北邮操作系统进程管理实验报告及源代码

合集下载

北邮程序设计实践报告(计算器)附源代码

北邮程序设计实践报告(计算器)附源代码

程序设计实践设计报告课题名称:计算器设计学生姓名:班级:班内序号:学号:日期:2014年5月10日星期六1.课题概述1.1课题目标和主要内容本案例以编写基于MFC的简易计算器软件为例,通过学习MFC事件驱动机制、MFC界面设计、MFC控件使用,并掌握MFC应用程序的设计方法,独立完成一个MFC的一个MFC的应用程序。

本案例的重点是学习如何使用MFC基本控件和事件驱动机制完成一个Windows下交互式应用软件。

本次实验所用的开发平台为Visual Studio 2008。

1.2系统的主要功能基本功能单击数字键,显示当前数值单击“+”、“-”、“*”、“/”建进行运算单击“=”,显示运算结果单击“C”,清楚已有结果进行连续四则运算扩展功能进行浮点运算进行平方、绝对值、倒数运算进行三角函数运算2. 系统设计2.1 系统总体框架2.2 系统详细设计[1] 模块划分图及描述(1)对话框:此模块实现的是与用户的交互,本案例使用了两类控件:编辑框和按钮。

(2)事件驱动函数:例如:void CcalculatorDlg::OnBnClickedBtn1(){// TODO: 在此添加控件通知处理程序代码ClickNum("1");}此模块处理的是程序如何响应鼠标的单击,主要由消息映射和消息处理函数两部组成。

(3)运算函数:例如:void CcalculatorDlg::Compute(char chOper){UpdateData(TRUE);m_nTemp2=(float)atof(m_strResult);switch(chOper){case'+':m_nTemp2=m_nTemp1+m_nTemp2; break;case'-':m_nTemp2=m_nTemp1-m_nTemp2; break;case'*':m_nTemp2=m_nTemp1*m_nTemp2; break;case'/':m_nTemp2=m_nTemp1/m_nTemp2; break;case'%':{int n1=(int)m_nTemp1;int n2=(int)m_nTemp2;m_nTemp2=(float)(n1%n2); break;}case'=':m_nTemp2=m_nTemp1; break;}m_nTemp1=m_nTemp2;m_strResult.Format("%f",m_nTemp2);m_IsFirstNum=TRUE;UpdateData(FALSE);}此模块是本实验的核心内容,它控制着整个程序的逻辑功能,它所实现的主要是逻辑运算以及数据交换。

北京邮电大学计算机学院 - 操作系统实验报告(含源代码)

北京邮电大学计算机学院 - 操作系统实验报告(含源代码)
小组成员:许伟林 08211306 (6 班) 刘惠庭 08211338 (7 班)
1/58
10 年 12 月 19 日
内容目录
实验 1.3 Shell 编程...........................................................4 1、实验目的...............................................................4 2、实验内容...............................................................4 3、实验原理...............................................................4 4、实验步骤...............................................................4 5、实验结果:.............................................................4 6、人员任务分配...........................................................5
实验项目:
1. 实验 1.3 Shell 编程 2. 实验 2.3 内核模块 3. 实验 2.4 系统调用 4. 实验 3.3 Shell 编程实验(进程管理实验) 5. 实验 4.1 观察实验(存储管理实验) 6. 实验 5.1 观察实验(进程通信) 7. 实验 6.3 Io 系统编程实验 8. 实验 6.4 设备驱动程序 9. 实验 7.1 代码分析(文件系统管理实验)
实验 3.3 Shell 编程实验(进程管理实验)......................................18 1、实验目的..............................................................18 2、实验内容..............................................................18 3、实验原理..............................................................18 4、实验步骤..............................................................18 5、实验结果及分析........................................................19 6、人员任务分配..........................................................19 2、实验内容 2............................................................20 3、实验原理..............................................................20 4、实验步骤..............................................................20 5、实验结果及分析........................................................23 6、人员分配..............................................................24

