网格作图题

合集下载

云南中考数学题型专项(六)网格作图题(含答案)

云南中考数学题型专项(六)网格作图题(含答案)

题型专项(六) 网格作图题网格作图题是对图形变换的综合考查,在网格中可以同时考察平移、旋转、轴对称、中心对称等几种图形变换.此类题目属于图形的操作问题,在网格中进行图形变换的操作时,图形的每一个顶点都是关键点,可以将图形的变换操作转化为点的变换操作.此类题目属中档题,复习时注意练习即可.1.(·宁夏)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,-1),B(3,-3),C(0,-4).(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2.解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.2.(·昆明二模)在如图所示的方格纸中,每个小正方形的边长都是1,△ABC和△A1B1C1成中心对称.(1)请在图中画出对称中心O;(2)在图中画出将△A1B1C1沿直线DE平移5格得到的△A2B2C2;(3)要使△A2B2C2与△CC1C2重合,需将△A2B2C2绕点C2顺时针旋转,则至少要旋转90度.解:(1)如图,点O即为所求.(2)如图,△A2B2C2即为所求.3.(·昆明西山区一模)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-4,3),B(-3,1),C(-1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度,再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O中心对称,画出△A2B2C2;(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标(2,1).解:(1)①如图:△A1B1C1即为所求.②如图:△A2B2C2即为所求.4.(·昆明模拟)在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A,C两点的坐标;(3)根据(2)的坐标系作出与△ABC 关于原点对称的图形△A 2B 2C 2,并标出B 2,C 2两点的坐标.解:(1)△AB 1C 1如图所示.(2)如图所示,A(0,1),C(-3,1).(3)△A 2B 2C 2如图所示,B 2(3,-5),C 2(3,-1).5.(·龙东)如图,在平面直角坐标系中,点A 、B 、C 的坐标分别为(-1,3)、(-4,1)、(-2,1),先将△ABC 沿一确定方向平移得到△A 1B 1C 1,点B 的对应点B 1的坐标是(1,2),再将△A 1B 1C 1绕原点O 顺时针旋转90°得到△A 2B 2C 2,点A 1的对应点为点A 2.(1)画出△A 1B 1C 1;(2)画出△A 2B 2C 2;(3)求出在这两次变换过程中,点A 经过点A 1到达点A 2的路径总长.解:(1)如图,△A 1B 1C 1即为所求.(2)如图,△A 2B 2C 2即为所求.(3)OA 1=42+42=42,点A 经过点A 1到达A 2的路径总长为52+12+90·π·42180=26+22π. 6.(·昆明模拟)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)将△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,请在图中画出△A 2BC 2,并求出线段BC 旋转过程中所扫过的面积(结果保留π).解:(1)如图所示,△A 1B 1C 1即为所求.(2)如图所示,△A 2BC 2即为所示,线段BC 旋转过程中所扫过的面积S =90×13π360=13π4. 7.(·昆明盘龙区二模)如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC先向左,再向下都平移5个单位长度后得到的△A1B1C1;(2)请画出将△ABC绕O按逆时针方向旋转90°后得到的△A2B2C2;(3)在x轴上求作一点P,使△PAB周长最小,请画出△PAB并直接写出点P的坐标.解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.(3)如图,△PAB即为所求,P(2,0).8.(·云南模拟)图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.(1)以点O为位似中心,在方格图中画出将△ABC放大为原来的2倍得到的△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.解:(1)如图,△A′B′C′即为所求.(2)如图,△A″B′C″即为所求.S=90360π(22+42)=14π·20=5π.。

中考数学专题《在网格线中作图》

中考数学专题《在网格线中作图》

(1)在图1中,画出线段AB的垂直平分线MN;
(2)在图2中,线段CD∥AB,画出线段CD的中点O.
M
利用轴对称
的性质作图
A
A
N B
利用梯形 四点共线作图
C O D B
知识点
01 利用常用技巧作图 02 利用性质作位置关系 03 利用性质作数量关系 04 按要求构造图形
典例精讲
利用性质作位置关系
知识点二
【例2】(2016·T17)如图,六个完全相同的小长方形拼成一个大长方形,AB
是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:
1仅用无刻度直尺,2保留必要的画图痕迹.
(1)在图1中画一个45º角,使点A或点B是这个角的顶点,AB为这个角的一边.
(2)在图2中画出线段AB的垂直平分线.
典例精讲
通过计算面积作图
知识点三
【例3】(2014·T17)已知梯形ABCD,请使用无刻度直尺画一个与梯形ABCD
面积相等的图形.
(1)在图1中,画以CD为边的三角形;
(2)在图2中,画以AB为边的平行四边形.
A
D
A
D
F
EB
C
如图1
如图1,△CDE即为所求;
B
E
C
如图2
如图2,□ABEF即为所求.
完成下列作图.
(1)在图1中,作线段AB∥MN; (2)在图2中,作线段CD⊥MN.
A M
M
CC C
A
NB
N
图1 B
D D D 图2
当堂训练
利用性质作位置关系
知识点二
2.如图,在正三角形网格内,A、B、P、Q均为网格格点,仅用无刻度的直尺

