数字图像处理:图像颜色模型转换

合集下载

数字图像处理要点简述详述

数字图像处理要点简述详述

第一.二章.采样,量化,数字图像的表示 基本的数字图像处理系统系统的层次结构I 应用程序 I 开发工具 操作系统 设备驱动程序I硬件I图像处理的主要任务: 图像获取与数字化 图像增强 图像恢复 图像重建 图像变换 图像编码与压缩 图像分割 特点:(1) 处理精度高。

(2) 重现性能好。

(3) 灵活性髙1•图像的数字化包括两个主要步骤:离散和量化2. 在数字图像领域,将图像看成是许多大小相同、形状一致的像素组成3. 为便于数字存储和计算机处理可以通过数模转换(A/D)将连续图像变为数字图像。

4•数字化包括取样和量化两个过程:取样:对空间连续坐标(x,y)的离散化量化:幅值f(x,y)的离散化(使连续信号的幅度用有限级的数码表示的过程。

)5.数字化图像所需的主要硬件:♦采样孔、图像扫描机构、光传感器、量化器、输岀存储体6•取样和量化的结果是一个矩阵 7.其中矩阵中的每个元素代表一个邃塞8•存储一幅图像的数据量又空间分辨率和幅度分辨率决定 9•灵敏度、分辨率、信噪比是三大指标第三章,傅里叶变换,DCT变换,WHT•余弦型变换:•傅里叶变换(DFT)和余弦变换(DCT)O•方波型变换:•沃尔什•哈达玛变换(DWT)1•二维连续傅里叶正反变换:F(u,v)= I f f(x.y)eJ_oc J_ocf g y)= \f F(u, v)ej27r(nA+vv)dwdvJ —oo J —oo二维离散傅里叶变换:M — 1 N — I=乏疋 Fgg 宀SS)if=o v=O。

F(u, v)即为f (x, y)的频谱。

频谱的直流成分说明在频谱原点的傅里叶变换尸(0,0)等于图像的平均灰度级 卷积定理:/(x,y)*^(x, y)= ss /O, n)g(x 一 m, y~n)/?/=() n=02•二维离散余弦变换(DCT)一维离散余弦变换:EO)=%)岳gfg 芈严 其中 c®=怜 ""DCT 逆变换为F(u.v)=1~MN A =0 y=02 A r -1/(«)=咅 C(0) + \1三工 F (gsn(2n +1)« ~~2N3•—维沃尔什变换核g (W ):1 X_JL£(乂申)=丄口(一 1)®(”)為一】一心)<N i=o• 厂、Cn 7V--1 ^T-l码3》=卡吝 /G 〉耳(—1)635—一 3«JC> =牙中 O )n (—O务i二维:•正变换: 1 N —l. N —!■H —1护(“*) = —X X /X%」)口( — 1)4(5—373$一_W] N 宜 U • JO■逆变换二1 AT-l JV-l 片_]/(X.y )=丄 £ 乞 疗(心巧 口弟-i -心)JN 為 v=o ~。

RGB彩色模型的理解及应用

RGB彩色模型的理解及应用

RGB彩色模型的理解及在CDMA视频图像传应用080212629 张俊摘要:RGB彩色模型是数字图像处理中最常用的一种,是一种加色模型,是用三种原色──红色、绿色和蓝色的色光以不同的比例相加,以产生多种多样的色光RGB是从颜色发光的原理来设计定的,它的颜色混合方式就好像有红、绿、蓝三盏灯,当它们的光相互叠合的时候,色彩相混,而亮度却等于两者亮度之总和,越混合亮度越高,即加法混合。

有色光可被无色光冲淡并变亮。

如蓝色光与白光相遇,结果是产生更加明亮的浅蓝色光。

RGB是一种依赖于设备的颜色空间:不同设备对特定RGB值的检测和重现都不一样,因为颜色物质和它们对红、绿和蓝的单独响应水平随着制造商的不同而不同,甚至是同样的设备不同的时间也不同。

主要用于彩色显示器和彩色视频摄像机;最新RGB可在CDMA视频图像传输中应用!相信随着RGB得到更加成熟的应用,会给人们的生活带来更加丰富真实的色彩感受!关键词:RGB ;理解;应用一、RGB的理解RGB是一种加色模型,是用三种原色──红色、绿色和蓝色的色光以不同的比例相加,以产生多种多样的色光。