操作系统-进程管理实验报告

操作系统-进程管理实验报告

实验一进程管理1.实验目的:(1)加深对进程概念的理解,明确进程和程序的区别;(2)进一步认识并发执行的实质;(3)分析进程争用资源的现象,学习解决进程互斥的方法;(4)了解Linux系统中进程通信的基本原理。

2.实验预备内容(1)阅读Linux的sched.h源码文件,加深对进程管理概念的理解;(2)阅读Linux的fork()源码文件,分析进程的创建过程。

3.实验内容(1)进程的创建:编写一段程序,使用系统调用fork() 创建两个子进程。

当此程序运行时,在系统中有一个父进程和两个子进程活动。

让每一个进程在屏幕上显示一个字符:父进程显示字符“a”,子进程分别显示字符“b”和“c”。

试观察记录屏幕上的显示结果,并分析原因。

源代码如下:#include<sys/types.h>#include<stdio.h>#include<unistd.h>#include <fcntl.h>#include <errno.h>int main(int argc,char* argv[]){pid_t pid1,pid2;pid1 = fork();if(pid1<0){fprintf(stderr,"childprocess1 failed");exit(-1);}1/12else if(pid1 == 0){printf("b\n");}else{pid2 = fork();if(pid2<0){fprintf(stderr,"childprocess1 failed");exit(-1);}else if(pid2 == 0){printf("c\n");}else{printf("a\n");sleep(2);exit(0);}}return 0;}结果如下:分析原因:pid=fork();操作系统创建一个新的进程(子进程),并且在进程表中相应为它建2/12立一个新的表项。

北邮操作系统进程管理实验报告及源代码

北邮操作系统进程管理实验报告及源代码

进程管理实验报告1. 实验目的:(1)加深对进程概念的理解, 明确进程和程序的区别;(2)进一步认识并发执行的实质;(3)分析进程争用资源的现象, 学习解决进程互斥的方法;(4)了解Linux系统中进程通信的基本原理。

2. 实验预备内容(1)阅读Linux的sched.h源码文件, 加深对进程管理概念的理解;(2)阅读Linux的fork()源码文件, 分析进程的创建过程。

3.环境说明本次实验使用的是win7下的VMWare workstation虚拟机, 安装了ubuntu系统在ubuntu系统下使用code::blocks IDE编写代码并执行程序的4.实验内容:1.进程的创建:(1)实验题目和要求:编写一段程序, 使用系统调用fork() 创建两个子进程。

当此程序运行时, 在系统中有一个父进程和两个子进程活动。

让每一个进程在屏幕上显示一个字符:父进程显示字符“a”, 子进程分别显示字符“b”和“c”。

试观察记录屏幕上的显示结果, 并分析原因。

(2)程序设计说明:参照书上的例子进行设计, 详见源代码(3)程序运行结果截图:(4)程序分析:a,b,c随机出现, 因为父进程与两个子进程之间并没有同步措施, 所以a,b,c随机打印出来, 也就是三个进程的活动次序是随机进行的, 不同的系统可能有不同的进程调度方式。

(5)源程序:#include<sys/types.h>#include<stdio.h>#include<unistd.h>int main(){pid_t pid1,pid2;if((pid1=fork())<0){printf("Fork Failed.\n");exit(-1);}else if((pid1=fork())==0)printf("b\n");else{if((pid2=fork())<0){printf("Fork Failed.\n");exit(-1);}else if((pid2=fork())==0)printf("c\n");else{wait(NULL);printf("a\n");exit(0);}}return 0;}2.进程的控制:要求一:(1)实验题目和要求:修改已经编写的程序, 将每个进程输出一个字符改为每个进程输出一句话, 再观察程序执行时屏幕上出现的现象, 并分析原因。

