2005学年第二学期柔石中学三角函数期中复习题

合集下载

三角函数综合测试题(含答案)

三角函数综合测试题(含答案)

三角函数综合测试题一、选择题(每小题5分,共70分)1. sin2100 =A .23 B . -23 C .21 D . -21 2.α是第四象限角,5tan 12α=-,则sin α= A .15 B .15- C .513 D .513-3. )12sin12(cos ππ- )12sin12(cosππ+=A .-23 B .-21 C . 21 D .234. 已知sinθ=53,sin2θ<0,则tanθ等于A .-43 B .43 C .-43或43 D .545.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移3π个单位,得到的图象对应的僻析式是 A .1sin 2y x = B .1sin()22y x π=-C .1sin()26y x π=-D .sin(2)6y x π=-6. ()2tan cot cos x x x +=A .tan xB . sin xC . c o s xD . cot x7.函数y =x x sin sin -的值域是A. { 0 }B. [ -2 , 2 ]C. [ 0 , 2 ]D.[ -2 , 0 ] 8.已知sin αcos 81=α,且)2,0(πα∈,则sin α+cos α的值为A.25 B. -25 C. ±25 D. 239. 2(sin cos )1y x x =--是A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数10.在)2,0(π内,使x x cos sin >成立的x 取值范围为 A .)45,()2,4(ππππ B .),4(ππ C .)45,4(ππ D .)23,45(),4(ππππ 11.已知,函数y =2sin(ωx +θ)为偶函数(0<θ<π) 其图象与直线y =2的交点的横坐标为x 1,x 2,若| x 1-x 2|的最小值为π,则 A .ω=2,θ=2πB .ω=21,θ=2π C .ω=21,θ=4π D .ω=2,θ=4π12. 设5sin7a π=,2cos 7b π=,2tan 7c π=,则 A .a b c << B .a c b << C .b c a << D .b a c <<13.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是A .2π B .4π- C .4π D .34π14. 函数f (x )=xxcos 2cos 1- A .在⎪⎭⎫⎢⎣⎡20π, 、⎥⎦⎤ ⎝⎛ππ,2上递增,在⎪⎭⎫⎢⎣⎡23,ππ、⎥⎦⎤ ⎝⎛ππ2,23上递减 B .在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤ ⎝⎛23ππ,上递增,在⎥⎦⎤ ⎝⎛ππ,2、⎥⎦⎤ ⎝⎛ππ223,上递减 C .在⎪⎭⎫⎢⎣⎡ππ,2、⎥⎦⎤ ⎝⎛ππ223,上递增,在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤ ⎝⎛23ππ, 上递减D .在⎪⎭⎫⎢⎣⎡23,ππ、⎥⎦⎤ ⎝⎛ππ2,23上递增,在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤ ⎝⎛ππ,2上递减 二.填空题(每小题5分,共20分,)15. 已知⎪⎭⎫⎝⎛-∈2,2ππα,求使sin α=32成立的α=16.sin15°cos75°+cos15°sin105°=_________ 17.函数y=Asin(ωx+ϕ)(ω>0,|ϕ|<2π,x ∈R )的部分图象如图,则函数表达式为18.已知βα,为锐角,且cos α=71 cos )(βα+= 1411-, 则cos β=_________ 19.给出下列命题:(1)存在实数α,使1cos sin =αα (2)存在实数α,使23cos sin =+αα (3)函数)23sin(x y +=π是偶函数 (4)若βα、是第一象限的角,且βα>,则βαsin sin >.其中正确命题的序号是________________________________三.解答题(每小题12分,共60分,) 20.已知函数y =3sin )421(π-x (1)用五点法在给定的坐标系中作出函数一个周期的图象;(2)求此函数的振幅、周期和初相;(3)求此函数图象的对称轴方程、对称中心.21.已知)cos(2-)sin(πθπθk k +=+Z k ∈ 求:(1)θθθθsin 3cos 5cos 2sin 4+-; (2)θθ22cos 52sin 41+22.设0≥a ,若b x a x y +-=sin cos 2的最大值为0,最小值为-4,试求a 与b 的值,并求y 的最大、最小值及相应的x 值.23.已知21)tan(=-βα,71tan -=β,且),0(,πβα∈,求βα-2的值.24.设函数a x x x x f ++=ωωωcos sin cos 3)(2(其中ω>0,R a ∈),且f (x )的图象在y 轴右侧的第一个最高点的横坐标为6π. (1)求ω的值; (2)如果)(x f 在区间]65,3[ππ-的最小值为3,求a 的值.测试题答案.一.DDDA,CDDA,DCAD,CA二arcsin32 1 y=)48sin(4-ππ+x 21(3) 三、解答题:20.已知函数y=3sin )421(π-x(1)用五点法作出函数的图象; (2)求此函数的振幅、周期和初相;(3)求此函数图象的对称轴方程、对称中心. 解 (1)列表:x2π π23 π25 π27 π29421π-x 02π ππ232π 3sin )421(π-x 03 0 -3 0描点、连线,如图所示:…………………………………………………………………………………………5 (2)周期T=ωπ2=212π=4π,振幅A=3,初相是-4π. ………………………………………………………….8 (3)令421π-x =2π+k π(k ∈Z ), 得x=2k π+23π(k ∈Z ),此为对称轴方程. 令21x-4π=k π(k ∈Z )得x=2π+2k π(k ∈Z ). 对称中心为)0,22(ππ+k(k ∈Z )…………………………………………………………………………..12 21.已知sin(θ+k π)=-2cos(θ+k π) (k ∈Z ). 求:(1)θθθθsin 3cos 5cos 2sin 4+-;(2)41sin 2θ+52cos 2θ.解:由已知得cos(θ+k π)≠0, ∴tan(θ+k π)=-2(k ∈Z ),即tan θ=-2..................................................................................................2 (1)10tan 352tan 4sin 3cos 5cos 2sin 4=+-=+-θθθθθθ (7)(2)41sin 2θ+52cos 2θ=θθθθ2222cos sin cos 52sin 41++=2571tan 52tan 4122=++θθ (12)22.设a≥0,若y =cos 2x -asinx +b 的最大值为0,最小值为-4,试求a 与b 的值,并求出使y 取得最大、最小值时的x 值.解:原函数变形为y =-41)2(sin 22a b a x ++++………………………………………2 ∵-1≤sin x ≤1,a ≥0∴若0≤a ≤2,当sinx =-2a 时 y max =1+b +42a =0 ①当sinx =1时,y min =-41)21(22a b a ++++=-a +b =-4 ②联立①②式解得a =2,b =-2…………………………………………………………7 y 取得最大、小值时的x 值分别为: x =2kπ-2π(k ∈Z),x =2kπ+2π(k ∈Z)若a >2时,2a ∈(1,+∞)∴y max =-b a a b a +=+++-41)21(22=0 ③y min =-441)21(22-=+-=++++b a a b a ④ 由③④得a =2时,而2a =1 (1,+∞)舍去.............................................11 故只有一组解a =2,b =-2.. (12)23.已知tan(α-β)=21,tan β=-71,且α、β∈(0,π),求2α-β的值. 解:由tanβ=-71 β∈(0,π) 得β∈(2π, π) ① (2)由tanα=tan[(α-β)+β]=31 α∈(0,π) ∴ 0<α<2π (6)∴ 0<2α<π由tan2α=43>0 ∴知0<2α<2π ②∵tan(2α-β)=βαβαtan 2tan 1tan 2tan +-=1 (10)由①②知 2α-β∈(-π,0)∴2α-β=-43π (12)24.设函数a x x x x f ++=ϖϖϖcos sin cos 3)(2(其中ω>0,a ∈R ),且f(x)的图象在y 轴右侧的第一个最高点的横坐标为6π. (1)求ω的值; (2)如果)(x f 在区间]65,3[xπ-的最小值为3,求a 的值.解:(1) f(x)=23cos2ωx +21sin2ωx +23+a (2)=sin(2ωx +3π)+23+a …………………………………………………..4 依题意得2ω·6π+3π=2π解得ω=21………………………………….6 (2) 由(1)知f(x)=sin(2ωx +3π)+23+a 又当x ∈⎥⎦⎤⎢⎣⎡-65,3ππ时,x +3π∈⎥⎦⎤⎢⎣⎡67,0π…………………………………8 故-21≤sin(x +3π)≤1……………………………………………..10 从而f(x)在⎥⎦⎤⎢⎣⎡-65,3ππ上取得最小值-21+23+a 因此,由题设知-21+23+a =3故a =213+ (12)。

