13勾股定理的应用

合集下载

人教版八年级数学下册《勾股定理的应用—数轴上表示根号13》教学设计

人教版八年级数学下册《勾股定理的应用—数轴上表示根号13》教学设计

《17.1.2 勾股定理的应用—数轴上表示根号13》——教学设计一.教学目标:1.能运用勾股定理构建直角三角形,找到长度为无理数的线段;能利用尺规作图法在数轴上画出表示无理数的点,体会建模思想.2.通过在数轴上表示数13和15的点的探究过程,培养学生与他人交流、合作的意识和品质.二.重点与难点:重点:在数轴上画出表示无理数的点。

难点:利用勾股定理建立模型,作出长度为无理数的线段。

三.学情分析:在此之前,学生已经学过勾股定理和在数轴上表示有理数的知识。

对于一些无理数(带根号的),如何在数轴上准确表示它们,关键是借助勾股定理建立模型,画出长度为无理数的线段。

但是现阶段的学生的建模思想还不成熟,所以我把利用勾股定理建立模型作为本节课的难点.四.教学过程:(一)知识准备1.叙述勾股定理的内容?2.什么是数轴?实数与数轴上的点具有什么关系?【设计意图】回顾本节课所需知识,帮助学生理清思路,明确学习方向和目的,为整堂课的学习打下基础. (二)自主探究【思考并回答】 问题1:如何画出表示2的线段?分析(学生讨论并总结):1.在数轴上表示5的点到原点的距离为5, 表示-3.4的点到原点的距离为3.4.2.在数轴上要画出表示一个数的点,首先要画出表示这个数绝对值的线段.3.由勾股定理可以知道,直角边为1的等腰直角三角形,斜边为2.因此在数轴上能表示2的点.问题2 如何在数轴上表示-2呢? 问题3 如何在数轴上表示n ,,,653呢?【设计意图】初步形成建立模型的方法,为后面的学习做好铺垫.(三)合作探究【合作探究1】如何在数轴上作出表示的点?13【设计意图】学生在已有知识的基础上,动脑、动手,亲身寻找作图方法,体验知识的发现和形成过程,通过讨论,最后形成自己的成果.学生在“做中学”“学中做”,体现他们的主体地位。

(1)在数轴上找到点A,使OA=3;(2)过点A作直线垂直于OA,在上取点B,使AB=2,那么OB=13;(3)以原点O为圆心,以OB为半径作弧,弧与数轴交于点C,则OC=13.如图,在数轴上,点C为表示13的点.【小试身手】你能在数轴上画出表示17的点吗?【设计意图】加深印象,更加明确构造直角三角形可以表示出长度为无理数的线段.【合作探究2】如何在数轴上画出表示15的点?【设计意图】通过出现问题,讨论问题,到解决问题,体验知识的迁移性,从而使所学的知识和方法得到拓展和延伸.学生分小组讨论,然后由小组派代表汇报讨论结果.【自主归纳】如何在数轴上直接画出表示点n(n为正整数)呢?学生们畅所欲言.结论:利用勾股定理,可以做出长度为n(n 为正整数)的线段,然后借助直角三角形,利用尺规作图,在数轴上画出表示n或者-n(n 是正整数)的点.(四)当堂检测:1.如图,在4×4的正方形网格,以格点与点A 为端点,你能画出几条边长为10的线段?【设计意图】巩固所学方法,培养发散思维能力.2.长为26的线段是直角边长为正整数 , 的直角三角形的斜边.【设计意图】熟悉找长度为无理数的线段的方法,明确是凑成两个正整数的平方和与这个无理数的平方的关系,使学生加深印象.3.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以A 圆心,以对角线AC 长为半径画弧交数轴正半轴于M 点,则M 点表示的数 是 .【设计意图】本题有一定的综合性,是一个数形结合题.对学生的计算、观察和迁移能力都有帮助.11111111111111111111918171615141312111098765432第3题图4.如图所示,在正方形网格中,每个小正方形的边长为1,则在网格上的三角形ABC 中,边长为无理数的边数为( ) A.0 B.1 C.2 D.35.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图(1)中以格点为顶点画一个面积为5的正方形; (2)在图(2)中以格点为顶点画一个三角形,使三角形三边长分别为3,4,5;(3)在图(3)中以格点为顶点画一个三角形,使三角形三边长分别为2,5,13 .【设计意图】第4题旨在训练学生的建模思想和运算能力;第5题答案不唯一,具有灵活性,旨在训练学生的灵活运用能力。