北邮计算机科学与技术操作系统第二次实验

北邮计算机科学与技术操作系统第二次实验

北京邮电大学操作系统第二次实验实验报告班级302班第一部分:内存管理的伙伴算法1.实验描述:实现一个内存管理的伙伴算法,实现内存块申请时的分配和释放后的回收。

用随机函数仿真进程进行内存申请,并且以较为随机的次序进行释放。

对其碎片进行统计,当申请分配内存失败时区分实际空间不足和由于碎片而不能满足。

2.实验原理解释:假设要求分配的块其大小为128个页面。

该算法先在块大小为128个页面的链表中查找,看是否有这样一个空闲块。

如果有,就直接分配;如果没有,该算法会查找下一个更大的块,具体地说,就是在块大小为256个页面的链表中查找一个空闲块。

如果存在这样的空闲块,内核就把这256个页面分为两等份,一份分配出去,另一份插入到块大小为128个页面的链表中。

如果在块大小为256个页面的链表中也没有找到空闲页块,就继续找更大的块,即512个页面的块。

如果存在这样的块,内核就从512个页面的块中分出128个页面满足请求,然后从384个页面中取出256个页面插入到块大小为256个页面的链表中。

然后把剩余的128个页面插入到块大小为128个页面的链表中。

如果512个页面的链表中还没有空闲块,该算法就放弃分配,并发出出错信号。

以上过程的逆过程就是块的释放过程,这也是该算法名字的来由。

满足以下条件的两个块称为伙伴:两个块的大小相同,两个块的物理地址连续。

伙伴算法把满足以上条件的两个块合并为一个块,该算法是迭代算法,如果合并后的块还可以跟相邻的块进行合并,那么该算法就继续合并。

3.试验运行截图:第一组数据测试截图:第二组数据测试截图:第三组数据测试截图:4.实验代码:#include<iostream>#include<stdio.h>#define GETMIN(a,b) ((a)<(b)?(a):(b)) #define GETMAX(a,b) ((a)>(b)?(a):(b)) using namespace std;struct Node{int size;int remain;int frag;int isSplit;Node *left;Node *right;Node *parent;};struct Process{int oriMem;int reqMem;Node *ptr;void init(int _oriMem){int i;if(_oriMem<=0){oriMem=0;reqMem=0;ptr=NULL;return;}oriMem=_oriMem;for(i=31;i>=0;i--){if(oriMem&(1<<i)){break;}}if(oriMem==1<<i){reqMem=oriMem;}else{reqMem=1<<(i+1);}ptr=NULL;}};class BuddyTree{private:Node *root;Node *newNode(Node *_parent,int _size,int _remain){Node *ptr=new(Node);ptr->size=_size;ptr->remain=_remain;ptr->frag=0;ptr->isSplit=0;ptr->left=NULL;ptr->right=NULL;ptr->parent=_parent;return ptr;}public:Node* getRoot(){return root;}void init(int MaxMem){root=newNode(NULL,MaxMem,MaxMem);}void requestMem(Node *ptr,Node *&res,int reqSize,int oriSize){ if(ptr->remain<reqSize){res=NULL;return;}if(ptr->size==reqSize){res=ptr;ptr->remain=0;ptr->frag+=reqSize-oriSize;return;}if(ptr->isSplit==0){int _size=ptr->size/2;ptr->isSplit=1;ptr->left=newNode(ptr,_size,_size);ptr->right=newNode(ptr,_size,_size);requestMem(ptr->left,res,reqSize,oriSize);}else{int minMem=GETMIN(ptr->left->remain,ptr->right->remain); if(minMem>=reqSize){if(ptr->left->remain<=ptr->right->remain){requestMem(ptr->left,res,reqSize,oriSize);}else{requestMem(ptr->right,res,reqSize,oriSize);}}else{if(ptr->left->remain>=reqSize){requestMem(ptr->left,res,reqSize,oriSize);}else{requestMem(ptr->right,res,reqSize,oriSize);}}}ptr->remain=GETMAX(ptr->left->remain,ptr->right->remain);ptr->frag=ptr->left->frag+ptr->right->frag;}void releaseMem(Node *ptr){int memsize=ptr->size;int