2023年中考数学《网格作图》真题及答案解析

2023年中考数学《网格作图》真题及答案解析

2023中考真题抢先练:数学网格作图1.(2023达州18题)如图,网格中每个小正方形的边长均为1,△ABC 的顶点均在小正方形的格点上.(1)将△ABC 向下平移3个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1;(2)将△ABC 绕点C 顺时针旋转90度得到△A 2B 2C 2,画出△A 2B 2C 2;(3)在(2)的运动过程中请计算出△ABC 扫过的面积.第1题图【推荐区域:安徽陕西】【参考答案】解:(1)如解图,△A 1B 1C 1即为所求;(2)如解图,△A 2B 2C 2即为所求;第1题解图(3)由图可得,△ABC 为等腰直角三角形,∴51222=+==BC AB ,AC =101322=+,∴25552121=´´=×=D BC AB S ABC ,∴△A 1B 1C 1在旋转过程中扫过的面积为2ABCACA S S D +扇形290360p ´=+52=52π+52.反比例与一次函数性质综合题2.(2023自贡24题)如图,点A (2,4)在反比例函数xm y =1图象上,一次函数b kx y +=2的图象经过点A ,分别交x 轴,y 轴于点B ,C ,且△OAC 与△OBC 的面积比为2:1.(1)求反比例函数和一次函数的解析式;(2)请直接写出y 1≥y 2时,x 的取值范围.第2题图【推荐区域:安徽江西甘肃】【参考答案】解:(1)将A (2,4)代入x m y =1中得24m =,解得m =8,∴xy 81=,∵C (0,b ),∴12OAC S OC D =·2=b ,∵△OAC 与△OBC 的面积比为2:1,∴b OB OC S OBC 2121=´=D ,解得OB =1,∴B (-1,0)或(1,0),①将A (2,4),B (-1,0)代入b kx y +=2中,得îíì+-=+=,,b k b k 024解得ïîïíì==,,3434b k ∴34342+=x y ;②将A (2,4),B (1,0)代入b kx y +=2中,得îíì+=+=,,b k b k 024解得îíì-==,,44b k ∴442-=x y ;综上可知,一次函数的解析式为34342+=x y 或442-=x y ;(2)当34342+=x y 时,x ≤-3或0<x ≤2;当442-=x y 时,x ≤-1或0<x ≤2.解直角三角形的实际应用3.(2023达州19题)莲花湖湿地公园是当地人民喜爱的休闲景区之一,里面的秋千深受孩子们喜爱,如图所示,秋千链子的长度为3m ,当摆角∠BOC 恰为26°时,座板离地面的高度BM 为0.9m ,当摆动至最高位置时,摆角∠AOC 为50°,求座板距地面的最大高度为多少m?(结果精确到0.1m ;参考数据:sin 26°=0.44,cos 26°≈0.9,tan 26°≈0.49,sin 50°≈0.77,cos 50°≈0.64,tan 50°≈1.2)第3题图【推荐区域:安徽江西河南甘肃】【参考答案】解:如解图,过点B 作BD ⊥ON 于点D ,过点A 作AE ⊥ON 于点E ,作AF ⊥MN于点F,第3题解图∴四边形BDNM,AENF均为矩形,∴BM=DN=0.9,AF=EN,在Rt△OBD中,OD=OB·cos26°=3cos26°,∴ON=OD+DN=3cos26°+0.9,在Rt△OAE中,OE=OA·cos50°=3cos50°,∴EN=ON-OE=3cos26°+0.9-3cos50°,∴AF=3cos26°+0.9-3cos50°≈3×0.9+0.9-3×0.64=1.68≈1.7(m),答:座板距地面的最大高度为1.7m.4.(2023重庆A卷24题)为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图:①A—D—C—B;②A—E—B.经勘测,点B在点A的正东方,点C在点B的正北方10千米处,点D在点C的正西方14千米处,点D在点A的北偏东45°方向,点E在点A的正南方,点E在点B的南偏西60°方向.( 1.41≈1.73)(1)求AD的长度;(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?第4题图【推荐区域:安徽江西河南甘肃】【参考答案】解:(1)如解图,过点D作DF⊥AB于点F.第4题解图由题意可知,AB∥CD,BC⊥AB,∴四边形BCDF是矩形,且BC=10,CD=14.∴DF=BC=10,在Rt△ADF中,∠DAF=45°,∴AD≈14(千米),答:AD的长度约为14千米;(2)由题意可知,EA⊥AB,∠ABE=90°-60°=30°,∵AF=DF=10,BF=CD=14,∴AB=AF+BF=10+14=24,∴在Rt△ABE中,AE AB BE=2AE线路①:AD+CD+BC≈38.1(千米),线路②:AE+BE41.52(千米),∵38.1<41.52,∴小明应选择线路①.