 0+iy 0),则ib a z f z z +=→)(lim 0
的充要条件是(
) A.a y x u y x y x =→),
(lim ),(),(00 B.b y x v y x y x =→),(lim )
,(),(00 C.a y x u y x y x =→),(lim ),(),(00或b y x v y x y x =→),(
lim ),(),(00 D.a y x u y x y x =→),(lim ),(),(00且b y x v y x y x =→),(lim )
,(),(00 5.
⎰=-2
||3cos z dz i z z =( ) A.0 B.1
C.2π
D.2πi
第 2 页 6.
⎰=1|| z z dz z
e =( ) A.0
B.1
C.2π
D.2πi 7.幂级数∑∞=122n n n nz 的收敛半径是( )
A.2
B.3
C.4
D.5 8.Res[tg πz ,
21]=( ) A.-
π2 B.-π1 C.π1 D.π
2 9.分式线性映射ω=
z 2将单位圆内部|z |<1映射成( ) A.|ω|<1
B.|ω|<2
C.|ω|>2
D.|ω|>1
10.函数f (t )=cos t sin t 的傅氏变换
为( A.)]2()2([2
π--+ωδωδ B.)]2()2([2π-++ωδωδ C.)]2()2([2π--+ωδωδi D.)]2()2([2
π-++ωδωδi 二、填空题(本大题共6小题,每小题2分,共12分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
11.方程z 3-1=0根的三角表示式z k =________________.
12.若函数ω=f (z )________________,则称函数ω=f (z )在点z 0处解析.
13.=+⎰+dz z i )13(20________________.
14.z =0是函数)4(cos 22+=z z z
ω的孤立奇点,且孤立奇点的类型是________________. 15.=]0,1sin [s Re 2z
z ________________. 16.将z =∞,i 和0分别对应0=ω,i 和∞的分式线性映射=ω________________.
三、计算题(本大题共8小题,共52分)
17.(本题6分)用cos θ与sin θ表示sin4θ.
第 3 页
18.(本题6分)已知z 0≠时22y x y x u ++=
为调和函数,求解析函数f (z )=u +iv 的导数)(z f ',并将它表示成z 的函数形
式. 19.(本题6分)设f (z )=x 2-y 2-3y +i (axy +3x )在复平面上解析,试确定a 的值.
20.(本题6分)计算积分I =⎰
C dz z z Re ,其中C 为连接由点0到点1+i 的直线段. 21.(本题7分)计算积分I=⎰-+-C dz z z z 22)1(1
2,其中C 为正向圆周|z|=2.
22.(本题7分)将函数2
31)(-=z z f 在z =2处展开为泰勒级数. 23.(本题7分)将函数)1)(2(5
2)(22+-+-=z z z z z f 在圆环域1<|z |<2内展开为罗朗级数.
24.(本题7分)利用留数计算积分I =⎰+-C dz z z )1()1(12
2,其中C 为正向圆周x 2+y 2=2(x +y ). 四、综合题(本大题共3小题,第25小题必做,第26、27小题只选做一题,两题都做,以26小题计分。
每小题8
分,共16分)
25.(1)求)4)(1()(22++=z z e z f iz
在上半平面内的所有孤立奇点;
(2)求f (z )在以上各孤立奇点的留数;
(3)利用以上结果计算I =dx x x x
)4)(1(cos 220++⎰+∞.
26.设Z 平面上区域D:0<arg z <2
π,试求下列保角映射: (1)ω1=f 1(z )把D 映射成W 1平面上区域D 1:Im ω1>0;
(2)ω2=f 2(ω1)把D 1映射成W 2平面上区域D 2:|ω2|<1,并且满足f 2(i )=0;
(3)ω=f 3(ω2)把D 2映射成W 平面上区域D 3:|ω-i|<2;
(4)综合以上三步,求保角映射ω=f (z )把D 映射成D 3:|ω-i|<2.
27.(1)求e -t 的拉氏变换;
(2)设F(p)= [y(t)],其中函数,y(t)三阶可导
,
存在,
且y (0)=y '(0)=0)0(=''y ,求; (3)利用拉氏变换,求解常微分方程初值问题:
第 4 页 ⎪⎩
⎪⎨⎧=''='==+'+''+'''-0)0()0()0(633y y y e y y y y t
中国自考人()——改写昨日遗憾 创造美好明天!用科学方法牢记知识点顺利通过考试!。