frag=ptr->frag;ptr->frag=0;ptr->remain=memsize;ptr=ptr->parent;while(ptr){if(ptr->left->remain==ptr->left->size&&ptr->right->remain==ptr->right->size){ ptr->remain=ptr->size;}else{ptr->remain=GETMAX(ptr->left->remain,ptr->right->remain);}ptr->frag-=frag;ptr=ptr->parent;}}void printTree(Node *ptr){if(ptr==NULL)return;char tmp[100];sprintf(tmp,"[Node size %dB]",ptr->size);printf("%-26s",tmp);sprintf(tmp,"remaining : %dB",ptr->remain);printf("%-26s",tmp);sprintf(tmp,"fragment : %dB",ptr->frag);printf("%s\n",tmp);printTree(ptr->left);printTree(ptr->right);}};Process P[200];int test[3][20]={{24,80,4600,8,100,1,500},{70,480,3300,25,10600,8909,490,99,40},{1,20,300,4000,50000,600000,7000000,80000000,900000000}}; int n[3]={7,9,9};int memory[3]={1024,1024*1024,1024*1024*1024};int main(){BuddyTree BT;char tmp[100];for(int t=0;t<3;t++){printf("Test%d:\n",t+1);printf("Process status:\n");for(int j=0;j<n[t];j++){P[j].init(test[t][j]);sprintf(tmp,"Original request: %d",P[j].oriMem);printf("%-30s",tmp);sprintf(tmp,"Actual request: %d",P[j].reqMem);printf("%s\n",tmp);}printf("\nMemory amount : %dB\n",memory[t]);BT.init(memory[t]);printf("\n");printf("Constructing the tree:\n");for(int j=0;j<n[t];j++){sprintf(tmp,"The process needs %d bytes.",P[j].oriMem);printf("%-35s",tmp);BT.requestMem(BT.getRoot(),P[j].ptr,P[j].reqMem,P[j].oriMem);if(P[j].ptr){printf("Request success,obtain %d bytes.\n",P[j].reqMem);}else{printf("Request failed.\n");}}printf("\n");printf("After constructing,preorder the tree:\n");BT.printTree(BT.getRoot());printf("\n");printf("After constructing the tree,the sum of fragment is %d.\n",BT.getRoot()->frag);printf("\n");printf("After the release,the tree(preorder) is:\n");for(int j=0;j<n[t];j++){if(P[j].ptr){BT.releaseMem(P[j].ptr);}}BT.printTree(BT.getRoot());printf("\n");printf("\n");system("pause");printf("\n");}return 0;}第二部分:设计一个虚拟存储区和内存工作区,并使用下述算法计算访问命中率1.实验描述:设计一个虚拟存储区和内存工作区,并使用下述算法计算访问命中率。

操作系统实验报告----进程管理

操作系统实验报告----进程管理

实验内容:进程管理一、实验目的1、掌握Linux中进程的创建方法及执行情况;2、加深对进程、进程树等概念的理解;3、掌握Linux中如何加载子进程自己的程序;4、掌握父进程通过创建子进程完成某项任务的方法;5.、掌握系统调用exit()和_exit()调用的使用。

6、分析进程竞争资源的现象,学习解决进程互斥的方法;进一步认识并发执行的实质二、实验内容(一)进程的创建1、编写一段程序,使用系统调用fork( )创建两个子进程。

当此程序运行时,在系统中有一个父进程和两个子进程活动。

让每一个进程在屏幕上显示一个字符。

#include<stdio.h>main(){int p,x;p=fork();if(p>0){x=fork();if(x>0)printf("father\n");elseprintf("child2");}elseprintf("child1");}输出结果:child1child2father2、运行以下程序,分析程序执行过程中产生的进程情况。