二次函数的实际应用5.(2023南充23题)某工厂计划从A ,B 两种产品中选择一种生产并销售,每日产销x 件,已知A 产品成本价m 元/件(m 为常数,且4≤m ≤6),售价8元/件,每日最多产销500件,同时每日共支付专利费30元;B 产品成本价12元/件,售价20元/件,每日最多产销300件,同时每日支付专利费y 元,y (元)与每日产销x (件)满足关系式201.080x y +=.(1)若产销A ,B 两种产品的日利润分别为1w 元,2w 元,请分别写出1w ,2w 与x 的函数关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润;(A 产品的最大日利润用含m 的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.[利润=(售价一成本)×产销数量一专利费]【推荐区域:安徽河北云南江西】【参考答案】解:(1)根据题意,得30)8(1--=x m w ,0≤x ≤500.)01.080()1220(22x x w +--=80801.02-+-=x x ,0≤x ≤300;(2)∵8-m >0,∴1w 随x 的增大而增大,又0≤x ≤500,∴当x =500时,1w 的值最大,39705001+-=m w 最大.1520)400(01.080801.0222+--=-+-=x x x w .∵-0.01<0,对称轴为直线x =400,当0≤x ≤300时,2w 随x 的增大而增大,∴当x =300时,2w 最大=-0.01×(300-400)2+1 520=1 420(元).(3)①若最大1w =最大2w ,即-500m +3970=1420,解得m =5.1;②若最大1w >最大2w ,即-500m +3970>1 420,解得m <5.1;③若最大1w <最大2w ,即-500m +3 970<1420,解得m >5.1.又∵4≤m ≤6,∴综上可得,为获得最大日利润:当m =5.1时,选择A ,B 产品产销均可;当4≤m <5.1时,选择A 种产晶产销;当5.1<m ≤6时,选择B 种产品产销.二次函数性质综合题6.(2023遂宁25题)在平面直角坐标系中,O 为坐标原点,抛物线c bx x y ++=241经过点O (0,0),对称轴过点B (2,0),直线l 过点C (2,-2)且垂直于y 轴.过点B 的直线1l 交抛物线于点M ,N ,交直线l 于点Q ,其中点M ,Q 在抛物线对称轴的左侧.(1)求抛物线的解析式;(2)如图1,当BM :MQ =3:5时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接PQ ,PO ,其中PO 交1l 于点E ,设△OQE 的面积为1S ,△PQE 的面积为2S ,求12S S 的最大值.第6题图【推荐区域:安徽陕西】【参考答案】解:(1)由题意得0b 2124c =ìïïí-=ï´ïî,,解得01c b =ìí=-î,,∴抛物线的解析式为y =214x -x ;(2)如解图,过点M ,Q 作MD ⊥x 轴,QH ⊥x 轴分别于点D ,H ,第6题解图∴DM ∥HQ ,∴△BDM ∽△BHQ ,∴BM BQ =DM HQ ,∴38=2DM ,∴DM =34,∴点M 的纵坐标为-34,代入y =34x 2-x 中,解得x M =1或x M =3,∵点M 在抛物线对称轴的左侧,∴x M =1,∴点M (1,-34),设直线BM 的解析式为y =kx +b 1,将点M (1,-34)和点B (2,0)代入,得113=402k b k b ì-+ïíï=+î,,解得13=432k b ìïïíï=-ïî,,∴直线BM 的解析式为y =2343-x ,联立2143342y x x y x ì=-ïïíï=-ïî,,解得134x y =ìïí=-ïî,或63x y =ìí=î,,∵点N 在对称轴的右侧,∴点N (6,3);(3)由题意可知,点Q 的坐标为(0,-2),设点P (m ,14m 2-m ),由题意得直线y OP =(14m -1)x ,直线l 1的解析式为y BQ =x -2,联立1(1)42y m x y x ì=-ïíï=-î,,∴点E 的横坐标为x E =88m -,∴S 1=21OQ ·x E =21×2×m -88=m-88,S 2=21OQ ·(P E x x -)=21×2(m -m-88)=m m m ---8882,∴22188888S m m m S m ---=-=1812-+-m m =1)4812+--m (,∵81-<0,∴当m =4时,12S S 有最大值,最大值为1,∴12S S 的最大值为1.。

