同济大学高等数学《导数及其应用》word教案

合集下载

高等数学教案Word版(同济)第二章01

高等数学教案Word版(同济)第二章01

第一讲 I 授课题目: §2.1 导数概念 II 教学目的与要求:1. 理解导数的概念,理解导数的几何意义;2. 会用导数描述一些物理量;3. 会用导数的定义求函数的导数并会判断函数的可导性。

III 教学重点与难点: 重点:导数的概念难点:用导数的定义判断函数的可导性 IV 讲授内容:微分学是微积分的重要组成部分,它的基概念是导数与微分。

主要讨论导数和微分的概念以及它们的计算方法。

先讨论导数的概念,而导数的概念的形成与直线运动的速度,切线问题有密切的关系。

一、直线运动的速度,切线问题 1.直线运动的速度 先建立坐标系:设某点沿直线运动,在直线上引入原点和单位点(即表示实数1的点),使直线成为数轴。

此外,再取定一个时刻作为测量时间的零点,设动点于时刻t 在直线上的位置的坐标为s (简称位置),运动完全由位置函数所确定。

位置函数:)(t f s = (1) 从时刻0t 到t 一个时间间隔,有平均速度为:000)()(t t t f t f t t s s --=-- (2) 时间间隔较短,比值在实践中可用来说明动点在时刻0t 的速度,但动点在时刻0t 的速度的精确概念还得让0t t →,即:0)()(limt t t f t f v t t --=→ (3)极限值叫做动点在时刻0t 的(瞬时)速度,给出了求瞬时速度的方法。

2. 切线斜率问题建立直角坐标系,函数的图形为曲线,分析切线的定义,就得曲线上任一点的切线的斜率为:0)()(lim 0x x x f x f k x x --=→ (4)割线斜率的极限就是切线的斜率二、导数的定义1.函数在一点处的导数与导函数讨论知,非匀速直线运动的速度和切线的斜率都归为一数学形式: 00)()(l i mx x x f x f x x --→ (5)此处的0x x -和)()(0x f x f -的分别是函数)(x f y =的自变量的增量x ∆和函数的增量y ∆ 式(5)写成:0000()()limlimx x f x x f x yx x∆→∆→+∆-∆=∆∆ (6) 由它们在数量关系上的共性,就得出函数的导数的概念。

导数及其应用教案

导数及其应用教案

导数及其应用教案教案标题:导数及其应用教案教案概述:本教案旨在引导学生全面了解导数的概念、性质以及其在实际问题中的应用。

通过理论讲解、示例分析和实践练习,培养学生对导数的理解和运用能力,提高他们解决实际问题的能力。

教学目标:1. 理解导数的定义和性质;2. 掌握常见函数的导数计算方法;3. 理解导数在函数图像、极值和曲线运动等方面的应用;4. 运用导数解决实际问题。

教学重点:1. 导数的定义和性质;2. 常见函数的导数计算方法;3. 导数在函数图像、极值和曲线运动等方面的应用。

教学难点:1. 导数在实际问题中的应用;2. 运用导数解决复杂实际问题。

教学准备:1. 教师准备:教学课件、示例题、练习题、实际问题案例等;2. 学生准备:教材、笔记本、计算器等。

教学过程:一、导入(5分钟)1. 引入导数的概念,与学生一起回顾函数的变化率和斜率的概念;2. 提问:你认为如何计算函数在某一点的变化率或斜率?二、理论讲解(15分钟)1. 讲解导数的定义和性质,包括函数在某一点的导数定义、导数的几何意义和导数的性质;2. 通过示例解释导数的计算方法,如常数函数、幂函数、指数函数、对数函数等的导数计算;3. 引导学生理解导数的物理意义,如速度、加速度等的概念。

三、示例分析(15分钟)1. 分析示例题,引导学生运用导数的定义和性质计算函数的导数;2. 分析函数图像的特征,如切线、极值点等,与导数的关系;3. 分析曲线运动的问题,如速度、加速度等与导数的关系。