RGB模型的命名来自于三种相加原色的首字母(Red(红),Green(绿),Blue (蓝))。

RGB 颜色称为加成色,因为您通过将R、G 和 B 添加在一起(即所有光线反射回眼睛)可产生白色。

加成色用于照明光、电视和计算机显示器。

例如,显示器通过红色、绿色和蓝色荧光粉发射光线产生颜色。

绝大多数可视光谱都可表示为红、绿、蓝(RGB) 三色光在不同比例和强度上的混合。

这些颜色若发生重叠,则产生青、洋红和黄。

RGB 颜色模型的主要目的是在电子系统中检测,表示和显示图像,比如电视和电脑,但是在传统摄摄影中也有应用。

在电子时代之前,基于人类对颜色的感知,RGB颜色模型已经有了坚实的理论支撑。

在这种模式中有16种基本颜色:品红色,蓝色,青色,绿色,黄色,红色,紫色,深蓝色,鸭绿色,深绿色,橄榄色,栗色,黑色,灰色,银色,白色。

数字图像处理与模式识别

数字图像处理与模式识别

数字图像处理与模式识别数字图像处理和模式识别是近年来快速发展的技术领域。

随着计算机的普及,数字图像处理和模式识别技术正在越来越广泛地应用于生产、医疗、安全、交通等领域。

本文将介绍数字图像处理和模式识别技术,以及它们的应用。

数字图像处理数字图像处理是对从数字相机、扫描仪等设备中得到的数字图像进行处理的技术。

数字图像处理可以用于增强图像的质量、改变图像的颜色、减少图像噪声、提取图像特征等。

数字图像处理的主要过程包括图像预处理、特征提取和分类。

图像预处理是对图像进行预处理的过程,目的是去除噪声、增强对比度、增加分辨率等。

常用的图像预处理方法包括平滑、边缘检测、二值化等。

平滑技术用于去除图像中的噪声。

边缘检测技术用于提取图像中的边缘信息。

二值化是将图像转换为黑白两色,以便进行下一步的特征提取。

特征提取是指从图像中提取与目标有关的特征。

特征提取通常通过对彩色图像中的像素值进行转换来实现。

在图像处理中,特征可以是形状、颜色、纹理、边缘等。

通过特征提取,可以将目标从图像中分离出来,以便进行下一步的分类。

分类是将图像分为不同类别的过程,目的是区分不同对象,并进行识别和分析。

在图像分类中,常用的方法包括决策树、支持向量机、神经网络等。

决策树是一种通过选择特征来分割数据的方法。

支持向量机是一种通过线性或非线性分类器来分配数据的方法。

神经网络是一种通过训练数据集来识别不同类别的方法。

数字图像处理的应用场景包括生产、医疗、安全、交通等各个方面。

例如,在生产领域中,数字图像处理可以用于检测机器的运行状态,优化流程和提高生产效率。

在医疗领域中,数字图像处理可以用于对医学图像进行处理和分析,以便进行疾病的诊断和治疗。

在安全领域中,数字图像处理可以用于实时监测和识别危险行为和违规行为。

在交通领域中,数字图像处理可以用于车辆和行人的识别,以提高道路安全性。

模式识别模式识别是一种人工智能技术,旨在建立模型,使计算机能够自动从输入数据中学习,从而识别或分类到新的数据。

第二章 数字图像处理基础

第二章 数字图像处理基础
主要内容
2.1 数字图像的表示 2.2 数字图像的采样与量化 2.3 人的视觉特性 2.4 光度学与色度学原理
第二章 数字图像处理基础
本章重点、难点
重点: 采样和量化 BMP图像文件格式 RGB颜色模型和HSI颜色模型 难点: 采样和量化的理解 BMP位图
2.1 数字图像
数字图像:f(x,y),函数值对应于图像点的 亮度。称亮度图像。 注意:模拟图像与数字图像的区别 动态图像:f(x,y,t)
人眼成像过程
视细胞分为两类: 锥状细胞:明视细胞,在强光下检测亮度 和颜色。 杆(柱)状细胞:暗视细胞,在弱光下检测亮 度,无色彩感觉。 人眼成像过程
图像的对比度和亮度
人眼的亮度感觉 图像 “黑”“白”(“亮”、“暗”)对比参数 对比度 : c=Bmax/Bmin 相对对比度:cr=(B-B0)/B0 人眼亮度感觉范围 总范围很宽 c = 108 人眼适应某一环境亮度后,范围限制 适当平均亮度下:c=103 很低亮度下:c=10