柔石中学2005学年第一学期高二数学期中试卷

柔石中学2005学年第一学期高二数学期中试卷

柔石中学2005学年第一学期高二数学期中试卷(考试时间:120分钟 试卷总分:150分)一、选择题:(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示,直线l 1,l 2,l 3,的斜率分别为k 1,k 2,k 3,则( )A . k 1< k 2< k 3B . k 3< k 1< k 2C . k 3< k 2< k 1D . k 1< k 3< k 22.方程| x |+| y |=1所表示的图形在直角坐标系中所围成的面积是( )A .2B .1C .4D . 23.抛物线x y =24关于直线x-y=0对称的抛物线的焦点坐标是: ( )A. (1,0)B. (161,0) C. (0,1) D.(0, 161) 4.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是( )A .a <-2B .-32<a <0 C .-2<a <32D .-2<a <0 5.直线y = x +1被椭圆x 2+2y 2=4所截得的弦的中点坐标是( )A .(31,-32) B ..(-32, 31) C .(21,-31)D .(-31,21)6.“a b<0”是“方程ax 2+b y 2=c 表示双曲线”的( ) A .必要不充分条件 B .充分不必要条件C .充要条件D .非充分非必要条件 7.231y x -=所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分8.P 1(x 1,y 1)是直线L :f(x,y)=0上的点,P 2(x 2 ,y 2)是直线L 外一点,则方程f(x,y)+f(x 1,y 1)+f(x 2,y 2)=0所表示的直线与直线L 的位置关系是 ( )y xl 2l 1l 3o9.过双曲线x 2-22y =1的右焦点F 作直线l 交双曲线于A , B 两点,若|AB |=4,则这样的直线l 有 ( ) A .1条 B .2条 C .3条 D .4条 10.(理科)若曲线C :2230y y x --+=和直线3:2l y kx =+只有一个公共点, 那么k 的值为 ( ) A 、0或12 B 、0或14 C 、12-或14 D 、0或12-或14(文科)已知椭圆14322=+y x 的两个焦点21F F 、,M 是椭圆上一点,且1||||21=-MF MF ,则21F MF ∆是 ( )A 、钝角三角形B 、锐角三角形C 、直角三角形D 、等边三角形二、填空题:(本大题共4小题,每小题4分,共16分)11、过点P (2,3),且在两坐标轴上的截距相等的直线方程是 .12、抛物线24y x =按向量平移(1,2)a =r 后,其顶点在一次函数122by x =+的图象上,则b 的值为: ______________________________.13、已知双曲线32x -y 2=1,M 为其右支上一动点,F 为其右焦点,点A (3,1),则MF MA +的最小值为 ________________.14、方程22141x y t t -=--表示曲线C ,给出以下命题: ①曲线C 不可能是圆。

初中数学中考复习:25锐角三角函数综合复习(含答案)

初中数学中考复习:25锐角三角函数综合复习(含答案)

中考总复习:锐角三角函数综合复习—巩固练习(提高)【巩固练习】一、选择题1. 在△ABC中,∠C=90°,cosA=,则tan A等于( )A.B.C.D.2.在Rt△ABC中,∠C=90°,把∠A的邻边与对边的比叫做∠A的余切,记作cotA=.则下列关系式中不成立的是( )A.tanA•cotA=1 B.sinA=tanA•cosA C.cosA=cotA•sinA D.tan2A+cot2A=1第2题第3题3.如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于( )A.B.C.D.4.如图所示,直角三角形纸片的两直角边长分别为6、8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是( )A.B.C.D.5.如图所示,已知∠α的终边OP⊥AB,直线AB的方程为y=-x+,则cosα等于( )A.B.C.D.第5题第6题6.如图所示,在数轴上点A所表示的数x的范围是( )A. B.C. D.;二、填空题7.设θ为锐角,且x2+3x+2sinθ=0的两根之差为.则θ=.8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为.9.已知△ABC的外接圆O的半径为3,AC=4,则sinB= .第8题第9题第11题10.当0°<α<90°时,求的值为.11.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则tan∠OBE=.12.已知:正方形ABCD的边长为2,点P是直线CD上一点,若DP=1,则tan∠BPC的值是 .三、解答题13.如图所示,某拦河坝截面的原设计方案为AH∥BC,坡角∠ABC=74°,坝顶到坝脚的距离AB=6m 为了提高拦河坝的安全性,现将坡角改为55°,由此,点A需向右平移至点D,请你计算AD的长.(精确到0.1m)14. 为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,如图所示.按规定,地下停车库坡道1:3上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE(精确到0.1 m)(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)15.如图所示,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D间的距离.(计算过程和结果均不取近似值)16. 在△ABC中,AB=AC,CG⊥BA,交BA的延长线于点G.一等腰直角三角尺按如图①所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图①中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系;然后证明你的猜想;(3)当三角尺在②的基础上沿AC方向继续平移到图③所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)【答案与解析】一、选择题1.【答案】D;【解析】在Rt△ABC中,设AC=3k,AB=5k,则BC=4k,由定义可知tan A=.故选D.2.【答案】D;【解析】根据锐角三角函数的定义,得A、tanA•cotA==1,关系式成立;B、sinA=,tanA•cosA=,关系式成立;C、cosA=,cotA•sinA=,关系式成立;D、tan2A+cot2A=()2+()2≠1,关系式不成立.故选D.3.【答案】B;【解析】连接BD.∵E、F分別是AB、AD的中点.∴BD=2EF=4∵BC=5,CD=3∴△BCD是直角三角形.∴tanC=故选B.4.【答案】C;【解析】设CE=x,则AE=8-x.由折叠性质知AE=BE=8-x.在Rt△CBE中,由勾股定理得BE2=CE2+BC2,即(8-x)2=x2+62,解得,∴tan∠CBE.5.【答案】A;【解析】∵y=-x+,∴当x=0时,y=,当y=0时,x=1,∴A(1,0),B,∴OB=,OA=1,∴AB==,∴cos∠OBA=.∴OP⊥AB,∴∠α+∠OAB=90°,又∵∠OBA+∠OAB=90°,∴∠α=∠OBA.∴cosα=cos∠OBA=.故选A.6.【答案】D;【解析】由数轴上A点的位置可知,<A<2.A、由sin30°<x<sin60°可知,×<x<,即<x<,故本选项错误;B、由cos30°<x<cos45°可知,<x<×,即<x<,故本选项错误;C、由tan30°<x<tan45°可知,×<x<1,即<x<1,故本选项错误;D、由cot45°<x<cot30°可知,×1<x<,即<x<,故本选项正确.故选D.二、填空题7.【答案】30°;【解析】x1·x2=2sinθ,x1+x2=-3,则(x1-x2)2=(x1+x2)2-4x1x2=9-8sinθ=()2,∴sinθ=,∴θ=30°.8.【答案】;【解析】∵四边形ABCD是矩形,∴∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,由题意得:∠EFC=∠B=90°,CF=BC=5,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∵在Rt△DCF中,CF=5,CD=4,∴DF=3,∴tan∠AFE=tan∠DCF==.9.【答案】;【解析】连接AO并延长交圆于E,连CE.∴∠ACE=90°(直径所对的圆周角是直角);在直角三角形ACE中,AC=4,AE=6,∴sin∠E=;又∵∠B=∠E(同弧所对的的圆周角相等),∴sinB=.10.【答案】1;【解析】由sin2α+cos2α=1,可得1-sin2α=cos2α∵sin2α+cos2α=1,∴cos2α=1-sin2α.∴.∵0°<α<90°,∴cosα>0.∴原式==1.11.【答案】;【解析】连接EC.根据圆周角定理∠ECO=∠OBE.在Rt△EOC中,OE=4,OC=5,则tan∠ECO=.故tan∠OBE=.12.【答案】2或;【解析】此题有两种可能:(1)当点P在线段CD上时,∵BC=2,DP=1,CP=1,∠C=90°,∴tan∠BPC==2;(2)当点P在CD延长线上时,∵DP=1,DC=2,∴PC=3,又∵BC=2,∠C=90°,∴tan∠BPC=.故答案为:2或.三、解答题13.【答案与解析】解:如图所示,过点A作AE⊥BC于点E,过点D作DF⊥BC于点F.在Rt△ABE中,,∴AE=ABsin∠ABE=6sin 74°≈5.77(cm);,∴BE=ABcos∠ABE=6cos 74°≈1.65(m).∵AH∥BC,∴DF=AE≈5.77m.在Rt△BDF中,,∴(m).∴AD=EF=BF-BE=4.04-1.65≈2.4(m).14.【答案与解析】解:在Rt△ABD中,∠ABD=90°,∠BAD=18°,∴,BD=tan∠BAD·AB=tan 18°×9,∴CD=tan 18°×9-0.5.在Rt△DCE中,∠DEC=90°,∠CDE=72°,∴,=sin 72°×(tan 18°×9-0.5)≈2.3(m).即该图中CE的长约为2.3m.15.【答案与解析】解:如图所示,由已知可得∠ACB=60°,∠ADB=45°.∴在Rt△ABD中,BD=AB.又在Rt△ABC中,∵,∴,即.∵BD=BC+CD,∴.∴CD=AB-AB=180-180×=(180-60)米.答:小岛C、D间的距离为(180-)米.16.【答案与解析】解:(1)BF=CG.证明:在△ABF和△ACG中,∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC,∴△ABF≌△ACG(AAS),∴BF=CG.(2)DE+DF=CG.证明:过点D作DH⊥CG于点H(如图所示).∵DE⊥BA于点E,∠G=90°,DH⊥CG,∴四边形EDHG为矩形,∴DE=HG.DH∥BG.∴∠GBC=∠HDC∴AB=AC.∴∠FCD=∠GBC=∠HDC.又∵∠F=∠DHC=90°,CD=DC,∴△FDC≌△HCD(AAS),∴DF=CH.∴GH+CH=DE+DF=CG,即DE+DF=CG.(3)仍然成立.(注:本题还可以利用面积来进行证明,比如(2)中连结AD)。