四、实践练习(15分钟)1. 给学生提供一些练习题,涵盖导数的计算、函数图像分析和实际问题应用等方面;2. 引导学生独立解题,鼓励他们思考和探索;3. 辅导学生解决遇到的问题,及时给予指导和反馈。

五、实际问题应用(15分钟)1. 提供一些实际问题案例,如物体的运动问题、最优化问题等;2. 引导学生分析问题,建立数学模型,并运用导数解决问题;3. 鼓励学生展示解题过程和结果,进行讨论和交流。

导数及其应用教案

导数及其应用教案

课题:变化率问题教学目标:1.理解平均变化率的概念; 2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一、情景导入为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。

导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。

导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二、知识探究探究一:气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?⏹ 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=⏹ 如果将半径r 表示为体积V 的函数,那么343)(πV V r = ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?1212)()(V V V r V r --探究二:高台跳水:在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态?思考计算:5.00≤≤t 和21≤≤t 的平均速度v在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=;在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =,所以)/(004965)0()4965(m s h h v =--=,虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态。

导数及其应用教案

导数及其应用教案

导数及其应用教案一、引言在高中数学课程中,导数是一个非常重要的概念。

本教案旨在介绍导数及其应用,帮助学生理解导数的概念和基本性质,并学习如何在实际问题中运用导数进行分析和计算。

二、导数的概念1. 导数的定义:导数表示函数在某一点上的变化率,即函数值随自变量变化而变化的快慢程度。

2. 导数的几何意义:导数等于函数曲线在某一点切线的斜率。

3. 导数的符号表示:通常用f'(x)或dy/dx表示函数f(x)的导数。

三、导数的基本性质1. 常数的导数为0:若f(x) = a(a为常数),则f'(x) = 0。

2. 幂函数的导数:若f(x) = x^n(n为常数),则f'(x) = nx^(n-1)。

3. 和差的导数:若f(x) = u(x) ± v(x),则f'(x) = u'(x) ± v'(x)。

4. 乘积的导数:若f(x) = u(x)v(x),则f'(x) = u'(x)v(x) + u(x)v'(x)。

5. 商的导数:若f(x) = u(x)/v(x),则f'(x) = [u'(x)v(x) - u(x)v'(x)] /v(x)^2。

四、导数的应用1. 切线和法线:导数可以用于求函数曲线在某一点的切线和法线方程。

2. 极值问题:导数可以帮助我们判断函数的极值,并求出极值点和极值。

3. 函数图像的画法:导数可以提供函数图像的一些特征,如拐点、极值、单调性等。

4. 物理问题中的应用:导数可以帮助解决一些物理问题,如速度、加速度等。

五、教学活动1. 导数的计算练习:通过给出具体函数的表达式,让学生计算其导数。

2. 导数在几何中的应用:通过给出函数的图像,让学生判断函数的增减性、拐点、极值等。

3. 实际问题解析:将一些实际问题转化为数学模型,并运用导数进行分析和求解。

六、教学反思通过本教案的讲解和练习,学生应能掌握导数的概念和基本性质,具备运用导数进行实际问题分析和计算的能力。

(word完整版)导数及其应用最全教案(含答案),推荐文档

(word完整版)导数及其应用最全教案(含答案),推荐文档

导数及其应用一、知识点梳理1.导数:当x ∆趋近于零时,xx f x x f ∆-∆+)()(00趋近于常数c 。

可用符号“→”记作:当0→∆x 时,x x f x x f ∆-∆+)()(00c →或记作c xx f x x f x =∆-∆+→∆)()(lim 000,符号“→”读作“趋近于”。

函数在0x 的瞬时变化率,通常称作)(x f 在0x x =处的导数,并记作)(0x f '。

即 xx f x x f x f x ∆-∆+=→∆)()(lim)(0000'2.导数的几何意义是曲线在某一点处的切线的斜率;导数的物理意义,通常是指物体运动在某一时刻的瞬时速度。