中考数学专题复习(三)网格作图题(含答案)

中考数学专题复习(三)网格作图题(含答案)

专题复习(三)网格作图题1.拟)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点),按要求画出四边形AB1C1D1和四边形AB2C2D2.(1)以A为旋转中心,将四边形ABCD顺时针旋转90°,得到四边形AB1C1D1;(2)以A为位似中心,将四边形ABCD作位似变换,且放大到原来的两倍,得到四边形AB2C2D2.解:(1)如图,四边形AB1C1D1为所作.(2)如图,四边形AB2C2D2为所作.2.二模)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1,写出B1点的坐标;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,写出B2点的坐标.解:(1)如图所示,△A1B1C1即为△ABC关于x轴对称的图形,B1点的坐标是(1,0).(2)如图所示,△A2B2C2即为△ABC绕原点O按逆时针旋转90°的三角形,B2点的坐标是(0,1).3.模)如图,已知A(2,3),B(1,1),C(4,1)是平面直角坐标系中的三点.(1)请画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移3个单位得到的△A2B2C2;(3)若△ABC中有一点P坐标为(x,y),请直接写出经过以上变换后△A2B2C2中点P的对应点P2的坐标.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)根据题意,可得P的对应点P2的坐标为(-x,y-3).4.拟)如图,在9×7的小正方形网格中,△ABC的顶点A,B,C在网格的格点上.将△ABC向左平移3个单位,再向上平移3个单位得到△A′B′C′.再将△ABC按一定规律依次旋转:第1次,将△ABC绕点B顺时针旋转90°得到△A1BC1;第2次,将△A1BC1绕点A1顺时针旋转90°得到△A1B1C2;第3次,将△A1B1C2绕点C2顺时针旋转90°得到△A2B2C2;第4次,将△A2B2C2绕点B2顺时针旋转90°得到△A3B2C3,依次旋转下去.(1)在网格中画出△A′B′C′和△A2B2C2;(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A′B′C′.解:(1)△A′B′C′和△A2B2C2的图象如图所示.(2)通过画图可知,△ABC至少在第8次旋转后得到△A′B′C′.5.如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称;(3)在(1)、(2)中所得到的△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,请画出对称轴;若不成轴对称,请说明理由.解:(1)如图所示,△A1B1C1,即为所求.(2)如图所示,△A2B2C2,即为所求.(3)如图所示,△A1B1C1与△A2B2C2成轴对称,直线a,b即为所求.6.级二模)如图所示,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点A ,B ,C 在小正方形的顶点上.将△ABC 向下平移2个单位得到△A 1B 1C 1,然后将△A 1B 1C 1绕点C 1顺时针旋转90°得到△A 2B 2C 1.(1)在网格中画出△A 1B 1C 1和△A 2B 2C 1;(2)计算线段AC 在变换到A 2C 1的过程中扫过区域的面积.(重叠部分不重复计算)解:(1)如图,△A 1B 1C 1和△A 2B 2C 1为所作.(2)线段AC 在变换到A 2C 1的过程中扫过区域的面积S =2×2+90·π·(22)2360=4+2π.7.如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1;(2)请画出△ABC 关于原点O 成中心对称的图形△A 2B 2C 2;(3)在x 轴上找一点P ,使PA +PB 的值最小,请直接写出点P 的坐标.解:(1)如图所示.(2)如图所示.(3)找出A 关于x 轴的对称点A′(1,-1),连接BA′,与x 轴交点即为P.如图所示,点P 坐标为(2,0).8.模拟)如图,已知△ABC 的三个顶点的坐标分别为A(3,3),B(-1,0),C(4,0).(1)经过平移,可使△ABC 的顶点A 与坐标原点O 重合,请直接写出此时点C 的对应点C 1坐标;(不必画出平移后的三角形)(2)将△ABC 绕点B 逆时针旋转90°,得到△A′BC′,画出△A′BC′并写出A′点的坐标;(3)以点A 为位似中心放大△ABC ,得到△AB 2C 2,使放大前后的面积之比为1∶4,请你在网格内画出△AB 2C 2.解:(1)∵经过平移,可使△ABC的顶点A与坐标原点O重合,∴A点向下平移3个单位再向左平移3个单位,故C1坐标为(1,-3).(2)如图所示,△A′BC′即为所求,A′点的坐标为(-4,4).(3)如图所示,△AB2C2即为所示.。

苏科版八年级数学上册网格与作图题复习训练

苏科版八年级数学上册网格与作图题复习训练

苏科版八年级数学上册网格与作图题复习训练1.如图,在4×4 的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB 为一边画一个等腰三角形ABC;(2)在图②中,以格点为顶点,AB 为一边画一个正方形;(3)在图③中,以点A 为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形,这个正方形的面积= .2.作图题:(1)近年来,国家实施农村医疗卫生改革,某县计划在甲村、乙村之间设立一座定点医疗站点P,甲、乙两村坐落在两相交公路内(如图所示).医疗站P必须符合下列条件:①到两公路OA、OB 的距离相等;②到甲、乙两村的距离也相等.请确定P点的位置.(用尺规作图,保留作图痕迹,不写作法.)(2)如图2,先将△ABC 向下平移3 个单位得到△A1B1C1,再以直线l 为对称轴将△A1B1C1 翻折得到△A2B2C2,请在所给的方格纸中依次作出△A1B1C1 和△A2B2C2.3.作图题(1)在图1中,画出△CDE 关于直线AB 的对称图形△C 'D'E'(2)在图2中,已知∠AOB 和C、D 两点,在∠AOB 内.部.找一点P,使P C=PD,且P 到∠AOB 的两边OA、OB 的距离相等.图1图24.如图,在7X7网格中,每个小正方形的边长都为1.(1)∆ABC 的面积;(2)判断∆ABC 的形状,并说明理由.5. 如图,在长度为1 个单位长度的小正方形组成的正方形网格中,点A、B、C 在小正方形的顶点上.(1)在图中画出与△ABC 关于直线l 成轴对称的△A′B′C′;(2)在直线l 上找一点P(在答题纸上图中标出),使PB+PC的长最短,这个最短长度的平方是.6.在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC (顶点是网格线交点的三角形)的顶点A , C 的坐标分别是(-4,6), (-2, 4).(1)请在如图所示的网格平面内作出平面直角坐标系 (原点记为原点记为O ) ;(2)请作出△ABC 关于y 轴对称的∆A 1B 1C 1 ;(3)写出点B 1 的坐标 ;(4)若把C 1 向下平移5 个单位得到C 2,请直接写出 △OB 1C 2 的面积 .7.如图,在正方形网格上的一个△ A BC .(其中点A , B , C 均在网格上)(1)作△ABC 关于直线MN 的轴对称图形△A ' B 'C ';(2)以P 点为一个顶点作一个与△ABC 全等的△EPF (规定点p 与点B 对应,另两顶点都在图中网格交点处).(3)在MN 上画出点Q ,使得QA + QC 最小。