中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)

中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)

中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)命题点分类集训命题点1 特殊角的三角函数值【命题规律】1.考查内容:主要考查 30°,45°,60°角的正弦,余弦,正切值的识记、正余弦的转换及由三角函数值求出角度. 2.考查形式:①三类特殊角的三角函数值识记;②与非负性结合,通过三角函数值求角度;③正弦余弦、正切余切之间的相互转化,判断关系式是否成立;④在实数运算中涉及三类特殊角的三角函数值运算(具体试题见实数的运算部分).【命题预测】特殊角的三角函数值作为识记内容在实数运算中考查的可能性比较大,而单独考查也会出现.1. sin 60°的值等于( ) A . 12B .22 C . 32D . 3 1. C2. 下列式子错误..的是( ) A . cos 40°=sin 50° B . tan 15°·tan 75°=1 C . sin 225°+cos 225°=1 D . sin 60°=2sin 30°2. D 【解析】逐项分析如下:选项 逐项分析正误 A cos40°=sin(90°-40°)=sin50° √ B tan15°·tan75°=1tan75°×tan75°=1√ C sin 2A +cos 2A =1√ D∵sin60°=32,2sin30°=2×12=1,∴sin60°≠2sin30° ×3. 已知α,β均为锐角,且满足|sin α-12|+(tan β-1)2=0,则α+β=________.3. 75° 【解析】由于绝对值和算术平方根都是非负数,而这两个数的和又为零,于是它们都为零.根据题意,得|sin α-12|=0,(tan β-1)2=0,则sin α =12,tan β =1,又因为α、β均为锐角,则α=30°,β=45°,所以α+β=30°+45°=75°. 命题点2 直角三角形的边角关系【命题规律】1.考查内容:在直角三角形中,三边与两个锐角之间关系的互化.2.考查形式:已知一边及某锐角的三角函数值,求其他量,或结合直角坐标系求锐角三角函数值.【命题预测】直角三角形的边角关系是解直角三角形实际应用问题的基础,值得关注.4. 如图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( ) A . 34B . 43C . 35D . 454. D 【解析】如解图,过点A 作AB ⊥x 轴于点B ,∵A (4,3),∴OB =4,AB =3,∴OA =32+42=5,∴cos α=OB OA =45.5. 在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm .则BC 的长度为( )A . 6 cmB . 7 cmC . 8 cmD . 9 cm5. C 【解析】∵sin A =BC AB =45,∴设BC =4a ,则AB =5a ,AC =(5a )2-(4a )2=3a ,∴3a =6,即a =2,故BC =4a =8 cm.6. 已知:如图,在锐角△ABC 中,AB =c ,BC =a ,AC =b ,AD ⊥BC 于D. 在Rt △ABD 中,sin ∠B =ADc ,则AD =c sin ∠B ;在Rt △ACD 中,sin ∠C =________,则AD =________. 所以c sin ∠B =b sin ∠C ,即bsin B =csin C , 进一步即得正弦定理:asin A =b sin B =c sin C.(此定理适合任意锐角三角形) 参照利用正弦定理解答下题:在△ABC 中,∠B =75°,∠C =45°,BC =2,求AB 的长.6. 解:∵sin C =AD AC =ADb ,∴AD =b sin C ,由正弦定理得:BC sin A =ABsin C ,∵∠B =75°, ∠C =45°, ∴∠A =60°, ∴2sin 60°=ABsin 45°,∴AB =2×22÷32=263.命题点3 锐角三角函数的实际应用【命题规律】1.考查内容:主要考查利用几何建模思想,将实际问题抽象为几何中的直角三角形的有关问题,并根据直角三角形的边角关系解决实际问题.2.考查形式:①仰角、俯角问题;②方位角问题;③坡度、坡角问题;④测量问题等.【命题预测】锐角三角函数的实际应用是将实际问题转化为几何问题并加以解决的数学建模题型,是全国命题的趋势.7. 小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB 的长度相等,小明将PB 拉到PB′的位置,测得∠PB′C=α(B′C 为水平线),测角仪B′D 的高度为1米,则旗杆PA 的高度为( )A .11-sin α B . 11+sin α C . 11-cos α D . 11+cos α7. A 【解析】在Rt △PCB ′中,sin α=PCPB ′,∴PC =PB ′·sin α,又∵B ′D =AC =1,则PB ′·sin α+1=P A ,而PB ′=P A ,∴P A =11-sin α.8. 如图①是小志同学书桌上的一个电子相框,将其侧面抽象为如图②所示的几何图形,已知BC =BD =15 cm ,∠CBD =40°,则点B 到CD 的距离为________cm (参考数据:sin 20°≈0.342,cos 20°≈0.940,sin 40°≈0.643,cos 40°≈0.766.结果精确到0.1 cm ,可用科学计算器).8. 14.1 【解析】如解图 ,过点B 作BE ⊥CD 于点E ,∵BC =BD =15 cm ,∠CBD =40°,∴∠CBE =20°,在Rt △CBE 中,BE =BC ·cos ∠CBE ≈15×0.940=14.1(cm).第8题图 第9题图 第10题图9. 如图,一艘渔船位于灯塔P 的北偏东30°方向,距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P 的距离约为________海里.(结果取整数.参考数据:sin 55°≈0.8,cos 55°≈0.6,tan 55°≈1.4)9. 11 【解析】∵∠A =30°,∴PM =12PA =9海里.∵∠B =55°, sin B =PM PB ,∴0.8=9PB ,∴PB ≈11海里.10. 如图,在一次数学课外实践活动中,小聪在距离旗杆10 m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1 m ,则旗杆高BC 为__________m .(结果保留根号)10. 103+1 【解析】如解图,过点A 作AE ⊥BC ,垂足为点E ,则AE =CD =10 m ,在Rt △AEB 中,BE =AE·tan 60°=10×3=10 3 m ,∴BC =BE +EC =BE +AD =(103+1)m . 11. 如图,大楼AB 右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B 、C 、E 在同一水平直线上),已知AB =80 m ,DE =10 m ,求障碍物B 、C 两点间的距离.(结果精确到0.1 m ,参考数据:2≈1.414,3≈1.732)11. 解:如解图,过点D 作DF ⊥AB ,垂足为点F ,则四边形FBED 为矩形,∴FD =BE ,BF =DE =10,FD ∥BE ,由题意得:∠FDC =30°,∠ADF =45°,∵FD ∥BE , ∴∠DCE =∠FDC =30°, 在Rt △DEC 中,∠DEC =90°,DE =10,∠DCE =30°, ∵tan ∠DCE =DE CE ,∴CE =10tan 30°=103,在Rt △AFD 中,∠AFD =90°,∠ADF =∠FAD =45°, ∴FD =AF ,又∵AB =80,BF =10,∴FD =AF =AB -BF =80-10=70,∴BC =BE -CE =FD -CE =70-103≈52.7(m ). 答:障碍物B 、C 两点间的距离约为52.7 m .12.某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC 的坡度为1∶ 3. (1)求新坡面的坡角α;(2)天桥底部的正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.12. 解:(1)∵新坡面AC 的坡度为1∶3,∴tan α=13=33, ∴α=30°.答:新坡面的坡角α的度数为30°.(2)原天桥底部正前方8米处的文化墙PM 不需要拆除. 理由如下:如解图所示,过点C 作CD ⊥AB ,垂足为点D , ∵坡面BC 的坡度为1∶1, ∴BD =CD =6米,∵新坡面AC 的坡度为1∶3, ∴CD ∶AD =1∶3, ∴AD =63米,∴AB =AD -BD =(63-6)米<8米,故正前方的文化墙PM 不需拆除. 答:原天桥底部正前方8米处的文化墙PM 不需要拆除.13.如图,某无人机于空中A 处探测到目标B ,D ,从无人机A 上看目标B ,D 的俯角分别为30°,60°,此时无人机的飞行高度AC 为 60 m ,随后无人机从A 处继续水平飞行30 3 m 到达A′处. (1)求A ,B 之间的距离;(2)求从无人机A′上看目标D 的俯角的正切值.13. 解:(1)如解图,过点D 作DE ⊥AA′于点E ,由题意得,AA ′∥BC ,∴∠B =∠FAB =30°, 又∵AC =60 m ,在Rt △ABC 中,sin B =AC AB ,即12=60AB,∴AB =120 m .答:A ,B 之间的距离为120 m .(2)如解图,连接A′D ,作A′E ⊥BC 交BC 延长线于E , ∵AA ′∥BC ,∠ACB =90°, ∴∠A ′AC =90°,∴四边形AA′EC 为矩形, ∴A ′E =AC =60 m , 又∵∠ADC =∠FAD =60°, 在Rt △ADC 中,tan ∠ADC =AC CD ,即5=60CD,∴CD =20 3 m ,∴DE =DC +CE =AA′+DC =303+203=50 3 m , ∴tan ∠AA ′D =tan ∠A ′DE =A′E DE =60503=235,答:从无人机A′上看目标D 的俯角的正切值为235.中考冲刺集训一、选择题1.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( )A . 斜坡AB 的坡度是10° B . 斜坡AB 的坡度是tan 10°C . AC =1.2tan 10° 米D . AB = 1.2cos 10°米第1题图 第2题图 第3题图2.如图,以O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连接OP ,设∠POB=α,则点P 的坐标是( )A . (sin α,sin α)B . (cos α,cos α)C . (cos α,sin α)D . (sin α,cos α)3.一座楼梯的示意图如图所示,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA =4米,楼梯宽度1米,则地毯的面积至少需要( )A . 4sin θ 米2B . 4cos θ 米2C . (4+4tan θ) 米2 D . (4+4tan θ) 米24.如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正切值是( )A . 12B . 1C . 3D . 2第4题图 第5题图 第6题图5.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1∶3,则大楼AB 的高度约为(精确到0.1米,参考数据:2≈1.41,3≈1.73,6≈2.45)( )A . 30.6B . 32.1C . 37.9D . 39.46. 如图,钓鱼竿AC 长6 m ,露在水面上的鱼线BC 长3 2 m ,某钓鱼者想看看鱼钩上的情况,把鱼竿AC 转到AC′的位置,此时露在水面上的鱼线B ′C ′为3 3 m ,则鱼竿转过的角度是( )A . 60°B . 45°C . 15°D . 90°二、填空题7. 如图,点A(3,t)在第一象限,射线OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是________.第7题图 第8题图 第9题图8. 如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD =45°,∠MBC=30°,则警示牌的高CD为______米.(结果精确到0.1米,参考数据:2≈1.41,3≈1.73) 9. 如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:3≈1.73)三、解答题10. 如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°. 已知教学楼AB高4米.(1)求教学楼与旗杆的水平距离AD;(结果保留根号......)(2)求旗杆CD的高度.11. 图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40 cm,与水平面所形成的夹角∠OAM为75°,由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1 cm.温馨提示:sin75°≈0.97,cos75°≈0.26,3≈1.73).12. 阅读材料:关于三角函数还有如下的公式:sin (α±β)=sin αcos β±cos αsin β tan (α±β)=tan α±tan β1∓tan α tan β利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,例如:tan 75°=tan (45°+30°)=tan 45°+tan 30°1-tan 45°tan 30°=1+331-1×33=2+ 3 根据以上阅读材料,请选择适当的公式计算下列问题: (1)计算sin 15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度,已知李三站在离纪念碑底7米的C 处,在D 点测得纪念碑碑顶的仰角为75°,DC 为 3 米,请你帮助李三求出纪念碑的高度.答案与解析:1. B第2题解图2. C 【解析】如解图,过点P 作PC ⊥OB 于点C ,则在Rt △OPC 中,OC =OP ·cos ∠POB =1×cos α=cos α,PC =OP ·sin ∠POB =1×sin α=sin α,即点P 的坐标为(cos α,sin α).3. D 【解析】在Rt △ABC 中,∠BAC =θ,CA =4米,∴BC =CA ·tan θ=4tan θ.地毯长为(4+4tan θ)米,宽为1米,其面积为(4+4tan θ)×1=(4+4tan θ)米2.4. D 【解析】如解图,将AB 平移到PE 位置,连接QE, 则PQ =210,PE =22,QE =42,∵△PEQ 中,PE 2+QE 2=PQ 2,则∠PEQ =90°,∴tan ∠QMB =tan ∠P =QEPE=2.第4题解图第5题解图5. D 【解析】如解图,设AB 与DC 的延长线交于点G ,过点E 作EF ⊥AB 于点F ,过点B 作BH ⊥ED 于点H ,则可得四边形GDEF 为矩形.在Rt △BCG 中,∵BC =12,i BC =BG CG =33,∴∠BCG =30°,∴BG =6,CG =63,∴BF =FG -BG =DE -BG =15-6=9,∵∠AEF =α=45°,∴AF =EF =DG =CG +CD =63+20,∴AB =BF +AF =9+20+63≈39.4(米).6. C 【解析】∵sin ∠CAB =BC AC =326=22,∴∠CAB ′=45°,∵sin ∠C ′AB ′=B ′C ′AC ′=336=32,∴∠C ′AB ′=60°,∴∠CAC ′=60°-45°=15°,即鱼竿转过的角度是15°.第7题解图7. 92【解析】如解图,过点A 作AB ⊥x 轴于点B.∵点A(3,t)在第一象限,∴OB =3,AB =t ,在11 Rt △ABO 中,tan α=AB OB =t 3=32,解得t =92. 8. 2.9 【解析】在Rt △AMD 中,DM =tan ∠DAM ×AM =tan 45°×4=4米,在Rt △BMC 中,CM =tan ∠MBC ×BM =tan 30°×12=4 3 米,故CD =CM -DM =43-4≈2.9米.9. 208 【解析】在Rt △ABD 中,BD =AD·tan ∠BAD =90×tan 30°=303,在Rt △ACD 中,CD =AD·tan ∠CAD =90×tan 60°=903,BC =BD +CD =303+903=1203≈208(米).10. 解:(1)∵在教学楼B 点处观测旗杆底端D 处的俯角是30°,∴∠ADB =30°,在Rt △ABD 中,∠BAD =90°,∠ADB =30°,AB =4(米),∴AD =AB tan ∠ADB =4tan 30°=43(米). 答:教学楼与旗杆的水平距离是4 3 米.(也可先求∠ABD =60°,利用tan 60°去计算得到结论)(2)∵在Rt △ACD 中,∠ADC =90°,∠CAD =60°,AD =4 3 米,∴CD =AD·tan 60°=43×3=12(米).答:旗杆CD 的高度是12米.11. 解:∵tan ∠OBC =tan 30°=OC BC =33, ∴OC =33BC , ∵sin ∠OAC =sin 75°=OC OA≈0.97, ∴33BC 40≈0.97, ∴BC ≈67.1(cm ).12. 解:(1)sin 15°=sin (45°-30°)=sin 45°cos 30°-cos 45°sin 30° =22×32-22×12 =6-24. (2)在Rt △BDE 中,∠BDE =75°,DE =CA =7,tan ∠BDE =BE DE ,即tan 75°=BE 7=2+3, ∴ BE =14+73,又∵AE =DC =3,∴AB =BE +AE =14+73+3=14+83(米),答:纪念碑的高度是(14+83)米.。

