取代基效应
1取代基效应

σp -0.66 -0.17 -0.01 -0.37 -0.27 0.06 0.18
σ+ -1.3 -0.31 -0.92 -0.92 -0.78 -0.07 0.13
σ/ / / / -0.2 -0.002 /
R
CO2H Cl COCH3 Br CO2R CF3 CN NO2
σm
0.37 0.37 0.38 0.39 0.37 0.43 0.56 0.71
ρ Values Derived from Rates of Heterolytic Reactions Rxns
X CO2CH3 HOX CO2CH3 H 3O+ X COCl X H 2O X CHO X OH CHCN X Cl CHPh C2H5OH OC2H5 CHPh X CO 2H CO 2H CO 2-
Ph H3CO Cl CH3 H3CO +
Ph + ClCH3
建立σ 常数的标准反应: 建立σ+常数的标准反应:
CH3 Cl X CH3 10% H2O 90% Acetone X CH3
+
+ ClCH3
O2N
OH
O2N
O-
+ H+
建立σ 常数的标准反应: 建立σ-常数的标准反应:
OH X X O+ H+
NH 3+Y X X
NH2
+ HY
ρ Values for Acids Dissociation
Acid
CO2H X CO2H X CO2H NO2 OH X H 2O 25 2.113
Solvent
Temperature
25
有机化学基础知识点取代基的电子效应

有机化学基础知识点取代基的电子效应一、引言有机化学是研究有机化合物的科学,其中取代基的电子效应是理解有机化学反应机理和化合物性质的重要基础知识。
本文将介绍取代基的电子效应的基本概念、主要种类及其对化合物性质的影响。
二、取代基的电子效应1. 电子效应的概念取代基的电子效应指的是取代基与有机化合物中的π电子系统相互作用所引起的电子转移和电荷密度变化。
电子效应可以改变有机化合物的稳定性、反应性和理化性质,并直接影响有机化学反应的方向和速率。
2. 电子效应的两种主要类型(1)拉电子效应拉电子取代基是指可以通过共轭体系将电子引入π电子体系中的取代基。
例如,甲基基团(CH3)是一种拉电子取代基,它能够通过σ-σ*反键电子跃迁与共轭体系中的π电子形成共轭,使π电子体系中的电子密度增加。
拉电子取代基的引入通常会使有机化合物的反应活性增强。
(2)推电子效应推电子取代基是指可以通过共轭体系将电子从π电子体系中推出的取代基。
例如,卤素基团(X)是一种推电子取代基,它对共轭体系中的π电子施加电荷,使π电子体系中的电子密度减小。
推电子取代基的引入通常会使有机化合物的反应活性减弱。
三、取代基的电子效应与化合物性质的关系1. 取代基的电子效应对有机化合物的稳定性的影响菜单中的电子效应可以影响有机化合物的稳定性。
一般来说,拉电子取代基的引入会增加分子的稳定性,因为其增加了π电子体系的电子密度,有利于分子的共轭和杂化。
相反,推电子取代基的引入会减小分子的稳定性,因为其减小了π电子体系的电子密度,破坏了分子的共轭和杂化。
2. 取代基的电子效应对有机化合物的反应性的影响(1)取代基的电子效应对亲电性反应的影响拉电子取代基的引入会增加π电子体系的电子密度,增加化合物与亲电子体的反应活性,促进亲电性反应的进行。
推电子取代基的引入则会减小π电子体系的电子密度,降低化合物与亲电体的反应活性,抑制亲电性反应的进行。
(2)取代基的电子效应对亲核性反应的影响拉电子取代基的引入会增加π电子体系的正电荷,增大化合物中电子云的极化程度,增强亲核试剂与化合物的相互作用,促进亲核性反应的进行。
取代基效应

C
CR > CH CHR
6 动态诱导效应
静态诱导效应,是分子本身所固有的性质, 是与键的极性及其基态时的永久极性有关的。当 某个外来的极性核心接近分子时,能够改变共价 键电子云的分布。由于外来因素的影响引起分子 中电子云分布状态的暂时改变,称为动态诱导效 应,用Id表示。
正常状态(静态)
试剂作用下的状态
二、 共轭效应
分子轨道理论认为共轭效应是轨道或电子离域于整 个共轭体系乃至整个分子所产生的一种效应。 1. 电子离域与共轭效应
[现象1]
在CH2=CH—CH=CH2中的键长不是简单的单 键和双键的键长,存在着平均化的趋势。 C—C单键键长 0.154nm C=C双键键长 0.134nm 1,3-丁二烯C—C单键键长 0.147nm C=C双键键长 0.137nm 体系能量降低,化合物趋于稳定。
1) HOCH2CH2COOH 和 CH3CH(OH)COOH
2) 对硝基苯甲酸和对羟基苯甲酸
3) a. b. c.