即若点),(00y x P 为曲线上一点,则过点),(00y x P 的切线的斜率xx f x x f x f k x ∆-∆+==→∆)()(lim)(0000'切由于函数)(x f y =在0x x =处的导数,表示曲线在点))(,(00x f x P 处切线的斜率,因此,曲线)(x f y =在点))(,(00x f x P 处的切线方程可如下求得:(1)求出函数)(x f y =在点0x x =处的导数,即曲线)(x f y =在点))(,(00x f x P 处切线的斜率。

(2)在已知切点坐标和切线斜率的条件下,求得切线方程为:))((00'0x x x f y y -=-3.导数的四则运算法则:1))()())()((x g x f x g x f '±'='± 2))()()()(])()([x g x f x g x f x g x f '+'='3))()()()()()()(2x g x g x f x f x g x g x f '-'='⎥⎦⎤⎢⎣⎡4.几种常见函数的导数:(1))(0为常数C C =' (2))(1Q n nx x n n ∈='-)((3)x x cos )(sin ='(4)x x sin )(cos -=' (5)x x 1)(ln =' (6)e xx a a log 1)(log =' (7)xxe e =')( (8)a a a xxln )(=' 5.函数的单调性:在某个区间),(b a 内,如果0)('>x f ,那么函数)(x f y =在这个区间内单调递增;如果0)('<x f ,那么函数)(x f y =在这个区间内单调递减。

导数及其应用教案设计

导数及其应用教案设计

导数及其应用教案设计一、教学目标1.理解导数的定义和概念;2.掌握导数的计算方法;3.了解导数的几何意义和物理意义;4.应用导数解决实际问题。

二、教学重点1.导数的定义和概念;2.导数的计算方法。

三、教学难点1.导数的几何意义和物理意义;2.导数在实际问题中的应用。

四、教学准备1.教学课件;2.教学工具:黑板、彩色笔;3.教学素材:与导数相关的题目和实例。

五、教学过程Step 1 引入导数的概念(10分钟)1.引入问题:小明从家里出发骑自行车到学校,经历了不同的路段,那么他在每个路段上的速度是多少呢?2.学生思考问题,并提出速度的定义。

3.介绍导数的概念:导数是研究函数变化率的工具,它描述了一个函数在其中一点附近的变化速率。

Step 2 导数的计算方法(20分钟)1. 导数的定义:设函数y=f(x),当x在x0处有极限存在,那么函数f(x)在x0处的导数定义为:f'(x0)=lim(x→x0)[f(x)-f(x0)]/(x-x0)。

2.通过例题演示如何计算导数。

3.引入常见导数的计算法则,如幂函数、反函数、指数函数等。

Step 3 导数的几何意义和物理意义(15分钟)1.导数的几何意义:表示函数在其中一点处的切线斜率。

2.通过例题演示导数的几何意义。

3.导数的物理意义:表示物体运动的速度或速度的变化率。

4.通过例题演示导数的物理意义。

Step 4 导数在实际问题中的应用(25分钟)1.介绍导数在实际问题中的应用,如最大值最小值问题、函数的图像判断等。

2.通过例题演示导数在实际问题中的应用。

3.引入微分的概念,并介绍微分的定义和计算方法。

Step 5 拓展与巩固(20分钟)1.指导学生通过课堂练习和课后作业巩固所学知识。

2.引导学生从日常生活中发现和应用导数的问题。

六、教学反思通过引入问题、讲解定义、演示例题等方式,让学生逐步理解导数的概念和计算方法。

在讲解导数的几何意义和物理意义时,通过具体示例,帮助学生更好地理解和应用导数。

导数及其应用教案

导数及其应用教案

导数及其应用教案一、导数的基本概念导数是微积分中的重要概念,用于描述函数在某一点上的变化率。

在计算机科学、物理学、经济学等领域,导数都具有广泛的应用。

在微积分中,函数f(x)在点x=a处的导数可以表示为f'(a),它描述了函数在该点附近的局部行为。

导数可以通过两种方式计算:几何定义和算术定义。

1. 几何定义:导数可以理解为函数图像在某点的斜率,表示为$f'(a)=\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$。