关于勾股定理的八大应用

关于勾股定理的八大应用

关于勾股定理的八大应用
对于勾股定理的八大应用,具体如下:
1)判断是否超速:利用勾股定理可以判断司机是否超速。

2)求旗杆高度:利用勾股定理可以求旗杆高度。

3)折叠问题:利用勾股定理可以解决折叠问题,例如折叠矩形
纸张的问题。

4)求树高:利用勾股定理可以求树的高度。

5)求梯子最省力的位置:利用勾股定理可以求梯子最省力的位
置。

6)求面积问题:利用勾股定理可以解决一些求面积的问题。

7)求台风问题:利用勾股定理可以解决台风问题,例如台风眼
里是否有平地的问题。

8)九章算术问题:利用勾股定理可以解决九章算术中的一些问
题。

勾股定理的应用教学设计5篇

勾股定理的应用教学设计5篇

勾股定理的应用教学设计5篇第一篇:《勾股定理的应用》教学设计《勾股定理的应用》教学设计——解决立体图形外表上最短路线的问题__县第_中学李政法一、内容及内容解析1、内容勾股定理的应用——解决立体图形外表上最短路线的问题。

2、内容解析本节课是勾股定理在立体图形中的一个拓展,在初中阶段,勾股定理在求两点间的距离时,沟通了几何图形和数量关系,发挥了重要的作用,在中考中有席之地。

启发学生对空间的认知,为将来学习空间几何奠定根底。

二、教学目标1、能把立体图形依据需要局部展开成平面图形,再建立直角三角形,利用两点间线段最短勾股定理求最短路径径问题。

2、学会观看图形,勇于探究图形间的关系,培养学生的空间观念;在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

3、通过有趣的问题提高学习数学的兴趣;在解决实际问题的过程中,培养学生的合作交流能力,体验数学学习的有用性,增强自信心,呈现成功感。

三、教学重难点【重点】:探究、发觉立体图形展开成平面图形,利用两点间线段最短勾股定理求最短路径径问题。

【难点】:查找长方体中最短路线。

四、教学方法本课采纳学生自主探究归纳教学法。

教学中,学生充分运用多媒体资源及大量的实物教具和学具,通过观看、思考、操作,归纳。

五、教学过程【复习回忆】右图是湿地公园长方形草坪一角,有人避开拐角在草坪内走出了一条小路,问这么走的理论依据是什么?若两步为1m,他们仅仅少走了几步?目的:1、复习两点之间线段最短及勾股定理,为新课做预备;2、激起学生爱护环境意识和对核心价值观“文明、友善”的践行。

思考:如图,立体图形中从点A到点B处,怎样找到最短路线呢?目的:引出课题。

【台阶中的最值问题】三级台阶示意图如图,每级台阶的长、宽、高分别为5dm、3dm和1dm,请你想一想,一只蚂蚁从点A动身,沿着台阶面爬行到点B,爬行的最短路线是多少?老师活动:假如A、B两点在同一个平面上,直接连接两点即可求出最短路。