中考数学 中档题突破 专项训练一 网格作图题 类型三:平移、对称在网格中的作图

中考数学 中档题突破 专项训练一 网格作图题 类型三:平移、对称在网格中的作图
类型三:平移、对称在网 格中的作图
1.(2022·蚌埠模拟)如图,在每个小正方形的边长为 1 个单位长度的网 格中,点 A,B,C 均是格点(网格线的交点).
(1)在图中将△ABC 平移得到△A′B′C′,使得点 B 的对应点为点 C,作 出平移后的图形△A′B′C′; (2)用无刻度直尺在图中的线段 AB 上找一点 P,使∠ACP=∠APC. 解:(1)如图,△A′B′C′即为所求.
(3)求出△A2B2C2 的面积.
解:(3)△A2B2C2 的面积为
1
1
1
3×4-2×1×4-2×1×3=-2×2×3=5.5.
(2)如图,点 P 即为所求.
2.(2022·福田区模拟)线段 AB 在平面直角坐标系中的位置如图所示, 其中每个小正方形的边长为 1 个单位长度.
(1)将线段 AB 向左平移 6 个单位长度,作出平移后的线段 A1B1; (2)再将线段 AB 绕点(2,0)顺时针旋转 180°后得到线段 A2B2; 解:(1)如图,线段 A1B1 为所求. (2)如图,线段 A2B2 为所求.
4.在如图所示的正方形网格中,每个小正方形的边长均为 1 个单位长度, △ABC 的三个顶点都在格点上.
(1)在网格中画出△ABC 向下平移 3 个单位长度得到的△A1B1C1; (2)在网格中画出△ABC 关于直线 m 对称的△A2B2C2; 解:(1)如图,△A1B1C1 即为所求.
(2)如图,△A2B2C2 即为所求.
(3)观察线段 A1B1 和线段 A2B2,它们是否关于某点成中心对称?若是,请 写出对称).
3.如图,在边长为 1 个单位长度的小正方形组成的 12×12 网格中,给 出了以格点(网格线的交点)为端点的线段 AB.

2022年中考数学人教版一轮复习课件:八、解答题专练——网格作图

2022年中考数学人教版一轮复习课件:八、解答题专练——网格作图
(1)在图①中,以点 A,B,C 为顶点画一个等腰三角形; (2)在图②中,以点 A,B,D,E 为顶点画一个面积为 3 的平 行四边形.
解:(1)如图①中,△ABC 即为所求(答案不唯一).
解:(2)如图②中,四边形 ABDE 即为所求.
5.(2021·长春)图①、图②、图③均是 4×4 的正方形网格,每个 小正方形的边长均为 1,每个小正方形的顶点称为格点,点 A, B,C 均为格点,只用无刻度的直尺,分别在给定的网格中找 一格点 M,按下列要求作图:
(1)在图①中,连结 MA,MB,使 MA=MB; (2)在图②中,连结 MA,MB,MC,使 MA=MB=MC; (3)在图③中,连结 MA,MC,使∠AMC=2∠ABC.
解:(1)(2)(3)如图.
6.(2021·绥化)如图,在网格中,每个小正方形的边长均为 1 个 单位长度,把小正方形的顶点叫做格点,O 为平面直角坐标系 的原点,矩形 OABC 的 4 个顶点均在格点上,连接对角线 OB.
八、解答题专练——网格作图
1.(2021·深圳)如图,在正方形网格中,每个小正方形的边长为 1 个单位. (1)过直线 m 作四边形 ABCD 的对称图形; (2)求四边形 ABCD 的面积.
解:(1)如图所示,四边形积=S△ABD+S△BCD
解:(1)如图①,四边形 ABCD 即为所求(答案不唯一).
解:(2)如图②,四边形 AEBF 即为所求.
3.(2021·丽水)如图,在 5×5 的方格纸中,线段 AB 的端点均在格 点上,请按要求画图.
(1)如图①,画出一条线段 AC,使 AC=AB,C 在格点上; (2)如图②,画出一条线段 EF,使 EF,AB 互相平分,E,F 均在格点上; (3)如图③,以 A,B 为顶点画出一个四边形,使其是中心对 称图形,且顶点均在格点上.