#include <stdio.h>main(){int p,x;p=fork();if (p>0)fork();else{fork();fork();}sleep(15);}实验步骤:编译连接gcc –o forktree forktree.c后台运行./forktree &使用pstree –h 查看进程树运行结果:├─gnom e-terminal─┬─bash─┬─forktree─┬─forktree─┬─forkt ree───forktree││││└─forktree│││└─forktree││└─pstree 分析:程序运行,系统首先创建一个进程forktree,执行到p=fork()创建一个子进程forktree,子进程获得处理机优先执行,父进程等待;执行else,当执行到第一个fork()函数时,子进程创建了一个进程forktree,称之为孙进程,孙进程获得处理机往下执行,子进程等待;执行到第二个fork()函数时,孙进程又创建一个进程forktree,称之为重孙进程,重孙进程很快执行完,将处理机还给孙进程,孙进程很快执行完,将处理机还给子进程;子进程继续往下执行,执行到第二个fork()函数,又创建一个进程forktree,称之为第二孙进程,并获得处理机执行,此进程很快执行完,将处理机还给子进程,子进程也很快执行完,将处理机还给父进程,父进程P>0执行if语句,运行fork()函数,又创建一个进程forktree,称之为第二子进程,此进程获得处理机执行很快运行完,将处理机还给父进程,父进程运行sleep(15)语句,休眠15秒,用pstree命令查询进程树。

操作系统-实验报告-进程管理实验

操作系统-实验报告-进程管理实验

一、实验目的本实验要求学生编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用适当的算法,有效地防止和避免死锁的发生。

二、实验题目第一题:用银行家算法实现资源分配。

要求:(1) 设计一个3个并发进程共享10个同类资源的系统,进程可动态地申请资源和释放资源,系统按各进程的申请动态地分配资源。

(2) 设计用银行家算法和随机分配算法,实现资源分配的两个资源分配程序,应具有显示或打印各进程依次要求申请的资源数以及依次分配资源的情况。

(3) 确定一组各进程依次申请资源数的序列,在相同的情况下分别运行上述两种资源分配程序,观察运行结果。

第二题:用按序分配策略实现资源分配。

要求:(1) 设计一个3个进程共享10个资源的系统,进程可动态地申请资源和释放资源,系统按各进程的申请动态地分配资源。

(2) 设计用按序分配算法实现资源分配的资源分配程序,应具有显示或打印各进程依次要求申请的资源号以及依次分配资源地情况。

(3) 确定两组各进程依次要求申请的资源号,要求其中的一组中各进程按序地申请资源,另一组中各进程申请资源不受序号限制,分别运行上述设计的资源分配程序,观察运行结果。

三、数据结构1)可利用资源向量available具有m个元素的数组,available[j]=k表示系统中第j类资源有k个可用2)最大需求矩阵maxn*m矩阵,max[i,j]=k表示进程i需要第j类资源的最大数目为k 3)分配矩阵allocationn*m矩阵,allocation[i,j]=k表示进程i当前已占用的第j类资源的数目为k4)需求矩阵needn*m矩阵,need[i,j]=k表示进程还需要的第j类资源的数目为kneed[i,j] = max[i,j] - allocation[i,j]5)进程pi的请求向量request[i]具有m个元素的数组,说明进程pi对每类资源的请求数目6)工作向量work 系统提供给进程继续运行所需各类资源数目初值:work:=available7)状态标志finish具有n个元素的数据,表示进程是否可在有限时间内获得所有资源执行完,初值为fals#include <stdio.h>#include <stdlib.h>/*----------------------常量定义--------------------*/#define F 0#define T 1#define n 5 //进程数量#define m 3 //资源种类数量/*--------------------------------------------------*//*--------------------数据结构定义------------------*/int Available[m]={3,3,2}; //可用资源int Work[m]; //工作向量i nt Finish[n]; //用以判断系统是否有足够资源分给相应进程。