ClCH2COOH CH3COOH FCH2COOH
d e.
CH2ClCH2COOH CH3CHClCOOH
[练习3]
一般情况下二元酸第一个质子的酸性 比一元酸强;而第二个质子的酸性比一 元酸弱。如丙二酸的pKa1=9, pKa2=5.7,乙酸为4.74。试解释原因。
7 动态诱导效应与静态诱导效应的不同。
(1)引起的原因不同。静态诱导效应是由于 键的永久极性引起的,是一种永久的效应,而动 态诱导效应是由于键的可极化性而引起的,是一 种暂时的效应。 (2)动态诱导效应是由于外界极化电场引起 的,电子转移的方向符合反应的要求,即电子向 有利于反应进行的方向转移,所以动态诱导效应 总是对反应起促进或致活作用,而不会起阻碍作 用。而静态诱导效应是分子的内在性质,并不一 定向有利于反应的方向转移,其结果对化学反应 也不一定有促进作用。
第四章 取代基效应

C2H5O-
+ RBr
ROC2H5
+
NaBr
4.6 取代基效应对有机化合物性质的影响 4.6.1 酸碱性 根据Bronsted酸碱定义,能提供质子的物质为酸,能接受质子 的物质为碱。酸碱强度取决于它们提供或接受质子的能力。 一、诱导效应对酸碱的影响
乙酸是弱酸(pKa=4.76),当乙酸分子中的α -H被电负性比氢 强的氯原子取代后,会使整个分子的电子云向氯原子偏移,结果引起 羟基中氢原子周围电子云密度下降,酸性增强。事实上,氯乙酸的pK a为2.86,酸性明显比乙酸强。
有强拉电子诱导效应的代表性取代基包括三氟甲基和三氯甲基。 氯甲基、甲氧基甲基等属于有弱拉电子诱导效应的取代基。 仅有诱导效应的给电子取代基较少,主要是一些电负性小于氢 原子的原子团,如三烷基硅基等。
二、共轭效应对碳正离子的影响 对乙烯基和苯基型不饱和基团,它们与碳正离子相连接的碳原 子属于sp2杂化,电负性高于sp3杂化的饱和碳原子,因此会显示出弱 的拉电子诱导效应。另一方面,这些基团的体系与碳正离子的p轨道 间会产生强给电子的p-共轭效应。
H2C CH2 + Br2 BrCH2CH2Br
+
Br2
BrH2C 1,4-加成
Br
Br
+ Br
CH2Br
1,2-加成
+
Br2
Fe
+
HBr
共轭效应可分为:1) π -π 共轭效应,2)p-π 共轭效应,3)pp共轭效应。 1.π -π 共轭是指双键(或三键)之间所发生的π 电子的离域。
H C C C O H H H H C C C+ OH H H C+ C C OH H H C C C O H H H
第1章 取代基效应

场效应( 四 场效应(field effect) )
分子中原子之间相互影响的电子效应, 分子中原子之间相互影响的电子效应 , 不是通过键链 而是通过空间传递的,称为场效应( 而是通过空间传递的,称为场效应(field effects)。 ) 场效应和诱导效应通常难以区分, 场效应和诱导效应通常难以区分 , 它们往往同时存在 而且作用方向一致, 而且作用方向一致 , 实际上场效应是诱导效应的一种 表现形式, 表现形式 , 所以也把场效应和诱导效应总称为极性效 应。 场效应与距离的平方成反比,距离越远,作用越小。 场效应与距离的平方成反比,距离越远,作用越小。
甲烷的一取代物的偶极矩 取代基 —CN —NO2 —F µ(D)(在气态) (在气态) 3.94 3.54 1.81 取代基 —Cl —Br —I µ(D)(在气态) (在气态) 1.86 1.78 1.64
可以看出这些基团的负诱导效应( )的顺序为: 可以看出这些基团的负诱导效应(-I)的顺序为: CN > NO2 > Cl > F > Br > I > H
Cl3C-CHO >Cl2CHCHO> ClCH2CHO> CH3CHO > >
3、对化学平衡的影响 、 如:氯代乙酸的酸性比乙酸大
乙酸中的一个α-氢原子被氯原子取代后,由于氯的 效应 效应, 乙酸中的一个 氢原子பைடு நூலகம்氯原子取代后,由于氯的-I效应,使 氢原子被氯原子取代后 羧基离解程度加大, 羧基离解程度加大,而且使生成的氯乙酸负离子比乙酸负离 子稳定,所以在下面两个离解平衡中: 子稳定,所以在下面两个离解平衡中:
有机化学基础知识点有机物的取代基效应和共振效应

有机化学基础知识点有机物的取代基效应和共振效应有机化学是研究含碳的化合物及其反应的一门学科。
在有机化学中,有机物的取代基效应和共振效应是两个重要的基础知识点。
本文将详细介绍这两个效应及其在有机化学中的应用。
一、取代基效应取代基效应指的是有机物中取代基对反应速率、反应路径和产物稳定性的影响。
取代基的性质和位置对有机物的物理性质和化学性质都有很大影响。
1. 取代基的电子效应取代基的电子效应可以分为两类:正电子效应和负电子效应。
正电子效应是指取代基释放电子,使体系具有更大的正电荷。
常见的正电子效应有烷基效应和烯基效应。
相反,负电子效应是指取代基吸引电子,使体系具有更大的负电荷。
常见的负电子效应有氨基效应和亚硝基效应。
2. 取代基的空间位阻效应取代基的空间位阻效应主要体现在反应速率和反应路径上。
空间位阻较大的取代基会阻碍反应物的接近,从而减慢反应速率。
此外,取代基的位置也会影响反应路径,导致不同的产物生成。
3. 取代基的共轭效应取代基通过π-电子共轭作用可以影响有机物的电荷分布和稳定性。
共轭效应可以加强或减弱有机物的碳碳双键或碳碳单键的稳定性。
常见的共轭效应有芳香性和共轭酮效应。
二、共振效应共振效应是指有机物中通过共振作用在不同结构之间分配电子密度,从而影响其物理性质和化学性质。
共振效应可以使某些分子更稳定,同时也可以调整反应的速率和产物的选择。
1. 共振结构的形成共振结构是通过共振现象形成的不同电子排布的结构。
共振结构之间仅仅是电子排布的不同,而分子实际上并不是在这些结构之间跳跃。
共振结构的形成可以通过共振杂化来解释。
2. 共振效应的作用共振效应可以调整有机物的稳定性和极性。
共振结构中的不同电荷分布会影响分子的稳定性,使其更耐高温和高压。
共振效应还会影响有机物的酸碱性和亲核性,从而改变其反应性质。
三、应用示例1. 取代基效应在药物研发中的应用药物研发中常常需要调整药物的活性和毒性。
通过在药物结构中引入不同的取代基,可以改变药物的性质,提高其生物利用度和靶向性。
高等有机化学教案1取代基效应

通过引入特定的取代基,可以改变 有机分子的物理性质,如溶解度、 熔点、沸点等,从而满足不同的应 用需求。
02 取代基对分子构型影响
取代基对键长、键角影响
取代基电负性
取代基的电负性会影响相邻碳原子的电子云密度,从而改变键 长和键角。例如,电负性较大的取代基(如-F)会使相邻碳原 子的电子云密度降低,键长变短,键角变小。
应速率。具有共轭效应的取代基可以与反应中间体形成共轭体系,从而
稳定中间体并促进反应的进行。
04 取代基对光谱性质影响
取代基对紫外-可见光谱影响
取代基的电子效应
取代基通过诱导效应、共轭效应等改变分子的电子云分布,从而影响紫外-可见光谱的吸 收波长和强度。
取代基的空间效应
取代基的空间位阻和构象变化也会影响紫外-可见光谱的吸收,例如邻位取代基可能导致 分子内氢键的形成,进而影响光谱性质。
取代基对立体化学的影响
探讨取代基如何通过空间位阻和电子效应来影响反应的立体选择性, 如顺反异构化、区域选择性等。
实验注意事项及改进建议
实验安全注意事项
强调实验过程中应注意的安全事项,如避免使用过量试剂、注意加 热温度和时间控制等。
实验操作规范
提醒学生注意实验操作规范,如准确称量、充分搅拌、正确使用仪 器等。
01取代基的ຫໍສະໝຸດ 子效应在周环反应中,取代基的电子效应可以影响反应中间体的稳定性和反应
速率。给电子取代基可以稳定负离子中间体,有利于周环反应的进行。
02
取代基的空间效应
取代基的空间大小也会影响周环反应的进行。大的取代基可能会阻碍反
应中间体的生成或转化,导致反应速率降低。
03
取代基的共轭效应
在周环反应中,取代基可以通过共轭效应影响反应中间体的稳定性和反
有机化学基础知识点有机物的电子效应和共轭效应

有机化学基础知识点有机物的电子效应和共轭效应有机化学是研究碳元素及其化合物的科学,其中有机物的电子效应和共轭效应是基础知识点之一。