亮度
也称为灰度,它是颜色的明暗变化,常用 0 %~ 100 % (由黑到白) 表示。以下三幅图是 不同亮度对比。
对比度
对比度(contrast)是亮度的局部变化,定义为物体亮 度的平均值与背景亮度的比值,是画面黑与白的比 值,也就是从黑到白的渐变层次。比值越大,从黑 到白的渐变层次就越多,从而色彩表现越丰富。人 眼对亮度的敏感性成对数关系。
同时对比度
人眼对某个区域感觉到的亮度不是简单 地取决于该区域的强度,背景亮度不同 时,人眼所感觉到的明暗程度也不同。
马赫带效应
马赫带(Mach Band)效应:边界处亮度对比加强
为什么我们要在暗室评片?
马赫带效应的出现,是因为人眼对于图像中不同 空间频率具有不同的灵敏度,而在空间频率突变处 就出现了 “欠调”或“过调”

颜色三属性及其在图像调节中的应用

颜色三属性及其在图像调节中的应用

颜色三属性及其在图像调节中的应用【摘要】颜色在图像调节中起着至关重要的作用,而颜色的属性主要体现在RGB、CMYK和HSV三种颜色模式中。

RGB颜色模式通过红、绿、蓝三种颜色的叠加来呈现丰富的色彩。

CMYK颜色模式则主要用于印刷领域,通过四种颜色的叠加来呈现更加真实的色彩。

HSV颜色模式则将颜色的属性分为色调、饱和度和亮度三个方面,在调节图像时更加直观。

色彩校正和平衡调节可以帮助调整图像中的颜色偏差或色彩不均衡问题。

颜色三属性在图像调节中的应用价值不可低估,未来随着科技的不断发展,图像处理技术也将更加精准和高效。

颜色三属性的重要性将会越来越凸显出来,为图像调节带来更加丰富的可能性。

【关键词】颜色三属性、图像调节、RGB颜色模式、CMYK颜色模式、HSV 颜色模式、色彩校正、色彩平衡调节、重要性、应用价值、未来发展趋势1. 引言1.1 颜色三属性及其在图像调节中的应用颜色三属性是指在图像处理中常用的RGB、CMYK、HSV三种色彩模式。

这三种色彩模式分别代表了红绿蓝、青品红黄黑、色相饱和度亮度三个属性,它们在图像调节中起着至关重要的作用。

RGB色彩模式是由红、绿、蓝三原色组成的,可以混合出各种颜色。

CMYK色彩模式则是印刷行业常用的颜色模式,用于描述油墨的颜色。

HSV色彩模式则是将颜色的属性分离开来,更容易进行调节。

在图像调节中,色彩校正是常用的技术之一,它可以纠正图像中因色彩失真或曝光不足而导致的色彩问题。

色彩平衡调节则是调整图像中不同颜色的亮度和对比度,使整体色彩更加均衡和明亮。

颜色三属性在图像调节中的应用价值不可忽视,它们可以帮助我们处理图像中的色彩问题,使图像更加生动和真实。

未来,随着科技的不断发展,颜色三属性的应用将会更加广泛,为图像处理带来更多的可能性和效果。

通过深入研究和应用,我们可以更好地利用颜色三属性,为图像调节带来更多的创新和惊喜。

2. 正文2.1 RGB颜色模式RGB颜色模式是一种用于数字图像处理的颜色模型,它由红色(Red)、绿色(Green)、蓝色(Blue)三种基本色彩组成。

(完整版)数字图像处理大作业

(完整版)数字图像处理大作业

数字图像处理1.图像工程的三个层次是指哪三个层次?各个层次对应的输入、输出对象分别是什么?①图像处理特点:输入是图像,输出也是图像,即图像之间进行的变换。

②图像分割特点:输入是图像,输出是数据。

③图像识别特点:以客观世界为中心,借助知识、经验等来把握整个客观世界。

“输入是数据,输出是理解。

2.常用的颜色模型有哪些(列举三种以上)?并分别说明颜色模型各分量代表的意义。

①RGB(红、绿、蓝)模型②CMY(青、品红、黄)模型③HSI(色调、饱和度、亮度)模型3.什么是图像的采样?什么是图像的量化?1.采样采样的实质就是要用多少点来描述一幅图像,采样结果质量的高低就是用前面所说的图像分辨率来衡量。