三角函数综合测试题(含答案)

三角函数综合测试题(含答案)

三角函数综合测试题(本试卷满分150分,考试时间120分)第Ⅰ卷(选择题 共40分)一.选择题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的) 1、若点P 在32π的终边上,且OP=2,则点P 的坐标( )A .)3,1(B .)1,3(-C .)3,1(--D .)3,1(-2、已知=-=-ααααcos sin ,45cos sin 则( ) A .47 B .169- C .329-D .329 3、下列函数中,最小正周期为2π的是( ) A .)32sin(π-=x y B .)32tan(π-=x y C .)62cos(π+=x y D .)64tan(π+=x y4、等于则)2cos(),,0(,31cos θππθθ+∈=( )A .924-B .924 C .97-D .975、将函数x y 4sin =的图象向左平移12π个单位,得到)4sin(ϕ+=x y 的图象,则ϕ等于() A .12π-B .3π-C .3π D .12π 6、50tan 70tan 350tan 70tan -+的值等于( )A .3B .33C .33-D .3-7.在△ABC 中,sinA >sinB 是A >B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 8.ABC ∆中,3π=A ,BC =3,则ABC ∆的周长为( ) A .33sin 34+⎪⎭⎫ ⎝⎛+πB B .36sin 34+⎪⎭⎫ ⎝⎛+πBC .33sin 6+⎪⎭⎫⎝⎛+πB D .36sin 6+⎪⎭⎫ ⎝⎛+πB第Ⅱ卷(非选择题 共110分)二.填空题(本大题共5小题,每小题6分,共30分,把答案填在题中横线上)9.已知3sin()45x π-=,则sin 2x 的值为 ;10.在ABC ∆中,若120A ∠=,5AB =,7BC =,则ABC ∆的面积S =_________11.已知,1)cos(,31sin -=+=βαα则=+)2sin(βα _______. 12.函数x x y 2cos )23cos(--=π的最小正周期为 __________.13.关于三角函数的图像,有下列命题: ①x y sin =与x y sin =的图像关于y 轴对称; ②)cos(x y -=与x y cos =的图像相同;③x y sin = 与)sin(x y -=的图像关于y 轴对称;④ x y cos =与)cos(x y -=的图像关于y 轴对称;其中正确命题的序号是 ___________.三.解答题(本大题共6小题,共80分。