勾股定理在实际中的应用

勾股定理在实际中的应用
02
勾股定理是解决直角三角形问题 的基础,可以用于计算直角三角 形的角度、边长等。
勾股定理在解决几何问题中的应用
利用勾股定理可以解决一些与直角三 角形相关的几何问题,例如计算三角 形的面积、求解三角形的边长等。
在实际生活中,勾股定理可以用于建 筑、航海、航空等领域,例如计算建 筑物的稳定性、船舶的航行轨迹等。
勾股定理可以用于确定物体在三维空 间中的运动轨迹,例如计算抛物线、 椭圆等轨迹的参数。
在建筑和工程领域,勾股定理可以用 于分析结构的稳定性,例如计算梁的 弯曲程度、柱子的承载能力等。
求解碰撞问题
在碰撞力学中,勾股定理可以用于计 算碰撞后物体的速度和方向,以及能 量损失等。
勾股定理在光学中的应用
折射定律
04 勾股定理在日常生活中的 应用
建筑学中的勾股定理应用
确定建筑物的垂直度
01
利用勾股定理可以计算出建筑物的垂直高度,以确保建筑物的
垂直度符合设计要求。
确定建筑物的稳定性
02
勾股定理可以用于计算建筑物在不同方向上的受力情况,以确
保建筑物的稳定性。
确定建筑物的安全性能
03
通过勾股定理可以计算出建筑物的承重能力,从而评估建筑物
勾股定理在地球物理学中的应用
地形测量
地球物理学家利用勾股定 理进行地形测量,确定地 物的位置和高度,以及计 算两点之间的距离。
地震研究
在地震研究中,勾股定理 用于分析地震波的传播路 径和速度,以了解地球内 部结构和地质构造。
海洋学研究
在海洋学研究中,勾股定 理用于测量海床和海水的 深度,以及研究海洋环流 和潮汐现象。
勾股定理在实际中的应用
目 录
• 引言 • 勾股定理在几何学中的应用 • 勾股定理在物理学中的应用 • 勾股定理在日常生活中的应用 • 勾股定理在现代科技中的应用