2. 算术定义:导数可以理解为函数在某点上的瞬时速度,表示为$f'(a)=\lim_{x\to a}\frac{f(x)-f(a)}{x-a}$。

二、导数的性质及计算方法导数具有以下几个重要的性质:1. 导数的可加性:若函数f(x)和g(x)都在某点上可导,那么它们的和f(x)+g(x)也在该点上可导,且导数满足$(f+g)'(a)=f'(a)+g'(a)$。

2. 导数的乘法规则:若函数f(x)和g(x)都在某点上可导,那么它们的乘积f(x)g(x)也在该点上可导,且导数满足$(fg)'(a)=f'(a)g(a)+f(a)g'(a)$。

3. 导数的链式法则:若函数y=f(g(x))可以分解为两个函数f(u)和g(x),且它们在某点上可导,那么复合函数y也在该点上可导,并且满足$\frac{{dy}}{{dx}}=\frac{{dy}}{{du}}\cdot \frac{{du}}{{dx}}$。

计算导数的方法主要有以下几种:1. 利用基本函数的导数公式进行求导。

2. 利用导数的性质,例如可加性、乘法规则和链式法则,对复杂函数进行求导。

3. 利用导数的几何定义,通过极限的方法进行求导。

三、导数的应用导数在实际问题中有着广泛的应用,以下介绍几个常见的应用领域:1. 最优化问题:导数可以帮助我们找到函数的最大值和最小值。

导数及其应用 教案

导数及其应用 教案

导数及其应用教案教案标题:导数及其应用教学目标:1. 理解导数的概念和意义;2. 掌握求函数导数的基本方法;3. 理解导数的几何意义和应用。

教学准备:1. 教材:包含导数概念和求导方法的教材;2. 教具:白板、彩色笔、计算器、投影仪等;3. 课件:包含导数概念、求导方法和应用实例的课件;4. 练习题:包含不同难度的求导练习题。

教学过程:Step 1:导入导数概念(15分钟)1. 利用课件和白板,引导学生回顾函数的变化率概念,并与导数进行对比;2. 解释导数的定义和符号表示,强调导数表示函数在某一点的变化率;3. 通过图示和实例,展示导数的几何意义。

Step 2:求导方法介绍(20分钟)1. 介绍求导的基本方法,包括常数函数、幂函数、指数函数、对数函数和三角函数的求导法则;2. 利用课件和实例,演示不同类型函数的求导过程;3. 强调求导法则的应用和重要性。

Step 3:导数的应用(25分钟)1. 介绍导数在实际问题中的应用,如速度、加速度、最优化问题等;2. 利用课件和实例,展示导数在实际问题中的具体应用过程;3. 引导学生思考导数在其他学科中的应用,如物理、经济等领域。

Step 4:练习与巩固(20分钟)1. 分发练习题,让学生在课堂上完成求导练习;2. 鼓励学生互相讨论和解答问题,提高求导能力;3. 收集学生的答案,进行讲评和指导。

Step 5:课堂总结(10分钟)1. 总结导数的概念、求导方法和应用;2. 强调导数在数学和其他学科中的重要性;3. 鼓励学生继续深入学习和应用导数知识。

教学延伸:1. 鼓励学生进行更多的导数应用实践,如通过编程模拟物体运动、经济模型等;2. 提供更多的挑战性练习题,培养学生的分析和解决问题的能力;3. 拓展导数概念,引入高阶导数和导数的应用领域,如微分方程等。

教学评估:1. 课堂练习题的完成情况和答案准确性;2. 学生对导数概念、求导方法和应用的理解程度;3. 学生在实际问题中应用导数的能力和创造性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9次课2学时第二章导数与微分导数和微分是高等数学中的重要内容之一,也是今后讨论一切问题的基础。

导数反映出函数相对于自变量的变化快慢的程度,而微分则指明当自变量有微小变化时函数大体上变化多少,它从根本上反映了函数的变化情况。

本章主要学习和讨论导数和微分的概念以及它们的计算方法,以后将陆续的介绍它们的用途。

§2、1导数的概念一、 引例1、 切线问题:切线的概念在中学已见过。

从几何上看,在某点的切线就是一直线,它在该点和曲线相切。

准确地说,曲线在其上某点P 的切线是割线PQ 当Q 沿该曲线无限地接近于P 点的极限位置。

设曲线方程为)(x f y =,设P 点的坐标为),(00y x p ,动点Q 的坐标为),(y x Q ,要求出曲线在P 点的切线,只须求出P 点切线的斜率k 。