精选三角函数解答题30道带答案

精选三角函数解答题30道带答案

三角函数综合练习三学校:___________姓名:___________班级:___________考号:___________一、解答题1(0ω>) (1)求()f x 在区间 (2)将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得个单位,得到函数()g x 的图象,若关于x 的方程()0g x k +=在区上有且只有一个实数根,求实数k 的取值范围. 2cos x x m +.其中,m x R ∈.(1)求()f x 的最小正周期;(2)求实数m 的值,使函数()f x 的值域恰为并求此时()f x 在R 上的对称中心.3 (1)求)(x f 的最小正周期;(2. 4 (1)求()f x 的最小正周期;(2)求()f x 在区间 5.已知函数.(1)求最小正周期; (2)求在区间上的最大值和最小值.6 (1)求()f x 的最小正周期;(2)若将()f x 的图象向右平移个单位,得到函数()g x 的图象,求函数()g x 在区间[]0,π上的最大值和最小值.7 (Ⅰ)(Ⅱ)8(1)求()f x 的定义域与最小正周期;(2求α的大小.9, x R ∈(1)求函数()f x 的最小正周期及在区间 (2,求0cos 2x 的值。

10.(本小题满分12 (1)求()f x 单调递增区间;(2)求()f x 在.11 (Ⅰ)求)(x f 的最小正周期;(Ⅱ)求)(x f 在.12 (I )求()f x 的最小正周期及其图象的对称轴方程;(II )将函数()f x 的图象向右平移个单位长度,得到函数()g x 的图象,求()g x 在的值域.13 (1)求()f x 的最小正周期;(2)求()f x 在区间 14(其中x ∈R ),求: (1)函数()f x 的最小正周期;(2)函数()f x 的单调区间;15 (1)求函数()f x 的最小正周期和图象的对称轴方程;(2)求函数()f x 在区间16 (1及()f x 的单调递增区间; (2)求()f x 在闭区间17(1(2成立的x 的取值集合.18 (Ⅰ)求函数()f x 的单调递减区间;19 (Ⅰ)求函数)(x f 的最小正周期T 及在],[ππ-上的单调递减区间;(Ⅱ)若关于x 的方程0)(=+k x f ,在区间上且只有一个实数解,求实数k 的取值范围.20(1)求函数)(x f 的最小正周期和单调递减区间;(2)若将函数)(x f 的图象向左平移)0(>m m 个单位后,得到的函数)(x g 的图象关于轴对称,求实数m 的最小值.21(x R ∈). (1)求函数()f x 的最小正周期和单调减区间;(2)将函数()f x 的图象向右平移个单位长度后得到函数()g x 的图象,求函数()g x22(1)求函数()f x 的最小正周期;(2)求函数()f x 取得最大值的所有x 组成的集合.23 (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在. 24.已知函数()22sin 2sin cos cos f x x x x x =+-.(Ⅰ)求函数()f x 的最小正周期; 时,求函数()f x 的最大值和最小值. 25.已知函数()()cos sin cos f x x x x =-. (Ⅰ)求函数()f x 的最小正周期; 时,求函数()f x 的最大值和最小值.26(1)求()f x 的周期和单调递增区间;(2)若关于x 的方程()2f x m -=在m 的取值范围.27(1)求函数()y f x =的最大、最小值以及相应的x 的值;(2)若y >2,求x 的取值范围.28 (1)求函数()f x 的最大值;(2)若直线x m =是函数()f x 的对称轴,求实数m 的值.29.函数()2cos (sin cos )f x x x x =+.(1 (2)求函数()f x 的最小正周期及单调递增区间.30 (1)求()f x 的最小正周期和最大值;(2)讨论()f x 在参考答案1.(1(2或1k =-. 【解析】试题分析:(1时,()f x 为减函数⇒所以()f x 的减区间为(2()y g x =的图象与直线y k =-在区间上只有一个交点⇒或1k =-.试题解析:(1因为()f x 的最小正周期为时,()f x 为减函数, 所以()f x 的减区间为 (2)将函数()f x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到再将)的图象向右平移个单位,得到)若关于x 的方程()0g x k +=在区间 即函数()y g x =的图象与直线y k =-在区间上只有一个交点, 或1k -=,即或1k =-. 考点:三角函数的图象与性质.2.(1)T π=;(2,Z k ∈∈. 【解析】试题分析:(1)则最小正周期T π=;(2)时,)(x f 值域为]3,[m m +,可知解得函数)(x f 对称中心为,Z k ∈∈. 试题解析:(1)最小正周期T π=;(2考点:三角函数图象的性质.3.(1)π=T ;(2)()f x 在【解析】试题分析:(1)根据正弦二倍角公式、余弦二倍角公式以及两角和的正弦公式可将)(x f 化可得)(x f 的最小正周期为π;(2)进而得)(x f . 试题解析:(1所以f(x)f(x)考点:1、正弦二倍角公式、余弦二倍角公式以及两角和的正弦公式;2、三角函数的周期性及单调性.4.(1)函数的最小正周期为π(2时,)(x f 取最大值2时,)(x f 取得最小值1-【解析】试题分析:(1最小正周期及其图象的对称中心的坐标;(2从而可求求f (x试题解析::(Ⅰ)因为f (x )=4cosxsin (-1=4cosx )-12x-1=2sin (, 所以f (x )的最小正周期为π,由π于是,当2;当f (x )取得最小值-1 考点:三角函数的最值;三角函数中的恒等变换应用;三角函数的周期性及其求法【答案】(1)π=T ;(2【解析】试题分析:(1)借助题设条件和两角和的正弦公式化简求解;(2)借助题设条件及正弦函数的有界性求解.试题解析:(1)因()()2s i n c o s c f x x x x =++考点:三角变换的有关知识及综合运用.6.(1)π;(2)2,1. 【解析】试题分析:(1)利用二倍角公式、诱导公式、两角和的正弦函数化为一个角旳一个三角函数的形式,即可求()f x 的最小正周期;(2)将()f x 的图象向右平移求出函数()g x 的解析式, 然后根据三角函数有界性结合三角函数图象求()g x 在区间[]0,π上的最大值和最小值.考点:1、三角函数的周期性;2、三角函数的图象变换及最值.【方法点晴】本题主要考查三角函数的周期性、三角函数的图象变换及最值,属于难题.三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过和、差、倍角公式的形式再研究其性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.7.(Ⅰ)2π(Ⅱ【解析】试题分析:(Ⅰ)先利用二倍角公式、配角公式将函数化为基本三角函数:()fx ,再根据正弦函数性质求周期(Ⅱ)x π-≤)的基础上,利用正弦函数性质求试题解析:(Ⅰ)(1)()f x 的最小正周期为(2)x π-≤()f x 取得最小值为:考点:二倍角公式、配角公式8.(1(2【解析】试题分析:(1)利用正切函数的性质,可求得()f x 的定义域,由其周期公式可求最小正周期;(2)利用同三角函数间的关系式及正弦、余弦的二倍角公式,,从而可求得α的大小. 试题解析:解:(1所以()f x 的定义域为.()f x 的最小正周期为考点:1、两角和与差的正切函数;2、二倍角的正切.9.(1)π=T,()[]2,1-∈xf;(2【解析】试题分析:(1)再利用周,,利用正弦函数图像可得值域;(2)先利用求出,再由角的关系.试题解析:(1所以π=T由函数图像知()[]2,1-∈xf.(2考点:三角函数性质;同角间基本关系式;两角和的余弦公式10.(1(2【解析】试题分析:(1)利用两角和的正弦公式、二倍角公式和辅助角公式,化简(2)试题解析:(1(2)由得f x在,因此,()考点:三角恒等变换,三角函数图象与性质. 11.(I )T π=;(II【解析】试题分析:(I )利用两角和的正弦公式,降次公式,辅助角公式,将函数化简为,由此可知函数最小周期T π=;(II)试题解析:∴()f x 的最小正周期 (Ⅱ)考点:三角恒等变换.12.(I )π=T ,(II 【解析】试题分析:(I )利用和差角公式对()x f 可化为:,解出x 可得对称轴方程;(II)由x 的范围可得x 2范围,从而得x 2cos 的范围,进而得()x g 的值域. 试题解析:(1)所以()x f 的最小正周期为(2)将函数()x f 的图象向右平移即函数()x g在区间 考点:(1)三角函数中恒等变换;(2)三角函数的周期;(3)复合函数的单调性.【方法点晴】本题考查三角函数的恒等变换、三角函数的周期及其求法、三角函数的图象变换等知识,熟练掌握有关基础知识解决该类题目的关键,高考中的常考知识点.于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即()ϕω+=x A y sin ,然后利用三角函数u A y sin =的性质求解.13.(1)π=T ;(2) -2.