简单来讲,对二维空间上连续的图像在水平和垂直方向上等间距地分割成矩形网状结构,所形成的微小方格称为像素点。

一副图像就被采样成有限个像素点构成的集合。

例如:一副640*480分辨率的图像,表示这幅图像是由640*480=307200个像素点组成。

2.量化量化是指要使用多大范围的数值来表示图像采样之后的每一个点。

量化的结果是图像能够容纳的颜色总数,它反映了采样的质量。

针对数字图像而言:采样决定了图像的空间分辨率,换句话说,空间分辨率是图像中可分辨的最小细节。

量化决定了图像的灰度级,即指在灰度级别中可分辨的最小变化。

数字图像处理(第三次课)调用图像格式转换函数实现彩色图像、灰度图像、二值图像、索引图像之间的转换。

图像的类型转换:对于索引图像进行滤波时,必须把它转换为RGB图像,否则对图像的下标进行滤波,得到的结果是毫无意义的;2.用MATLAB完成灰度图像直方图统计代码设计。

6789101112131415161718192021222324252627282930title('lady-lenna');if isrgb(a);b=rgb2gray(a);%RGB转换为灰度图像endsubplot(2,2,2);imshow(b);%显示图像title('ladygaga-lenna');[m,n]=size(a);%返回图像大小e=zeros(1,256);for k=0:255for i=1:mfor j=1:nif a(i,j)==ke(k+1)=e(k+1)+1;%灰度值相同的进行累加endendendendsubplot(2,2,4);bar(e);%画图像的灰度直方图title('灰度直方图');c=imrotate(a,20);%图像的旋转subplot(2,2,3);imshow(c);数字图像处理(第四次课)编写matlab函数,实现在医学图像中数字减影血管造影。

数字图像处理课程设计

数字图像处理课程设计

《数字视音频技术》课程设计报告题目:基于MATLAB/GUI数字图像处理专业名称:电子信息工程班级:电信072 学号:姓名:2010年 12月20日基于MATLAB/GUI数字图像处理一.设计目标图形用户界面(Graphical User Interface)简称GUI,在Matlab程序开发中起着举足轻重的作用,它有别于传统的VC、JAVA或者Delphi的界面开发方式。

作为一个数学运算能力很强的软件,Matlab的运算结果通常是用图形来表示的,GUI的使用更易于图形表现的多元化,在数字图像处理中更加的方便、直观。

下面设计一个简单的GUI数字图像处理,掌握GUI菜单,控件,回调函数的具体实现方法。

二.设计环境:Windows xpMatlab 7.1三.方案论证界面设计采用菜单模式,通过MATLAB图像处理工具箱提供的强大图像处理、图像设计功能来对图像进行处理。