电子效应指的是有机分子中原子轨道电子自身或与其它原子间的相互作用产生的效应,而共轭效应则是指相邻多个π键在共同作用下形成一组共轭体系后的效应。
本文将从电子效应和共轭效应两方面进行讨论。
一、电子效应1. 取代基效应在有机化合物中,原子或基团的取代会对分子的性质产生显著影响。
电子给体(电子供应基团)对有机分子具有+I效应(电子效应),使分子带有正电荷;而电子受体(电子吸引基团)则对有机分子具有-I效应(电子效应),使分子带有负电荷。
举例来说,甲醇(CH3OH)中的羟基(-OH)是一个电子给体,在碳原子上提供了一个富电子密度。
而甲酸(HCOOH)中的羧基(-COOH)是一个电子受体,导致碳原子上的电子云向自身集中,并带有负电荷。
2. 形成共轭体系的电子效应当共轭体系中的π键数量增加时,分子的稳定性和共轭效应会增强。
共轭体系可以通过增加共轭双键、共轭三键或环状结构来形成。
例如,苯(C6H6)是一个具有共轭体系的芳香烃,由6个碳原子和6个氢原子构成的六角形结构。
苯环中的π键相互作用形成了一个共轭体系,使苯分子的稳定性增强。
二、共轭效应1. 共轭体系的形成共轭体系指的是由相邻的不同杂化态碳原子上的π键组成的体系。
这些π键在共轭作用下共享电子,并通过共享电子来稳定整个体系。
共轭体系可以由多个碳原子形成的烯烃类物质、芳香族化合物以及其他具有共轭结构的有机分子中找到。
2. 共轭体系的效应共轭体系的形成影响了分子的反应性、吸收光谱和电子结构等性质。
共轭体系的存在使分子的能带结构发生变化,导致电子能级分布宽度增加,从而使分子的稳定性增强。
共轭体系对于有机分子的化学性质具有重要影响。
例如,共轭体系可以使有机分子的吸收光谱发生位移,使其吸收特定波长的光线。
此外,共轭体系也可以影响有机分子的反应性,使其更容易参与一些特定的反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在21世纪,物理有机化学家将会在更广阔的范围内,在相关的前沿交叉领域中寻找新的学科生长点,运用自己在理论、方法、概念和思维方式方面的特长和优势,研究新问题,发现新规律,为有机化学乃至整个科学事业的发展作出贡献。
其中主要包括生命过程中的化学问题,分子聚集体化学中的结构/活性关系和反应规律,新分子和新材料的分子设计、合成和构效关系,计算化学和理论有机化学,自由基化学,有机光化学等领域。
内容提要§1-1 诱导效应一、共价键的极性与静态诱导效应 二、静态诱导效应的强度 三、静态诱导效应的强度比较 四、烷基的诱导效应 五、动态诱导效应 六、诱导效应对反应活性的影响 §1-2 共轭效应一、电子离域与共轭效应 二、静态共轭效应 三、动态共轭效应 四、共轭体系 五、共轭效应与反应性 §1-3 超共轭效应一、超共轭效应的特点和方向 二、超共轭效应的表现和作用 §1-4 场效应和空间效应 一、场效应 二、空间效应第一章 取代基效应(Substituent Effects)反应的本质: 有机化合物的反应本质是旧键的断裂,新键的生成,这直接或间接与共价键的极性,即共价键上电子云的分布有关。
例:C C C O1234取代基效应 分子中的某个原子或原子团对整个分子或分子中其它部分产生的影响(包括对共价键极性及整个分子物理性质和化学的影响)。
取代基效应的分类 取代基效应电子效应: 诱导效应 共轭效应 超共轭效应 场效应: 空间传递空间效应:空助效应 位阻效应 §1-1 诱导效应(Inductive effect) 一、共价键的极性与静态诱导效应C CH CH 21.定义CCCl ddd取代基的影响→分子链传递Cl d→电子云密度分布不均匀CCl d取代基性质→分子链传递方向δCH 3 CH CH 2 +→转移的结果存在于未发生反应的分子中——IS2.特点结构特征 单、双、叁键 传递方式沿价键链传递诱导效应的相对强度 取决于取代基中心原子电负性的大小;取代基的个数——加和性传递强度 距离越大,强度越弱 3.