【解析】 试题分析:(1)首先将函数进行化简,包括两角和的正弦公式展开,以及二倍角公式以及x x 2cos 1cos 22=-,然后合并同类项,最后利用辅助角公式(2. 试题解析:(1)由题意可得∴()f x 的最小正周期为T π=;(2∴()f x 在区间-2. 考点:1.三角函数的恒等变形;2.三角函数的性质.14.(1)π(2【解析】试题分析:f (x )的最小正周期.x 的范围,即可得到f (x )的单调增区间,同理可得减区间试题解析:(1.所以()f x 的最小正周期为考点:三角函数中的恒等变换应用;三角函数的周期性及其求法;正弦函数的单调性15.(1)π,(2 【解析】试题分析:(1)先根据两角和与差的正弦和余弦公式将函数()f x 展开再整理, 可将函数化简为()s i n y A x ωρ=+的形式, 根据可求出最小正周期, 令求出x 的值即可得到对称轴方程;(2)先根据x 的范围求出, 进而得到函数()f x 在区试题解析:(1(2时,()f x 取最大值1,时,()f x 取最小值所以函数()f x 在区间 考点:1、三角函数的周期性及两角和与差的正弦和余弦公式;2、正弦函数的值域、正弦函数的对称性.16.(1(2)最大值为1,最小值为 【解析】试题分析:(1)将原函数()f x 由倍角公式和辅助角公式,,利用正弦函数的单调递区间求得此函数的单调增区间;(2)先求出,再进一步得出对应的正弦值的取值,可得函数值的取值范围,可得函数最值.试题解析:(1),则,(2)所以最大值为1,考点:1.三角恒等变换;2.三角函数性质.【知识点睛】本题主要考查辅助角公式及三角函数的性质.对于函数()()s i n 0,0y A x A ωϕω=+>>的单调区间的确定,基本思路是把x ωϕ+视做一个整体,由解出x 的范围所得区间即为增区间,由出x 的范围,所得区间即为减区间.若函数中()0,0A ω><,可用诱导公式先将函数变为()()si n 0,0y A x A ωϕω=--->>,则()()sin 0,0y A x A ωϕω=-->>的增区间为原函数的减区间,减区间为原函数的增区间.17.(1)(2)【解析】试题分析:(1)直接代入解析式即可;(2)由两角差的余弦公式,及正余弦二倍角公式和辅,k Z ∈,从而求解.试题解析:(1(2)f (x )=cos xcos x因f (x )于是2k π2x2k πk ∈Z. 解得k πx <k πk ∈Z.故使f (xx 的取考点:1、二倍角公式;2、辅助角公式;3、余弦函数图象与性质. 18.,k Z ∈;(Ⅱ)()f x 取得最大值1,()f x 取得最小值 【解析】试题分析:,k Z ∈,可解得单调减区间;(Ⅱ)最小值.试题解析:,k Z ∈.,k Z ∈.时,()f x 取得最小值时,()f x 取得最大值1.考点:(1)降幂公式;(2)辅助角公式;(3)函数()ϕω+=x A y sin 的性质.【方法点晴】本题主要考查了三角函数的化简,以及函数()ϕω+=x A y sin 的性质,属于基础题,强调基础的重要性,是高考中的常考知识点;对于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即()ϕω+=x A y sin ,然后利用三角函数u A y sin =的性质求解.19. 【解析】试题分析:(Ⅰ)借助题设条件运用正弦函数的图象和性质求解;(Ⅱ)借助题设条件运用正弦函数的图象建立不等式求解. 试题解析:(Ⅰ)由已知s又因为.当0=k 时 当1-=k 时∴函数)(x f 在[]ππ,-的单调递减区间为(Ⅱ) ,0)(=+k x f 在区与2--=∴k y 在区间考点:正弦函数的图象和性质等有关知识的综合运用.【易错点晴】三角函数的图象和性质是高中数学中重要内容,也高考和各级各类考试的重要内容和考点.用问题为背景,要求运用三角变换的公式将其化为k x A y ++=)sin(ϕω的形式,再借助正弦函数的图象和性质求解.解答本题时,首先要用二倍角公式将其化简为再运用正弦函数的图象即可获得答案.这里运用二倍角公式进行变换是解答本题的关键.20.(1)π,(2【解析】试题分析:(1)将(2)展开后再次合并,化简得(2)先按题意平移,得到试题解析:∴函数)(x f 的最小正周期函数)(x f 单调递减.考点:三角函数图象与性质.21.(1)T π=,单调减区间(k Z ∈);(2【解析】试题分析:(1)利用降次公式和两角和的余弦公式,先展开后合并,化简函数,故周期T π=,代入余弦函数单调减区间[]2,2k k πππ-,可求(2)函数()f x 的图象向右平移试题解析:(1(k Z ∈).(2,()g x 在 考点:三角恒等变换、三角函数图象与性质.22.(1)π;(2【解析】试题分析:(1)利用降次公式,故周期等于π;(2)试题解析:(1)∴函数()f x 的最小正周期为(2)当()f x 取最大值时,考点:三角恒等变换.23.(I )π;(II )函数()f x 的单调递增区间是 【解析】试题分析:(I数的最小正周期;(II )函数2sin y z =的单调递增区间,即可求解函数的单调递增区间.试题解析:函数2sin y z =的单调递增区间是12A B π⎡=-⎢⎣所以,,()f x . 考点:三角函数的图象与性质.【方法点晴】本题主要考查了三角函数的恒等变换、三角函数的图象与性质及三角函数的单调区间的求解,本题的解答中利用三角恒等变换的公式求解函数的解析式查了学生分析问题和解答问题的能力,以及学生的化简与运算能力. 24.(Ⅰ)π;,最小值1- 【解析】试题分析:(Ⅰ)化简函数解析式,可得最小正周期为π;(Ⅱ)可得()f x 在和1-试题解析:(Ⅰ)()22sin 2sin cos cos f x x x x x =+-sin 2cos 2x x =-所以()f x 的最小正周期时,()f x 取得最大值,即0x =时,()f x 取得最小值1-所以()f x 在和1- 考点:三角函数求值.【思路点睛】本题主要考查三角函数恒等变换,考查了)sin(ϕω+=x A y 型函数的图象与性质,属中档题.通过展开三角函数关系式,利用正弦二倍角公式和降幂公式,辅助角公式,由x 的范围求得相位.25.(Ⅰ)π;(Ⅱ)最大值0,最小值 【解析】试题分析:,可得最小正周期为π;,可得()f x 在最小值分别为0和 试题解析:(Ⅰ)因为()()cos sin cos f x x x x =-所以函数()f x 的最小正周期时,函数()f x 取得最大值0,时,函数()f x 取得最小值所以()f x 在0考点:三角函数求值.【思路点睛】本题主要考查三角函数恒等变换,考查了)sin(ϕω+=x A y 型函数的图象与性质,属中档题.通过展开三角函数关系式,利用正弦二倍角公式和降幂公式,将函数解析式化为y ,再用辅助角公式将函数化简为y ,由x 的范围求得相位的范围,进一.26.(1)周期为π,(2)[]0,1m ∈ 【解析】试题分析:(1)利用倍角公式,两角和的正余弦公式将函数转化为()sin()f x A x bωϕ=++的形式,进一步求函数的周期和单调性;(2得()f x 的取值范围,进一步得2m +的取值范围,可解得实数m 的取值范围.试题解析:周期πT =,令(k ∈Z ). (2,所以()f x 的值域为[]2,3.而()2f x m =+,所以[]22,3m +∈,即[]0,1m ∈.考点:1.倍角公式;2.辅助角公式;3.函数()sin()f x A x b ωϕ=++的性质.27.(1时有最大值3;时,取最小值1-;(2【解析】试题分析:(1)由函数()sin()f x A x k ωϕ=++的最值取值情况求所给函数的最值;(2)对于2y >,利用特殊角的三角函数值与正弦函数的单调性,可将不等式转化为关于x 的不等式,解不等式可得x 的取值范围.试题解析:(1)设u=2k πx=k πsin (1,此时函数f (x )=2sin (+1取最大值3.当u=2k πx=k πsin (-1,此时函数f (x )=2sin (+1取最小值-1.(2)∵y=2sin((k∈Z)(k∈Z)∴x (k∈Z) 考点:1.()sin()f x A x k ωϕ=++的性质;2.特殊角的三角函数性质.28.(1)最大值是2;(2 【解析】试题分析:(1)从而化简函数解析式,然后利用正弦函数的性质求出函数的最大值;(2)利用sin y x =的对称轴,列出关系式,解出x ,即可求得m 的值.试题解析:(1)所以()f x 的最大值是2.(2而直线x m =是函()y f x =的对称轴,所以 考点:1、诱导公式;2、正弦函数的图象与性质. 【方法点睛】三角函数的性质由函数的解析式确定,在解答三角形函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解. 29.(1)2;(2)π, 【解析】试题分析:(1)借助题设直接运用诱导公式化简求解;(2)借助题设条件和二倍角公式求解. 试题解析:(1(2所以()f x 的单调递增区间为 考点:三角函数的图象及诱导公式二倍角公式的运用.30.(1)π,1;(2)()f x 在 【解析】试题分析:(1)()f x 整理得由公式可求得()f x 的周期和最大值;(2)求函数()f x 在R 上的单调区间,分别与.(1)()f x 的最小正周期为π,最大值为1;(2)当()f x 递增时,()k Z ∈,当()f x ()k Z ∈所以,()f x 在 考点:两角的正弦公式;函数sin()y A x ωϕ=+的性质.。