2020年中考数学复习题型集训(9)——网格作图

2020年中考数学复习题型集训(9)——网格作图

2020年中考数学复习精选练习题型集训(9)——网格作图杭州温州宁波绍兴嘉兴、舟山湖州台州金华衢州2018年第20题第20题第20题8分8分8分2019年第20题第20题第20题第20题第19题8分8分8分8分6分1.(2019·衢州)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段CD,使CD⊥CB,其中D 是格点.(2)在图2中画出平行四边形ABEC,其中E是格点.解:(1)线段CD即为所求;(2)平行四边形ABEC即为所求.2.(2019·温州)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP =NQ.解:(1)满足条件的△EFG,如图1,2所示.(2)满足条件的四边形MNPQ如图所示.3.(2019·嘉兴)在6×6的方格纸中,点A,B,C 都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D 为顶点的四边形是平行四边形;(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).解:(1)由勾股定理得:CD=AB=CD′= 5 ,BD=AC=BD″=13 ,AD′=BC=AD″=10 ;画出图形如图1所示;(2)如图2所示.4.(2019·宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)解:(1)如图1所示:6个阴影小等边三角形组成一个轴对称图形;(2)如图2所示:6个阴影小等边三角形组成一个中心对称图形.5.(2019·金华)如图,在7×6的方格中,△ABC 的顶点均在格点上.试按要求画出线段EF(E,F均为格点),各画出一条即可.解:如图:从图中可得到AC边的中点在格点上设为E,过E作AB的平行线即可在格点上找到F,则EG平分BC;EC= 5 ,EF= 5 ,FC=10 ,借助勾股定理确定F点,则EF⊥AC;借助圆规作AB的垂直平分线即可;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考网格作图题专项训练一.填空题(共1小题)1.(2006•烟台)正方形网格中,小格的顶点叫做格点.小华按下列要求作图:①在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上;②连接三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了Rt△ABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等_________.二.解答题(共17小题)2.作图题,在网格中作图:①过C点作线段CD,使CD∥AB.②过C点作线段CE,使CE⊥AB.3.作图题,在如图所示的网格图中,画出一个和图中三角形相似的三角形.4.作图题:如图,是一个边长为1的正方形网格,请在网格中画出一个边长为2,和3的三角形.(要求三角形的顶点在小格的顶点处).5.在如图的网格中作图:(1)过点C作直线AB的垂线;(2)过点C作直线AB的平行线.6.基本作图(保留作图痕迹不写作法.)在网格中求作一个三角形A′B′C′,使它和已知△ABC相似,且相似比为1:2;并分别求出两个三角形的周长.7.在如图所示的正方形网格中,已知线段AB,A、B均为格点.(1)请在网格中画出一个以AB为底边的等腰三角形ABC,且点C也为格点;(2)作出△ABC的外接圆(尺规作图,保留作图痕迹,不写作法和证明).8.正方形网格中,小格的顶点叫做格点,小华按下列要求作图:①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一条实线上;②连接三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了Rt△ABC,请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并求出这个直角三角形的面积.(要求:三个网格中的直角三角形互不全等)9.(2010•丰台区二模)在正方形网格中,小格的顶点叫做格点.小华按下列要求作图:①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一条实线上;②连接三个格点,使之构成直角三角形,小华在左边的正方形网格中作出了Rt△ABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,使三个网格中的直角三角形互不全等,并分别求出这三个直角三角形的斜边长.10.△ABC在网格中如图,请根据下列要求作图:(1)过点C作AB的平行线.(2)将△ABC平移,使顶点B平移到点A,画出平移后的三角形.11.作图题:正方形网格中有△OAB,请你以O为位似中心放大,使新图形和原图形的对应线段比是2:1(不写作法)12.如图所示,在8×8的网格中,我们把△ABC在图1中作轴对称变换,在图2中作旋转变换,已知网格中的线段ED、线段MN分别是边AB经两种不同变换后所得的像,请在两图中分别画出△ABC经各自变换后的像,并标出对称轴和旋转中心(要求:不写作法,作图工具不限,但要保留作图痕迹).13.按下列要求作图:(1)在正方形网格中三条不同实线上各取一个格点,使其中任意两点,不在同一实线上;(2)连接三个格点,使之构成直角三角形(如图1),请在右边网格在作出三个直角三角形,使四个直角三角形互不全等.14.作图:(1)在图1中画出△ABC关于点O的中心对称图形.(2)正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形,在图2正方形网格(每个小正方形边长为1)中画出格点△DEF,使DE=DF=5,EF=.15.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格):(1)画出△ABC中BC边上的高(需写出结论);(2)画出先将△ABC向右平移6格,再向上平移3格后的△DEF;(3)画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积.16.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.