方向CZC H Z -I标准+I二、静态诱导效应的强度1.根据中心原子在元素周期表中的位置判断同周期 -IFOHNH 2CH 3OR 2NR 3 +IONR同主族 -I —F > —Cl > —Br > —IPR 2NR 3+IOS2.带正电荷取代基的-I 强,带负电荷取代基的 +I 强-I NR 2NR3NO 2+IOOR3. 中心原子相同 不饱和度越大,-I 效应越强 -ICCRCHCHROORN NRNR 2三、静态诱导效应的强度比较 相对次序比较 1.根据酸碱的强度比较测定取代乙酸的电离常数,诱导效应强度次序如下:-I 效应NO 2N(CH 3)3CNFClBrIOHOCH3C 6H 5CH CH 2H+I 效应C(CH 3)3HCH(CH 3)2CH 2CH 3CH 32.根据偶极矩比较测定甲烷一取代物和溴代烷的偶极矩,诱导效应强度次序如下: -I 效应NO2CNFCl BrIH+I 效应C(CH 3)3CH 2CH(CH 3)2CHCH 2CH 3CH 3CH 2(CH 2)2CH 33.根据1H NMR 化学位移比较测定X -CH3中甲基的 值,比较取代基的诱导效应强度。
-I 效应NO2CNFCl BrIHOH CH 3C 6H 54.根据诱导效应指数比较利用元素电负性及原子共价半径,按诱导效应指数的定义,在一定的基准原子或键的基础上,由分子结构推算出来。
例如: -I 效应C NO 2C C O C F C CN C ClC Br四、动态诱导效应动态诱导效应是一种暂时的极化现象,即可极化性——I d 。
1.动态和静态诱导效应的区别 起因不同动态诱导效应起因于键的可极化性——产生诱导偶极;静态诱导效应起因于键的永久极性——产生固有偶极。
动态诱导效应由外界极化电场引起的,电子转移的方向符合反应的要求,即电子向有利于反应进行的方向转移,所以动态诱导效应总是对反应起促进或致活作用;静态诱导效应是分子的内在性质,并不一定向有利于反应的方向转移,其结果对化学反应也不一定有促进作用。
例如,卤代烷的亲核取代反应活性次序:RI > RBr > RCl2.动态诱导效应的强度比较(1)同族元素的原子及所形成的基团原子序数↑→Id ↑;负电荷↑→Id ↑ (2)同周期元素的原子及所形成的基团 原子序数↑→Id ↓FClBrIORNR2O -OR 2NR3NH 2NH 3FOR NR 2CR 3§1-2 共轭效应(Conjugative effect) 一、电子离域与共轭效应1.电子离域2.离域键3.离域4.共轭体系5.共轭效应2 CH Cl取代基的影响→共轭体系传递→电子云密度分布极性交替取代基性质→分子链传递方向→转移的结果→π电子转移用弧形箭头表示+2 CH CH 2存在于未发生反应的分子中——CS特点结构特征共轭体系中所有原子共平面传递方式π键传递强度不受传递距离的影响方向C C C(I)(II)Y为吸电子基团:吸电子共轭效应 (-C) ,X为供电子基团:给电子共轭效应 (+C) 。
二、静态共轭效应静态共轭效应是指没有外来因素的影响、分子本身就存在的固有的永久效应,从本质上讲是分子轨道离域所产生的效应。
1.共轭效应的表现键长;氢化热;化合物的颜色;光谱数据;中间体的稳定性;偶极矩。
2.共轭效应与诱导效应的区别3.共轭效应的相对强度比较在同一体系中,相同位置上引入不同取代基时,其共轭效应的强弱主要取决于取代基中心原子的电负性及主量子数的相对大小。
(1) +C效应同周期原子序数↑→ +C ↓;主量子数主量子数相同元素的p轨道大小相近,可更充分重叠,离域程度也较大同族原子序数↑→ +C ↓;相同元素的原子负电荷↑→ +C ↑NR2OH>>F IC C O-C C OR C C OR2(2) -C效应同周期原子序数↑→- C ↑;同族原子序数↑→- C ↓;相同元素的原子正电荷↑→- C ↑C C C C C N C C O<<C C C O C C C SC NR2>C N R三、动态共轭效应动态共轭效应是共轭体系在发生化学反应时,由于进攻试剂或其它外界条件的影响使π电子云重新分布,实际上往往是静态共轭效应的扩大,并使原来参与静态共轭的π 电子云向有利于反应的方向流动。