2005学年第二学期萧山六、八、九三校高一期中考试.doc

2005学年第二学期萧山六、八、九三校高一期中考试.doc

2005学年第二学期萧山六、八、九三校高一期中考试数 学 试 题 卷一、选择题:(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项符合题目要求,把答案填在下表中) 1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=CC .A CD .A=B=C 2.将分针拨慢5分钟,则分钟转过的弧度数是( )A .3π B .-3π C .6π D .-6π 3.已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为( )A .-2B .2C .2316 D .-23164. 已知角α的余弦线是单位长度的有向线段;那么角α的终边 ( ) A .在x 轴上 B .在直线y x =上C .在y 轴上D .在直线y x =或y x =-上 5.若(cos )cos2f x x =,则(sin15)f ︒等于 ( )A .2-B .2C .12D . 12-6.函数y =-x sinx 的部分图像是 ( )7.下列函数中同时具有①最小正周期是π;②图象关于点(6π,0)对称这两个性质的是( ) A. y =cos (2x +6π) B .y =sin (2x +6π)C.y =sin (2x +6π)D.y =tan (x +6π)8.已知cos (02)y x x π=≤≤的图象和直线y=1围成一个封闭的平面图形,该图形的面积 是( )A .4πB .2πC .8D .49.与正弦曲线x y sin =关于直线34x π=对称的曲线是( )A .x y sin =B .x y cos =C .x y sin -=D .x y cos -=10. 已知31sin -=a ,-2π<a <0,则a 等于 ( )A .π-arcsin(-31)B .π+arcsin(-31)C .arcsin(-31)D .-arcsin(-31)11.已知函数)sin(ϕω+=x A y 在同一周期内,9π=x 时取得最大值21,π94=x 时取得最小值-21,则该函数解析式为 ( )A .)63sin(2π-=x yB .)63sin(21π+=x yC )63sin(21π-=x yD .)63sin(21π-=x y12..函数)0(tan )(>=w wx x f 的图象的相邻两支截直线4π=y 所得线段长为4π,则)4(πf的值是 ( )A .0B .1C .-1D .4π二、填空题:(本大题共4小题,每小题4分,共16分。

2005年高考题(三角函数)

2005年高考题(三角函数)