利用网格完成下面的作图:(1)画出点B关于直线AC的对称点D;(2)画出一个格点△A1B1C1,并使它的三边长分别是3、、.17.作图题:(不要求写作法)如图,在边长为单位1的正方形网格中,有一个格点△ABC(各个顶点都是正方形网格的格点)(1)画出△ABC关于直线1对称的格点△A1B1C1;(2)画出以O点为位似中心,把△ABC放大到2倍的△A2B2C2.18.如图,图(1)、图(2)是边长为1的正方形网格,按下列要求作图并回答问题.(1)画出△ABC,点C在格点上且△ABC是等腰三角形,其腰长是_________;(2)画出正方形ABCD,且C、D在格点上,其周长是_________.2014年5月294464107的初中数学组卷参考答案和试题分析一.填空题(共1小题)1.(2006•烟台)正方形网格中,小格的顶点叫做格点.小华按下列要求作图:①在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上;②连接三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了Rt△ABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等如图.考点:作图—复杂作图.专题:压轴题;网格型.分析:本题中得出直角三角形的方法如图:如果设AE=x,BE=4﹣x,如果∠FEG=90°,△AFE∽△GBEAF•BG=AE•BE=x(4﹣x)当x=1时,AF•BG=3,AF=1,BG=3或AF=3,BG=1当x=2时,AF•BG=4,AF=1,BG=4或AF=2,BG=2或AF=4,BG=1当x=3时,AF•BG=3,AF=1,BG=3或AF=3,BG=1(同x=1时)由此可画出另两种图形.解答:解:如图所示:点评:本题中借助了勾股定理,相似三角形的判定和性质等知识来得出有可能的直角三角形的情况,要学会对已学知识点的运用.二.解答题(共17小题)2.作图题,在网格中作图:①过C点作线段CD,使CD∥AB.②过C点作线段CE,使CE⊥AB.考点:作图—基本作图.分析:①由于AB是一个长为3,宽为2的矩形的对角线,所以过C点作线段CD,使CD也是一个长为3,宽为2的矩形的对角线;②过C点作线段CE,使CE是一个长为6,宽为4的矩形的对角线.解答:解:①②如下图所示:点评:本题考查了平行线的作法,垂线的作法,掌握网格结构的特点并熟练使用是解题的关键.3.作图题,在如图所示的网格图中,画出一个和图中三角形相似的三角形.考点:作图—相似变换;相似三角形的性质.专题:网格型.分析:利用相似三角形的性质,对应边的相似比相等,对应角相等,可以让各边长都放大一倍,得到新三角形.解答:解:作图题(符合题目意思即可).点评:本题主要考查了相似三角形的画法,注意做这类题时的关键是对应边相似比相等,对应角相等.4.作图题:如图,是一个边长为1的正方形网格,请在网格中画出一个边长为2,和3的三角形.(要求三角形的顶点在小格的顶点处).考点:勾股定理.分析:关键是找出2,的长度,可利用勾股定理求出这些长度,从而画出三角形.解答:解:2看作是2、2为直角边的直角三角形的斜边.可看作是以2和1为直角边的直角三角形的斜边,从而可画出三角形.AB=2,AC=,BC=3.△ABC符合要求.点评:本题考查勾股定理的使用,关键是用勾股定理求出斜边长,从而画出符合要求的三角形.5.在如图的网格中作图:(1)过点C作直线AB的垂线;(2)过点C作直线AB的平行线.考点:作图—基本作图.分析:根据网格结构的特点,利用直线和网格的夹角的关系找出过C和AB垂直的格点以及平行的格点作出即可.解答:解:如图所示:l⊥AB,m∥AB.点评:本题考查了平行线的作法,垂线的作法,掌握网格结构的特点并熟练使用是解题的关键.6.基本作图(保留作图痕迹不写作法.)在网格中求作一个三角形A′B′C′,使它和已知△ABC相似,且相似比为1:2;并分别求出两个三角形的周长.考点:作图—相似变换.专题:作图题.分析:利用勾股定理分别求出AB,AC及BC的长,截取A′B′=2AB,B′C′=2BC,连接A′C′即可得到三角形A′B′C′,求出两三角形周长即可.解答:解:做出△A′B′C′,如图所示,利用勾股定理得:AB==,AC==3,BC=2,∴A′B′=2AB=2,A′C′=2AC=6,B′C′=4,则△ABC周长为+3+2,△A′B′C′的周长为2+6+4.点评:此题考查了作图﹣相似变换,以及勾股定理,做出相应的图形是解本题的关键.7.在如图所示的正方形网格中,已知线段AB,A、B均为格点.(1)请在网格中画出一个以AB为底边的等腰三角形ABC,且点C也为格点;(2)作出△ABC的外接圆(尺规作图,保留作图痕迹,不写作法和证明).考点:作图—复杂作图.分析:(1)利用网格作出AB的垂直平分线,再作等腰三角形即可;(2)以AB的垂直平分线和AB的交点M为圆心,以AM为圆心画圆即可.点评:此题主要考查了复杂作图,关键是掌握线段垂直平分线上的点到线段两点的距离相等.8.正方形网格中,小格的顶点叫做格点,小华按下列要求作图:①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一条实线上;②连接三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了Rt△ABC,请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并求出这个直角三角形的面积.(要求:三个网格中的直角三角形互不全等)考点:作图—代数计算作图.专题:网格型.分析:画的直角三角形的三边应符合两直角边的平方和等于斜边的平方.第一个图形和第二个图形的面积可让两条直角边的积÷2即可.解答:解:画二个图供参考:(每个图画对共8分)易得图1三边长为、、,符合两边和的平方等于第三边的平方,面积为:××=5;图2中三边长分别为、符合两边和的平方等于第三边的平方,面积为:××=3.点评:本题主要考查直角三角形的格点画法需满足的条件;直角三角形的三边应符合两直角边的平方和等于斜边的平方.9.(2010•丰台区二模)在正方形网格中,小格的顶点叫做格点.小华按下列要求作图:①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一条实线上;②连接三个格点,使之构成直角三角形,小华在左边的正方形网格中作出了Rt△ABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,使三个网格中的直角三角形互不全等,并分别求出这三个直角三角形的斜边长.