由上知,k 恰好为割线PQ 的斜率的极限。

我们不难求得PQ 的斜率为:0)()(x x x f x f --;因此,当Q P →时,其极限存在的话,其值就是k ,即0)()(limx x x f x f k x x --=→。

若设α为切线的倾角,则有αtan =k 。

2、速度问题:设在直线上运动的一质点的位置方程为)(t s s=(t 表示时刻),又设当t 为0t 时刻时,位置在)(0t s s =处,问:质点在0t t =时刻的瞬时速度是多少?为此,可取0t 近邻的时刻t ,0t t >,也可取0t t <,在由0t 到t 这一段时间内,质点的平均速度为00)()(t t t s t s --,显然当t 与0t 越近,用00)()(t t t s t s --代替0t 的瞬时速度的效果越佳,特别地,当0t t →时,0)()(t t t s t s --→某常值0v ,那么0v 必为0t 点的瞬时速度,此时,二、导数的定义综合上两个问题,它们均归纳为这一极限00)()(limx x x f x f x x --→(其中0x x -为自变量x 在0x 的增量,)()(0x f x f -为相应的因变量的增量),若该极限存在,它就是所要讲的导数。

定义:设函数)(x f y =在0x 点的某邻域内有定义,且当自变量在0x 点有一增量x ∆(x x ∆+0仍在该邻域中)时,函数相应地有增量y ∆,若增量比极限:x yx ∆∆→∆0lim即00)()(lim 0x x x f x f x x --→存在,就称函数y f x =()在x 0处可导,并称这个极限值为)(x f y =在0x x =点的导数,记为)(0x f ',0x x y =',x x dxdy=或x x dxdf =。

即000)()(lim)(0x x x f x f x f x x --='→等等,这时,也称)(x f y =在0x x =点可导或有导数,导数存在。

注1:导数的常见形式还有:xx f x x f x f x ∆-∆+='→∆)()(lim)(0000;hx f h x f x f h )()(lim)(0000-+='→;hh x f x f x f h )()(lim)(0000--='→;(h 即自变量的增量x ∆)2:x y ∆∆反映的是曲线在],[0x x 上的平均变化率,而0)(x x dxdy x f =='是在点0x 的变化率,它反映了函数)(x f y =随0x x →而变化的快慢程度。

3:这里x x dxdy=与x x dxdf =中的dx dy 与dxdf 是一个整体记号,而不能视为分子dy 或df 与分母dx ,待到后面再讨论。

4:若极限x yx ∆∆→∆0lim即00)()(lim 0x x x f x f x x --→不存在,就称)(x f y =在0x x =点不可导。

特别地,若∞=∆∆→∆x yx 0lim,也可称)(x f y =在0x x =的导数为∞,因为此时)(x f y =在0x 点的切线存在,它是垂直于x 轴的直线0x x =。

若)(x f y =在开区间I 内的每一点处均可导,就称)(x f y =在I 内可导,且对I x ∈∀,均有一导数值)(x f ',这时就构造了一新的函数,称之为)(x f y =在I 内的导函数,记为)(x f y '=,或y ',dx dy ,dxx df )(等。

事实上,x x f x x f y x ∆-∆+='→∆)()(lim或hx f h x f y h )()(lim 0-+='→注5:上两式中,x 为I 内的某一点,一旦选定,在极限过程中就为不变,而x ∆与h 是变量。

但在导函数中,x 是变量。

6:)(x f y =在0x x =的导数)(0x f '就是导函数)(x f y '=在0x x =点的值,不要认为是])([0'x f ;7:为方便起见,导函数就称为导数,而)(0x f '是在0x 点的导数。