操作系统实验报告-进程管理

操作系统实验报告-进程管理
2.进程的控制(随机执行以及加锁执行)
修改上述程序,将每个进程输出结果修改为每个进程输出几行字符(在此,如果为第一个子进程,则连续输出10行“the first child process”;如果为第二个子进程,则连续输出10行“the second child process”;如果为父进程,则连续输出10行“the parent process”),再观察程序的执行结果,并分析原因。然后,在上述程序中使用函数lockf()给每个进程加锁(锁定屏幕输出),从而实现进程之间互斥,观察并分析结果。
二、实验步骤及过程(可以附算法)
1.进入vi编辑器,创建test.c文件
2.输入代码如下;
3.输入gcc –o test test.c对test.c文件进行编译,输入./test对test.c文件进行执行,结果如下。
4.创建te.c文件
5.输入代码如下;
6.输入gcc –o te te.c对te.c文件进行编译,输入./te对te.c文件进行执行,结果如下。
实验名称:进程管理
组别:合作者:日期:5/24
一、预习:实验内容及要求
(实验目的:
1.加深对进程概念的理解,区分进程和程序的区别
2.进一步了解进程并发执行的本质
(2).实验内容:
1.创建进程
编写一段程序,使用函数fork()创建两个子进程,执行该程序时,在系统中同时存在一个父进程以及两个子进程活动。此时,让每个进程在屏幕上显示一个字符:父进程显示字符“p”;子进程分别显示字符“a”和字符“b”。请观察并记录程序的执行结果,并分析具体原因。
7.加入lockf()函数代码如下
8.再次编译并执行;
三、实验结果及分析(可另加附页)
通过本次实验了解了进程的进本操作,还有几个函数的基本调用,有fork()函数,lockf函数等等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)程序设计说明:
signal(SIGTINT, SIG_IGN)从后台进程读中断信号,signal(SIGQUIT, SIG_IGN)程序终止信号
(3)程序运行结果截图:
(4)程序分析:
用系统调用signal() 让父进程捕捉键盘上来的中断信号ctrl+c
(a)没有添加signal(SIGINT,SIG_IGN)时可以看出程序运行在子进程1中,当按下ctrl+c后子进程1被直接杀死,而不是由父进程的kill杀死,
lockf(1,0,0);
}
else{
if((pid2=fork())
printf("Fork Failed.\n");
exit(-1);
}
else if((pid2=fork())==0){
lockf(1,1,0);
for(i=0;i<=2;i++)
printf("process B:%d\n",i);
(4)程序分析:
a,b,c随机出现,因为父进程与两个子进程之间并没有同步措施,所以a,b,c随机打印出来,也就是三个进程的活动次序是随机进行的,不同的系统可能有不同的进程调度方式。
(5)源程序:
#include
#include
#include
int main()
{
pid_t pid1,pid2;
if((pid1=fork())
live = 1;
live_wait(); kill(p1,1); kill(p2,2); wait(NULL); wait(NULL); printf("Parent Process is killed!\n"); exit(0);
}
return 0;
}
(b)在上面的程序中增加语句signal(SIGINT, SIG-IGN) 和 signal(SIGQUIT, SIG-IGN),观察执行结果,并分析原因。
(a)要求:使用系统调用fork() 创建两个子进程,再用系统调用signal() 让父
进程捕捉键盘上来的中断信号(即按DEL键);当捕捉到中断信号后,父进程用系统调用Kill() 向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止:
Child Process 1 is killed by Parent!
waiting();
kill(p1,16);
kill(p2,17);
wait(0);
wait(0);
printf("Parent Process is Killed!\n");
exit(0);
}
}
}
4、进程的管道通信:
(1) 实验题目和要求:
编制一段程序,实现进程的管道通信。
使用系统调用pipe() 建立一条管道线;两个子进程P1和P2分别向管道各写一句话:
{
wait_mark=1;
signal(SIGINT,SIG_IGN);
signal(17,stop);
waiting();
printf("Child Process2 is Killed by Parent!\n");
exit(0);
}
else
{
wait_mark=1;
signal(SIGINT,stop);
Child Process 2 is killed by Parent!
父进程等待两个子进程终止后,输出如下的信息后终止:
Parent Process is killed!
源程序:
#include
#include
#include