考点:作图—使用和设计作图.分析:可以利用三角板,移动位置,即可作出图形,然后利用勾股定理即可求得斜边长.解答:解:下面给出三种参考画法:(画图正确每分)斜边AC=5,斜边AB=4,斜边DE=,斜边MN=.点评:本题主要考查了作图,正确利用三角板是解题的关键.10.△ABC在网格中如图,请根据下列要求作图:(1)过点C作AB的平行线.(2)将△ABC平移,使顶点B平移到点A,画出平移后的三角形.考点:作图-平移变换;作图—基本作图.分析:(1)作出AB的平行线即可;(2)根据网格结构找出点A、B、C平移后的对应点,然后顺次连接即可.解答:解:(1)(2)所作图形如下所示:点评:本题考查了平移作图的知识,解答本题的关键是掌握平移变换的特点,准确找出平移后各点的位置.11.作图题:正方形网格中有△OAB,请你以O为位似中心放大,使新图形和原图形的对应线段比是2:1(不写作法)考点:作图-位似变换.分析:画△OCD,根据题意位似中心已知为O,则延长AO,BO,根据相似比,确定所作的位似图形的关键点C、D,再顺次连接所作各点,即可得到放大一倍的图形△CDO;解答:解:如图:分别延长AO,BO到点C,D使OC=2AO,OD=2BO,顺次连接即得△OCD点评:此题考查了画法.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.12.如图所示,在8×8的网格中,我们把△ABC在图1中作轴对称变换,在图2中作旋转变换,已知网格中的线段ED、线段MN分别是边AB经两种不同变换后所得的像,请在两图中分别画出△ABC经各自变换后的像,并标出对称轴和旋转中心(要求:不写作法,作图工具不限,但要保留作图痕迹).考点:作图-轴对称变换;作图-旋转变换.专题:作图题.分析:(1)连接BD和AE,后连接GH,则GH即为轴对称变换的对称轴,作点C关于GH的对称点,然后顺次连接各点即可;(2)先根据线段AB经旋转变换后得到MN,找出旋转中心和旋转方向,然后根据旋转规律找出旋转后的各点,顺次连接各点即可.解答:解:所画图形如其中GH为轴对称变换的对称轴,△DEF和△BAC关于直线GH对称;点O为旋转变换的旋转中心,△MNP由△ABC以点O为旋转中心,顺时针旋转90°得到.点评:本题考查轴对称变换和旋转变换的知识,难度适中,解题关键是对这两种变换的熟练掌握以便灵活运用.13.按下列要求作图:(1)在正方形网格中三条不同实线上各取一个格点,使其中任意两点,不在同一实线上;(2)连接三个格点,使之构成直角三角形(如图1),请在右边网格在作出三个直角三角形,使四个直角三角形互不全等.考点:作图—复杂作图.专题:网格型.分析:本题主要利用直角三角形的性质来画,可利用勾股定理也可利用网格来画.只能是,其中能组成直角三角形有:(1);(2);(3);(4);(5);(已作)(6);(7);(8);(9).点评:本题主经考查了勾股定理和网格的综合运用能力.14.作图:(1)在图1中画出△ABC关于点O的中心对称图形.(2)正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形,在图2正方形网格(每个小正方形边长为1)中画出格点△DEF,使DE=DF=5,EF=.考点:作图-旋转变换;勾股定理.专题:作图题.分析:(1)画出A、B、C三点关于O的对称点,连接各对称点所得图形即为△ABC关于点O的中心对称图形.(2)找到直角边位1和3的直角三角形,其斜边为,易作出DE=DF=5.解答:解:(1)如图(1):(2)如图(2):EF==;DF==5.点评:本题考查了作图﹣﹣旋转变换和勾股定理,充分利用格点是解题的关键一步.15.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格):(2)画出先将△ABC向右平移6格,再向上平移3格后的△DEF;(3)画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积.考点:作图-平移变换.专题:网格型.分析:(1)过点A作AG⊥BC,交CB的延长线于点G,AG就是所求的△ABC中BC边上的高;(2)把△ABC的三个顶点向右平移6格,再向上平移3格即可得到所求的△DEF;(3)画一个面积为3的锐角三角形即可.解答:解:如图所示,AG就是所求的△ABC中BC边上的高.点评:用到的知识点为:一边上的高为这边所对的引的垂线段;图形的平移要归结为各顶点的平移;各个角都是锐角的三角形叫做锐角三角形.16.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.利用网格完成下面的作图:(1)画出点B关于直线AC的对称点D;(2)画出一个格点△A1B1C1,并使它的三边长分别是3、、.考点:作图-轴对称变换;勾股定理.分析:(1)过点B作BE⊥AC于点E,延长ED,在直线BE上取点D,使DE=BE,则点D即为所求点;(2)根据勾股定理画出格点△A1B1C1,并使它的三边长分别是3、、即可.解答:解:(1)、(2)如图所示.点评:本题考查的是作图﹣轴对称变换,熟知轴对称图形的作法及勾股定理是解答此题的关键.17.作图题:(不要求写作法)如图,在边长为单位1的正方形网格中,有一个格点△ABC(各个顶点都是正方形网格的格点)(1)画出△ABC关于直线1对称的格点△A1B1C1;(2)画出以O点为位似中心,把△ABC放大到2倍的△A2B2C2.考点:作图-位似变换;作图-轴对称变换.专题:作图题;压轴题.分析:(1)分别找到直线l的距离和点A,B,C各点到直线l的距离相等的各对应点,顺次连接即可;(2)延长AO到A2,使A20=2OA,得到到其余点的对应点,顺次连接即为所求图形.解答:解:如图(画正确一个得(3分),共6分)点评:两图形关于某条直线对称,对应点的连线被这条直线垂直平分;位似变换的关键是根据位似中心和位似比确定对应点的位置.18.如图,图(1)、图(2)是边长为1的正方形网格,按下列要求作图并回答问题.(1)画出△ABC,点C在格点上且△ABC是等腰三角形,其腰长是;(2)画出正方形ABCD,且C、D在格点上,其周长是4.考点:作图—使用和设计作图;勾股定理.分析:(1)首先根据题意画出图形,再利用勾股定理计算出腰长即可;(2)首先根据题意画出图形,再根据勾股定理求出正方形到周长.解答:解:(1)如图(1)所示:AB==,故答案为:;(2)如图(2)所示;AB==,周长为4×=4.故答案为:4.点评:此题主要考查了使用作图,以及勾股定理,关键是正确根据题目要求画出图形.。

相关文档
最新文档