勾股定理的实际应用案例分析

勾股定理的实际应用案例分析

勾股定理的实际应用案例分析勾股定理是数学中的重要定理之一,也是人们在实际生活中常用的数学工具。

本文将通过分析一些实际应用案例,展示勾股定理在解决问题中的作用和价值。

1. 建筑领域中的勾股定理应用在建筑领域,勾股定理是测量和设计中不可或缺的工具之一。

例如,当建筑师设计一个直角形房间时,他们需要使用勾股定理来确保房间的墙壁是垂直的。

通过测量房间两个相对角的长度,并应用勾股定理计算斜边的长度,建筑师可以确保墙壁是垂直的,从而确保房间的稳定性和安全性。

2. 地理测量中的勾股定理应用地理测量中的三角测量法是一种常用的测量方法,其中就包括利用勾股定理来计算距离和角度。

例如,当测量两个地点之间的直线距离时,测量员可以使用勾股定理,通过测量两个直角边的长度计算出斜边的长度,从而得到两地之间的距离。

3. 航空航天领域中的勾股定理应用在航空航天领域,勾股定理也起到重要的作用。

例如,飞机在空中导航时会使用仪表着陆系统(ILS)来进行着陆。

这个系统包括一个地面引导系统和一个飞机上的接收机。

通过利用勾股定理,地面引导系统可以计算出飞机与跑道之间的距离和高度,从而为飞行员提供准确的导航和着陆指引。

4. 电子设备制造中的勾股定理应用在电子设备制造过程中,勾股定理也常被应用于检测和排除设备中的故障。

例如,在制造电视机时,工程师可能要使用勾股定理来测量电视屏幕的对角线,以确保屏幕大小符合规格要求。

如果测量出的对角线长度不符合预期结果,就可能意味着设备存在问题,需要进行进一步检查和修复。

综上所述,勾股定理在实际生活中有着广泛的应用。

无论是在建筑领域、地理测量、航空航天还是电子设备制造等领域,勾股定理都是不可或缺的工具和方法。

通过分析勾股定理的实际应用案例,我们可以更加深入地理解这个数学定理的重要性,并通过它解决问题和改进现有技术。

勾股定理在生活的应用

勾股定理在生活的应用

勾股定理在生活的应用
勾股定理是数学中的一个重要定理,它描述了直角三角形的边长关系。

然而,这个定理不仅仅在数学中有应用,它还可以用来解决生活中的实际问题。

例如,在建筑和工程领域中,勾股定理可以用来计算三角形的边长,这对于设计建筑和制造工具非常重要。

在设计斜坡、楼梯和屋顶等建筑结构时,要考虑到斜率和角度,而勾股定理可以帮助我们计算出这些参数,从而实现更好的设计。

勾股定理还可以用于测量物体的距离和高度。

例如,在旅行中,我们可以使用勾股定理来计算山峰的高度,或者在地图上测量两个城市之间的距离。

这对于导航和探险非常有用。

此外,勾股定理还可以用于计算力学和物理问题。

例如,在物理实验中,我们可以用勾股定理来计算物体的速度和加速度,以及角度和方向等参数。

总之,勾股定理不仅仅是一个数学定理,它在现实生活中也有广泛的应用。

了解和掌握勾股定理的原理和应用,对于我们解决实际问题和提高生活质量非常重要。

- 1 -。

勾股定理的实际测量应用

勾股定理的实际测量应用

勾股定理的实际测量应用勾股定理是一条数学定理,描述了直角三角形中边长之间的关系。

在实际测量中,勾股定理被广泛应用于各种领域,包括建筑、地理测量、导航和天文学等。

本文将探讨勾股定理在实际测量中的应用,并介绍一些相关案例。

1. 地理测量在地理测量中,勾股定理被用于测量地面的距离和高度。

例如,当我们需要测量一个山峰的高度时,可以利用勾股定理计算斜边和水平距离之间的关系。

通过测量斜边和水平距离,我们可以确定山峰的高度。

类似地,在航空测量中,通过测量飞机和地面上两个点的距离和角度,可以使用勾股定理计算出高度差。

2. 建筑在建筑领域,勾股定理常用于测量建筑物的水平和垂直距离。

例如,在建造一座大楼时,工程师可以利用勾股定理计算建筑的高度和斜边之间的关系。

通过这些测量,工程师可以确保建筑物的各个方面都符合设计要求。

3. 导航勾股定理在导航中也有广泛应用。

当我们使用地图和指南针导航时,可以利用勾股定理计算出两个点之间的直线距离。

这在航海、飞行和汽车导航等领域都非常有用。

此外,当我们需要确定一个目标的方位角时,也可以利用勾股定理计算出相对方位的关系。

4. 天文学在天文学中,勾股定理被用于测量星体之间的距离和角度。

通过测量星体的视差和角度,可以使用勾股定理计算它们的真实距离。

这对于研究星系和宇宙的结构非常重要。

总结:勾股定理作为一条基本的数学定理,被广泛应用于实际测量中。

无论是地理测量、建筑、导航还是天文学,勾股定理都发挥着重要的作用。

它不仅帮助我们测量距离、高度和角度,还为各个领域的科学研究提供了重要的数学工具。

在未来,勾股定理的应用将继续推动科学技术的发展,帮助我们更好地理解和利用世界的各个方面。

勾股定理在实际生活中的应用

勾股定理在实际生活中的应用

勾股定理在实际生活中的应用
勾股定理是古希腊数学家勾股所提出的,它表明了一个有三个正整
数组成的三角形的三条边(a,b,c)之间的关系,即a^2+b^2=c_2,主要
用于计算三角形中各边的长度,这个定理应用广泛。

1. 三棱锥和其他几何体
勾股定理在解决三角形问题的同时也有助于计算立体几何图面的表面
积和体积,特别是可以用来计算三棱锥的表面积和体积,对于任何一
个具有两个边长的三棱锥,可以使用勾股定理来求解它的底面和顶面
之间的距离,从而算出它的表面积和体积。

2. 建筑计算
勾股定理在建筑计算中也有用到,它可以帮助计算建筑物外墙和屋顶
坡度的高度,或者确定其他三角形形状建筑物的高度。

同时,屋面的
坡度也可以使用勾股定理来计算,因为屋面的坡度也是一个三角形,
勾股定理可以用来确定屋面的高度和角度。

3. 水利
建纳水利也是勾股定理的常用应用,它可以用来计算水渠或水坝底开
口的高度。

由于受水库底部和上部水平面之间的水头高度受到引水渠
容积受限,进一步受到引水渠斜度限制,那么可以使用勾股定理来求
解引水渠底开口高度。

因此,可以用勾股定理确定引水渠中水的流量,从而计算出正确的储水渠的容积。

4. 导航测量
导航测量中也使用到勾股定理,比如用它来计算从某一特定点到特定方位的垂直距离。

对角线距离也可以通过使用勾股定理来进行计算,这是由于当测量站和要测量的点之间存在着三角形关系,用勾股定理就可以求出两点之间的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档