通过做Matlab GUI界面来对图像进行编辑、缩放、加噪声、噪声滤波、颜色模型转换和图像的翻转。

通过对Matlab函数直接调用和自编函数来实现上述图像处理功能,其中图像进行任意角度翻转还用到了两个不同GUI之间数据传递实现的。

四.实验设计过程1.菜单的创建和设置菜单项的创建、设置可以通过系统函uimenu函数来完成,同时也可以利用GUI的设计工具来创建、设置。

如图1-1图1-1 菜单栏的设置2.控件的设计现在,绝大多数的软件中,图形界面都包含有控件。

控件也是一种是图形对象通过使用各种类型的控件,可以建立起操作简便,功能强大的图形界面软件。

Matlab系统为我们提供了lO种控件对象如:复选框、可编辑文本框等。

实验的整体GUI界面设计如图2-1。

图2-1 GUI界面3.实验运行过程与功能:文件运行界面如图4-1:图4-1 运行界面点击打开,打开一个图片,如图4-2图 4-2 打开一个图片编辑点击编辑,双三次缩小,输入参数,如图4-3图4-3然后,选择旋转,界面如图4-4图4-4图像旋转界面输入一个角度,然后点击确定,就会把图片进行旋转,如45度,运行结果如图4-5图4-5 图像旋转结果图点下面任意一个的原色,然后点ok,就会对背景原色进行变换,比如选择bule,得到的结果图如图4-6图4-6 原色转换结果图图像处理图4-7亮度处理图4-8 Hsv 模型转化 图4-9图像腐蚀图4-10高度滤波五.结束语由以上例子可以看出来,使用Matlab 来编写程序确实简洁、方便。

遥感数字图像处理教程

遥感数字图像处理教程
小恺工作室•遥感数字图像处理教程
遥感数字图像处理教程 第一章 概论
1. 遥感数字图像:数字形式的遥感图像。(P1,第六段) 2. 遥感数字图像处理的主要内容:(P2,第七段) ① 图像增强: 其目的是增强整体图像或突出图像中的特定地物的信息, 其方法主要包括: 灰度拉伸、平滑、锐化、彩色合成、主成分变换、缨帽变换、代数运算、图像融合等; ② 图像校正:其目的是对传感器或环境造成的模糊、噪声、几何失真等进行校正,其主 要方法是辐射校正和几何校正; ③ 信息提取:根据地物光谱特征和几何特征,从校正后的遥感图像中提取各种有用的地 物信息,主要包括图像分割、监督分类、非监督分类等,处理结果为分类专题图。 3. 遥感数字图像处理系统:硬件系统和软件系统。(P3,第五段) 4. 数字图像处理存在的两种观点:(P7,第三段) ① 离散方法的观点:即一幅图像的存储和表示均为数字形式,数字是离散的,因此,使 用离散方法进行图像处理才是合理的,与其对应的概念为空间域; ② 连续方法的观点:即图像具有连续性,可用连续的数学形式表达,与其对应的概念为 频率域。
第 3 页 共 13 页
小恺工作室•遥感数字图像处理教程
② HDF(Hierarchy Data Format) :其构成包括一个头文件、一个或多个描述块、若干个数据 对象。优势:可移植性强;超文本;自我描述性;可扩展性。 ③ TIFF:扩展性好,移植方便,可改性强。 ④ GeoTIFF:在 TIFF 可扩展性的基础之上,添加了一系列的地理信息标签,来描述卫星成 像系统、航空摄影、地图信息、DEM 等。 12. 图像文件的大小计算(单位: 字节): 行数×列数×单个像素字节数×波段数×辅助参数。 (P35, 第五段)
第四章 图像的显示和拉伸
1. 颜色模型:RGB 颜色模型、CMY 颜色模型、YIQ 颜色模型、HIS 颜色模型。(P61,第三 段) 其中 CMK 模型主要用于打印。 2. 图像的彩色合成:包括伪彩色合成、真彩色合成、假彩色合成和模拟真彩色合成。(P67, 第五段) ① 伪彩色合成:把单波段灰度图像中的不同灰度级按特定的函数关系变换成彩色,然后进行 彩色图像显示的方法,其转换可通过密度分割的方法实现。 ② 真彩色合成:用红绿蓝波长或近似波长合成的、图像显示效果与真彩色近似的合成方式。 ③ 假彩色合成:从多个波段中任意选择 3 个波段(不能与真彩色合成波段相同) ,分别赋予 红绿蓝 3 种原色,其图像的显示效果与真彩色不同。 ④ 模拟真彩色合成:由于蓝光易受气溶胶的影响,有些传感器舍弃了蓝波段,而是通过某种 形式的运算得到模拟的红绿蓝三个通道,从而产生类似于真彩色的图像。 3. 图像拉伸:以波段为处理对象,通过处理波段中单个像素值来实现增强的效果。图像拉伸 的方法包括线性拉伸(全域线性拉伸和分段线性拉伸)和非线性拉伸(指数拉伸、对数拉伸),图 像直方图是选择拉伸具体方法的基本依据。(P75,第四段) 4. 直方图均衡化: 对原始图像的像素灰度做某种映射变换, 使改变后图像灰度的概率密度(即
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档