2005年高考题(三角函数)1.(全国卷Ⅰ文理7)当20π<<x 时,函数xx x x f 2sin sin 82cos 1)(2++=的最小值为( )A .2 ;B . 32 ;C . 4 ;D . 342.(全国卷Ⅰ文理11)在ABC ∆中,已知C BA sin 2tan =+,下列四个论断中正 确的是( )① 1cot tan =⋅B A ② B A sin sin 0+<≤2 ③ 1cos sin 22=+B A ④ C B A 222sin cos cos =+A .①③ ;B . ②④ ;C . ①④ ;D . ②③3.(全国卷Ⅰ文理17)设函数)2sin()(ϕ+=x x f (0<<-ϕπ))(x f y =图像的一条对称轴是8π=x .(1)求ϕ;(2)求函数)(x f y =的单调增区间;(3)(理)证明直线025=+-c y x 与函数)(x f y =的图像不相切. (文)画出函数)(x f y =在区间],0[π上的图象.4.(全国卷Ⅱ文理1)函数|cos sin |)(x x x f +=的最小正周期是( )A .4π ; B . 2π; C . π ; D . π2 5.(全国卷Ⅱ文理4)已知函数x y ωtan =在)2,2(ππ-是减函数,则( )A .ω<0≤1 ;B . 1-≤0<ω ;C . ω≥1 ;D . ω≤1-6.(全国卷Ⅱ理7)锐角三角形的内角A 、B 满足B AA tan 2sin 1tan =-,则有( )A .0cos 2sin =-B A ; B .0cos 2sin =+B A ;C .0sin 2sin =-B A ;D .0sin 2sin =+B A2005年高考题(三角函数)第1页7.(全国卷Ⅱ理14)设α为第四象限的角,若513sin 3sin =αα,则=α2tan ______8.(全国卷Ⅱ文17)已知α为第二象限的角,53sin =α,β为第一象限的角, 135cos =β,求)2tan(βα-的值.9.(全国卷Ⅲ文理1)已知α为第三象限的角,则2α所在的象限是( ) A .第一或第二象限 ; B .第二或第三象限; C .第一或第三象限 ; D .第二或第四象限10.(全国卷Ⅲ文理7)设0≤π2<x ,且x x x cos sin 2sin 1-=-,则( )A .0≤x ≤π ;B .4π≤x ≤47π ;C . 4π≤x ≤45π ;D .2π≤x ≤23π11.(全国卷Ⅲ文理8)αααα2cos cos 2cos 12sin 22⋅+等于( )A .αtan ;B . α2tan ;C . 1 ;D .2112.(全国卷Ⅲ文17)已知函数x x x f 2sin sin 2)(2+=,]2,0[π∈x ,求使)(x f 为正值的x 的集合. 13.(全国卷Ⅲ理19)在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,已知a 、b 、c 成等比数列,且43cos =B .(1)求C A cot cot +的值;(2)设23=⋅,求c a +的值.14.(北京卷理5文6)对任意的锐角α、β,下列不等关系中正确的是( )A .βαβαsin sin )sin(+>+ ;B . βαβαcos cos )sin(+>+ ;C .βαβαsin sin )cos(+<+ ;D . βαβαcos cos )cos(+<+2005年高考题(三角函数)第2页15.(北京卷理8)函数xxx f cos 2cos 1)(-=( )A .在)2,0[π,],2(ππ上递增,在)23,[ππ,]2,23(ππ上递减 ;B .在)2,0[π,)23,[ππ上递增,在],2(ππ,]2,23(ππ上递减;C .在],2(ππ,]2,23(ππ上递增,在)2,0[π,)23,[ππ上递减;D .在)23,[ππ,]2,23(ππ上递增,在)2,0[π,],2(ππ上递减16.(北京卷理10)已知22tan =α,则αtan 的值为__________,)4tan(πα+的值为___________17.(北京卷文12) 在ABC ∆中,3=AC , 45=∠A , 75=∠C ,则BC 的长为 18.(北京卷文15)已知22tan =α,求:(1))4tan(πα+的值; (2)ααααcos 2sin 3cos sin 6-+的值.19.(天津卷理8)要得到函数x y cos 2=的图像,只需将函数)42sin(2π+=x y 的图像上所有的点( )A .横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度;B .横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动8π个单位长度;C .横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动8π个单位长度;D .横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度;20.(天津卷文8)函数)sin()(ϕω+=x A x f ,(0>ω,||πϕ<,R x ∈)的部分图象如图所示,则函数表达式为( )A .)48sin(4ππ+-=x y ;B .)48sin(4ππ-=x y ; C .)48sin(4ππ--=x y ; D .)48sin(4ππ+=x y2005年高考题(三角函数)第3页21.(天津卷理17)在ABC ∆中,A ∠、B ∠、C ∠所对的边长分别为a 、b 、c .设a 、b 、c 满足条件222a bc c b =-+和321+=b c ,求A ∠和B tan 的值.22.(天津卷文17)已知1027)4sin(=-πα,2572cos =α,求αsin 及)3tan(πα+.23.(上海卷文5).函数x x x y cos sin 2cos +=的最小正周期=T __________24.(上海卷文6)若71cos =α,),0(πα∈,则=+)3cos(πα____________25.(上海卷理9)在ABC ∆中, 120=∠A ,5=AB ,7=BC ,则ABC ∆的面积=S ___________26.(上海卷理10文11)函数|sin |sin )(x x x f +=,]2,0[π∈x 的图象与直线k y =有且仅有两个不同的交点,则k 的取值范围是___________27.(上海卷文10)在ABC ∆中, 120=∠A ,5=AB ,7=BC ,则=AC _____28.(江苏卷5)ABC ∆中,3π=A ,3=BC ,则ABC ∆的周长为( )A .3)3sin(34++πB ; B .3)6sin(34++πB ;C .3)3sin(6++πB ; D .3)6sin(6++πB29.(江苏卷10)若31)6sin(=-απ,则)232cos(απ+等于( )A .97-; B . 31- ; C . 31 ; D . 9730.(浙江卷文1)函数)62sin(π+=x y 的最小正周期是( )A .2π; B . π ; C . π2 ; D . π4 2005年高考题(三角函数)第4页31.(浙江卷理8)已知4-<k ,则函数)1(cos 2cos -+=x k x y 的最小值是( )A .1 ;B . 1- ;C . 12+k ;D . 12+-k32.(浙江卷文15)已知函数x x x x f 2cos cos sin 2)(+=.(1)求)4(πf 的值;(2)设),0(πα∈,22)2(=αf ,求αsin 的值.33.(浙江卷理15)已知函数x x x x f cos sin sin 3)(2+-=. (1)求)625(πf 的值; (2)设),0(πα∈,2341)2(-=αf ,求αsin 的值.34.(福建卷文4)函数x y 2cos =在下列哪个区间上是减函数( )A .]4,4[ππ-; B . ]43,4[ππ ; C . ]2,0[π ; D . ],2[ππ35.(福建卷理6)函数)sin()(ϕω+=x x f ,(R x ∈,0>ω,0≤πϕ2<)的部分图象如图,则( ) A .2πω=,4πϕ= ; B . 3πω=,6πϕ=C .4πω=,4πϕ= ;D . 4πω=,45πϕ=36.(福建卷文理17)已知02<<-x π,51cos sin =+x x . (1)求x x cos sin -的值;(2)(理)求xx x x x x cot tan 2cos 2cos 2sin 22sin 322++-的值. (文)求xxx tan 1sin 22sin 2-+的值.2005年高考题(三角函数)第5页37.(湖北卷理7文10)若αααtan cos sin =+(20πα<<),则∈α( )A .)6,0(π ; B . )4,6(ππ ; C . )3,4(ππ ; D . )2,3(ππ38.(湖北卷文18)在ABC ∆中,已知3tan =B ,31cos =C ,63=AC ,求 ABC ∆的面积.39.(湖北卷理18)在ABC ∆中,已知364=AB ,66cos =B ,AC 边上的中线 5=BD ,求A sin 的值.40.(湖南卷文2) 600tan 的值是( )A .33-; B . 33; C . 3- ; D . 341.(湖南卷理15)函数)(x f y =的图象与直线a x =、b x =及x 轴所围成图形的面积称为函数)(x f 在],[b a 上的面积.已知函数nx y sin =在],0[nπ上的面积为nπ(*∈N n ),则(1)函数x y 3sin =在]32,0[π上的面积为;(2)函数1)3sin(+-=πx y 在]34,3[ππ上的面积为42.(湖南卷理16文17)已知在ABC ∆中,0sin )cos (sin sin =-+C B B A ,02cos sin =+C B ,求角A 、B 、C 的大小. 43.(广东卷15)化简)23sin(32)2316cos()2316cos()(x x k x k x f ++--+++=πππ,R x ∈,Z k ∈,并求函数)(x f 的值域和最小正周期.44.(重庆卷文2))12sin12)(cos12sin12(cosππππ+-等于( )A .23-; B . 21- ; C . 21 ; D . 232005年高考题(三角函数)第6页45.(重庆卷6)已知α、β均为锐角,若p :<αsin )sin(βα+,q :2πβα<+,则p 是q 的( )A . 充分而不必要条件 ;B . 必要而不充分条件 ;C . 充要条件 ;D . 既不充分也不必要条件46.(重庆卷13)已知α、β均为锐角,=+)cos(βα)sin(βα-,则=αtan __________47.(重庆卷理17)若函数)2cos(2sin )2sin(42cos 1)(xx a x x x f --++=ππ的最大值为2,试确定常数a 的值.48.(重庆卷文17)若函数)4sin(sin )2sin(22cos 1)(2ππ+++-+=x a x x x x f 的最大值为32+,试确定常数a 的值.49.(山东卷理3文4)已知函数)12cos()12sin(ππ--=x x y ,则下列判断正确的是( )A .此函数的最小正周期为π2,其图像的一个对称中心是)0,12(π;B .此函数的最小正周期为π,其图像的一个对称中心是)0,12(π;C .此函数的最小正周期为π2,其图像的一个对称中心是)0,6(π;D .此函数的最小正周期为π,其图像的一个对称中心是)0,6(π50.(山东卷文理17)已知向量)sin ,(cos θθ=m 和)cos ,sin 2(θθ-=n ,)2,(ππθ∈,且528||=+,求)82cos(πθ+的值.2005年高考题(三角函数)第7页51.(江西卷文2)已知32tan=α,则αcos 等于( )A .54 ; B . 54- ; C . 154 ; D . 53-52.(江西卷5)设函数|3sin |3)(x x x f +=,则)(x f 为( )A .周期函数,最小正周期为3π ; B .周期函数,最小正周期为32π;C .周期函数,最小正周期为π2 ;D .非周期函数53.(江西卷文8)在ABC ∆中,设命题p :=B a sin =C b sin Acsin , 命题q :ABC ∆是等边三角形.那么命题p 是命题q 的( )A . 充分不必要条件 ;B . 必要不充分条件 ;C . 充分必要条件 ;D . 既不充分又不必要条件54.(江西卷11)在O A B ∆中,O 为坐标原点,)cos ,1(θA ,)1,(sin θB ,]2,0(πθ∈则当OAB ∆的面积达到最大值时,θ等于( )A .6π ; B . 4π ; C . 3π ; D . 2π55.(江西卷文18)已知向量))42tan(,2cos 2(π+=x x ,))42tan(),42sin(2(ππ-+=x x ,令x f ⋅=)(,求函数)(x f 的最大值、最小正周期,并写出)(x f 在),0(π上的单调区间.56.(江西卷理18)已知向量))42tan(,2cos 2(π+=x x ,))42tan(),42sin(2(ππ-+=x x ,令x f ⋅=)(,是否存在实数],0[π∈x ,使0)()(='+x f x f .(其中)(x f '是)(x f 的导函数)?若存在,则求出x 的值;若不存在,则证明之.2005年高考题(三角函数)第8页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005学年第二学期柔石中学三角函数期中复习题
班级___________姓名__________________学号__________________
一、选择题((1)题~(10)题每小题4分,(11)题~(15)题每小题5分,共65分)

[ ]

A.第一象限 B.第二象限 C.第三象限 D.第四象限


(3)如果sinxsiny=1,那么2cos(x+y)的值于 [ ]

A.-2 B.0 C.2 D.±2

(5)函数f(x)=sin2x-cos2x的最小正周期是 [ ]
C.2π D.4π
[ ]
A.[0,2] B.[0,2) C.(0, 2] D.(0,2)

[ ]
A.奇函数非偶函数 B.偶函数非奇函数
C.非奇非偶函数 D.既是奇函数又是偶函数

[ ]
[ ]
(15)将函数y=f(x)图象上每一点的纵坐标保持不变,横坐标扩大到原
y=3sinx的图象相同,则函数y=f(x)的表达式是 [ ]
C.f(x)=-3sin2x D.f(x)=-3cos2x
二、填空题(每小题4分,共16分)

(17)函数f(x)=sinxcos2α-cosxsin2α的图象关于y轴对称,则α=______.
(18)函数f(x)=11-8cosx-2sin2x的最大值是______.

①由f(x1)=f(x2)=0,可得x1-x2=kπ(k∈Z)
其中正确命题的序号是______.
三、解答题(本题有6小题,共69分)
(20)(10分)已知角α的顶点与直角坐标系的原点重合,始边在x轴的


2005学年第二学期柔石中学三角函数期中复习题答案
一、
(1)D (2)D (3)A (4)D (5)B (6)B (7)A (8)A
(9)C (10)C (11)B (12)B (13)C (14)B (15)D
提示

(3)∵|sinx|≤1,|siny|≤1,由sinxsiny=1知sinx=1,siny=1或sinx=-1,siny=-1
当sinx=siny=1时,cosx=cosy=0,此时2cos(x+y)=2(cosxcosy-sinxsiny)=-2
当sinx=siny=-1时,cosx=cosy=0,2cos(x+y)=-2

(7)y=sin2x是奇函数,不是偶函数.

(11)点M(sinθ-cosθ,tgθ)在第一象限,
∴sinθ-cosθ>0,且tgθ>0
即sinθ>cosθ,且tgθ>0又θ∈[0,2π)
(15)把 f(x)=-3cos2x纵坐标不变,横坐标扩大到原来的2倍,得函数
提示
∴sin3θ+cos3θ=(sinθ+cosθ)(1-sinθcosθ)
(18)y=11-8cosx-2sin2x=2(cosx-2)2+1,|cosx|≤1,当cosx=-1时,ymax=19

相关文档
最新文档