#include
#include
int live;
void live_wait()
lockf(1,0,0);
}
else{
lockf(1,1,0);
for(i=0;i<=2;i++)
printf("process C:%d\n",i);
lockf(1,0,0);
exit(0);
}
}
return 0;
}
3、进程的软中断通信:
(1)实验题目和要求:
编写一段程序,使其实现进程的软中断通信。
{
wait_mark=1;
signal(SIGINT,SIG_IGN);
signal(16,stop);
waiting();
printf("Child Process1 is Killed by Parent!\n");
exit(0);
}
else
{
while((p2=fork())==-1);
if(p2==0)
char OutPipe[100], InPipe[100];
pipe(fd);
while((pid1 = fork()) == -1);
if( pid1 == 0)
{
lockf( fd[1], 1, 0 );
sprintf(OutPipe, "\n Child process 1 is sending message!\n");
}
要求二:
(1)实验题目和要求:
如果在程序中使用系统调用lockf () 来给每一个进程加锁,可以实现进程之间的互斥,观察并分析出现的现象。
(2)程序设计说明:
在每个进程的每个条件语句中开头加入lockf(1,1,0),结尾处加入lockf(1,0,0),从而实现给每一个进程加锁并且实现进程之间的互斥
write( fd[1], OutPipe, 50);
sleep(3);
lockf(fd[1], 0 , 0);
exit(0);
}
else
{
wait(0);
read(fd[0], InPipe, 50);
而父进程用之前的wait()函数等待两个子进程执行后再执行。
(3) 程序运行结果截图:
(4) 程序分析:
管道通信通过系统调用pipe()初始化一个二元组为管道,1出0进。
(5) 源程序:
#include
#include
#include
int pid1,pid2;
int main()
{
intfd[2];
将第一个程序的输出进行修改,把输出一个字符改为一句话,其他不变
(3)程序运行结果截图:
(4)程序分析:
和第一个程序的输出顺序,也就是三个进程活动的次序基本是一致的,同一个进程里输出的字符串不会被中断
(5)源程序:
#include
#include
#include
int main()
{
pid_t pid1,pid2;
printf("c\n");
else{
wait(NULL);
printf("a\n");
exit(0);
}
}
return 0;
}
2、进程的控制:
要求一:
(1)实验题目和要求:
修改已经编写的程序,将每个进程输出一个字符改为每个进程输出一句话,再观察程序执行时屏幕上出现的现象,并分析原因。
(2)程序设计说明:
(2)阅读Linux的fork()源码文件,分析进程的创建过程。
3、环境说明
本次实验使用的是win7下的VMWare workstation虚拟机,安装了ubuntu系统 在ubuntu系统下使用code::blocks IDE编写代码并执行程序的
4、实验内容:
1、进程的创建:
(1)实验题目和要求:
{
while(live == 1);
}
void be_killed()
{
live = 0;
}
int main()
pid_t p1,p2;
while((p1=fork()) == -1);
if(p1 == 0)
{
live = 1;
signal(1,be_killed);
live_wait(); printf("Child Process 1 is killed by Parent!\n"); exit(0);
没有打印
语句Child Process 1 is killed by Parent!。但是子进程2是被父进程杀死故打印语句:Child Process 2 is killed by Parent!。
(b)在两个子进程中添加了signal(SIGINT,SIG_IGN),这样使得两个子进程不被ctrl+c杀死而由父进程杀死。所以从实验截图中可以看出,两个子进程均被父进程杀死故打印语句Child Process 1 is killed by Parent!和Child Process 2 is killed by Parent!
printf("Fork Failed.\n");
exit(-1);
}
else if((pid1=fork())==0)
printf("b\பைடு நூலகம்");
else{
if((pid2=fork())
printf("Fork Failed.\n");
exit(-1);
}
else if((pid2=fork())==0)
编写一段程序,使用系统调用fork() 创建两个子进程。当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示字符“a”,子进程分别显示字符“b”和“c”。试观察记录屏幕上的显示结果,并分析原因。
相关文档
最新文档