【例1】 设0)0(=f ,证明欲A xx f x =→)(lim,那么)0(f A '=。

证明:因为A x f x f xx f x f x f x =--⇒=--→0)0()(lim )(0)0()(0所以)0(f A '=。

【例2】若)(x f 在0x 点可导,问:→--+hh x f h x f )()(00?解:hh x f x f h x f h x f h h x f h x f )()()()()()(000000--+-+=--+)(2)()(000x f x f x f '='+'→。

反过来,亦证明:)(2)()(000x f hh x f h x f '→---+。

三、 求导数举例【例1】求函数c x f =)((c 为常数)的导数。

解:lim0h f x h f x c cf x h h→+--'===()()()即0c '=()注:这里是指c x f =)(在任一点的导数均为0,即导函数为0。

【例2】求nx x f =)((n 为正整数)在a x =点的导数。

解:11221)(lim lim)(-----→→=++++=--='n n n n n ax nn a x na a x a ax x a x a x a f 即1)(-='n na a f , 亦即1)(-=='n a x nna x,若将a 视为任一点,并用x 代换,即得1)()(-='='n n nx x x f注:更一般地,μx x f =)((μ为常数)的导数为1)(-='μμx x f ,由此可见,x x 121)(=',)0(1)1(2≠-='x xx 。

【例3】 求x x f sin )(=在a x =点的导数。

解:a ax ax a f a x cos sin sin lim)(=--='→,即a x a x cos )(sin ='=同理:若视a 为任意值,并用x 代换,使得x x f cos )(=',即x x cos )(sin ='。

注:同理可证:x x sin )(cos -='。

【例4】求)1,0()(≠>=a a a x f x的导数。

解:ha a h a a h x f h x f x f h h xx h x h h 1lim lim )()(lim )(000-⋅=-=-+='→+→→所以a a a xxln )(='。

注:特别地,xx e e =')(。

【例5】求)1,0(log )(≠>=a a xx f a 的导数。

解:hx hh x h x h x f h x f x f a h a a h h )1(log limlog )(log lim )()(lim )(000+=-+=-+='→→→ ax e x x h x a h xa h ln 1log 1)1(log 1lim 0==+⋅=→。

注1:等最后讲到反函数求导时,可将x a log 作为xa 的反函数来求导; 2:一般地说,求导有四步:一、给出x ∆; 二、算出y ∆; 三、求增量比xy∆∆; 四、求极限。

3、xx 1)(ln ='。

【例6】讨论x x f =)(在0=x 处的导数。

解:考虑h h h hf h f h h h sgn lim lim )0()0(lim000→→→==-+,由§1.4例4知h h sgn lim 0→不存在,故x 在0=x 点不可导。

然而,1s g n lim 00-=-→h h 及1sgn lim 00=+→h h ,这就提出了一个单侧导数的问题,一般地,若h x f h x f h )()(lim0000-++→,即000)()(lim 0x x x f x f x x --+→[hx f h x f h )()(lim 0000-+-→即00)()(lim0x x x f x f x x ---→]存在,就称其值为)(x f 在0x x =点的右(左)导数,并记为))(()(00x f x f ''-+,即00000000)()(lim )()(lim )(0x x x f x f h x f h x f x f x x h --=-+='+→+→+ [00000000)()(lim )()(lim)(0x x x f x f h x f h x f x f x x h --=-+='-→-→-]。

定理1:)(x f 在0x x =点可导⇔)(x f 在0x x =点的左导数和右导数均存在且相等,即)()(00x f x f '='+-。

注1:[例6])(x f 的左导数为-1,右导数为1。

因为11≠-,所以在0=x 点不可导;2:[例6]也说明左可导又右可导,也不能保证可导; 3:左、右导数统称为单侧导数;4:若)(x f 在),(b a 内可导,且在a x =点右可导,在b x=点左可导,即),(a f '+)(b f '-存在,就称)(x f 在],[b a 上可导。

四、 导数的几何意义由前面的讨论知::函数)(x f y =在0x x =的导数)(0x f '就是该曲线在0x x =点处的切线斜率k ,即)(0x f k '=,或αα,tan )(0='x f 为切线的倾角。

从而,得切线方程为))((000x x x f y y -'=-。

相关文档
最新文档