静态共轭效应以一种永久效应,对化学反应有时会起阻碍作用;动态共轭效应虽然是一种暂时的效应,但一般都对化学反应有促进作用,而且在反应过程中往往起主导作用。
例 共轭二烯烃的1,4加成1,2和1,4加成产物四、共轭体系1. π~π共轭2. p ~π共轭体系 五、共轭效应与反应性 1.对反应方向和产物的影响例1 α, β-不饱和醛酮的1,4亲核加成C C C O + Nu -δδδC C C O NuC C C O Nu-+-C C C OZ NuZ +C C C O NuZ+Br -++CH 2 CH CH CH 2CH 2 CH CH CH 2BrCH 2 CH CH CH 2 + Br Br例2 共轭醛酮的插烯作用C6H5CHO CH3CH CH CH CHCHO+6H5CH CH CH CH CHCHCHO ?OH-例3ClCH2CH CHOCH3CH2CHCHOH2O+ HCl + CH3OH CH2CH CHOCH3ClCH2CHCHO H+CH2CH CHOCH3Cl-2CH CHOCH3OHHCH2CH CHOCH3OHHCH2CH CHOH3+H Cl-CH2CH CHOHOCH3HCH OHCH2CHCHOH+例4O2.对反应机理的影响例 酯的碱性水解机理双分子酰氧键断裂(BAc2)OR'O -R C OHRC OH + R'O -ORCOO - + R'OH单分子烷氧键断裂(BAl1)COOH COOCHC 6H 5C 6H 4OCH 3-p *2-COO -COO-+ HOCHC 6H 4OCH 3-pC 6H 5??( ±)3.对反应速率的影响例 卤代苯的亲核取代反应活性NaOH/H H ClOH2O+360℃,加压NaOH/H H NO 2OH2O+NO 2130℃R C OR' + OH-OH NO 2ClOHNa 2CO 3/H 2O NO 2O 2NO 2N室温NO 2Cl OHH 2ONO 2O 2NO 2NNO 2NO 24.对化学平衡的影响例1 酚类、芳香族羧酸和芳香族胺类的酸碱性 例2 烯醇式含量§1-3 超共轭效应(Hyperconjugative effect) 一、超共轭效应的特点和方向结构特征 C -H 键与sp2杂化碳原子直接相连, C -H 键上的σ电子发生离域,形成σ~π或σ~p 超共轭。
强度 大约只有π~π共轭效应的一半 方向 +C 效应二、超共轭效应的表现和作用 1.物理性能键长;氢化热;光谱数据;中间体的稳定性;偶极矩。
2.化学性能烷烃自由基取代反应活性烯烃和醛酮类化合物及苯环侧链α-H 的反应活性 苯环亲电取代反应活性 例1 键长趋向于平均化H例2 增加分子偶极矩C OHHµ: 2.27 2.73例3 增加烯烃α-H 的反应活性2+ DNH 2C H HD CH CH 2+ NH 3例4 苯环亲电取代反应活性取代基 CH3- CH3CH2- (CH3)2CH - (CH3)3C -μ 1.27 1.93 2.17 2.33 相对于苯的亲电取代反应速率溴化 340 290 180 110 硝化 14.8 14.3 12.9 10.8 §1-4 场效应和空间效应 一、场效应(Field effect) 1.定义取代基的影响→空间传递→分子中其它基团的反应性发生变化COOHCOO -CH 22.特点场效应是诱导效应的一种表现形式,二者往往同时存在且作用方向一致,所以通常难以区分;场效应与距离平方成反比;如果取代基所处空间位置合适,场效应则与诱导效应方向相反。
例1 邻氯苯基丙炔酸的酸性小于间位和对位异构体效诱导效应δδC Cl C COOH场应--+例2 COOHr r -δCOOHCl 1r21<r 2δ+pKa 6.04 6.25例3 顺丁烯二酸和反丁烯二酸的一级和二级电离常数例4 比较酸性二、空间效应(Stericeffect)分子内或分子间不同取代基相互接近时,由于取代基的体积大小、形状不同,相互接触而引起的物理相互作用——空间效应,也称为立体效应或位阻效应。