七年级(下)数学第十章实数单元试卷

合集下载

人教版数学七年级下册:《实数》单元测试题

人教版数学七年级下册:《实数》单元测试题

人教版数学七年级下册:《实数》单元测试题实数单元测试题一、选择题1、下列哪个数是正有理数?A。

-4B。

0.xxxxxxxx3…C。

-πD。

4答案:D2、下列哪些数是无理数?A。

3B。

3.C。

2/3答案:B3、如果±1是b的平方根,那么b2013等于:A。

±1B。

-1C。

±2013答案:C4、已知a=24.72,则a的整数部分是:A。

24B。

25C。

26答案:A5、若a=1.147,b=2.472,c=0.5325,则2a+b-c等于:A。

11.47B。

53.25C。

114.7D。

3答案:A6、已知甲=6+√3,乙=2+√3,丙=2-√3,则甲、乙、丙的大小关系为:A。

甲=乙=丙B。

丙<甲<乙C。

甲<丙<乙答案:B7、下列等式正确的有几个?①√1=1②实数包括无理数和有理数③∛27=3④无理数是带根号的数⑤2的算术平方根是±2⑥-√4=-2A。

2B。

3C。

4答案:C8、下列判断正确的有几个?①一个数的平方根等于它本身,这个数是1和-1②实数包括无理数和有理数③∛9=3④无理数是带根号的数⑤2的算术平方根是±2A。

4B。

3C。

2D。

1答案:B9、已知实数a,b,c在数轴上的位置是:a在b的左边,b在c的左边,c在0的右边,则计算a+|b-a|+|b-c|的结果是:A。

cB。

2b+cC。

2a-cD。

-2b+c答案:B10、如图所示,数轴上表示√3、√5的对应点分别为C、B,点C是AB的中点,则点A表示的数是:A。

√2B。

1C。

2D。

3答案:A二、填空题11、-4的相反数是_________,π的绝对值是_________,1/4的倒数是_________.答案:4,π,412、已知:√x=5,则x+17的算术平方根为_________.答案:613、已知:2a-4、3a-1是同一个正数的平方根,则这个正数是_________.答案:2514、一个负数a的倒数等于它本身,则a=_________;若一个数a的相反数等于它本身,则a=_________.答案:-1,015、若(x-15)²=169,(y-1)³=-0.125,则x=_________,y=_________.答案:-4,-116、如图,A,B,C是数轴上顺次三点,BC=2AB,若点A,B对应的实数分别为1,则点C对应的实数是_________.答案:3三、解答题17、计算:① 3.5×(1.2-0.8)÷2.50.56② 3√(8÷27)×(5√2-2√5)÷(5+2√2)15√2+6√10)/35③ (2√3+3√2)²-(2√3-3√2)²24√6④ 3/8-5/12+7/161/16答案:①0.56,②-(15√2+6√10)/35,③24√6,④1/1618、求下列各等式中的x:1)27x³-125=027x³=125x³=125/27x=∛(125/27)=5/32)|x+2|-|x-2|=|x+3|当x≤-3时,等式变为-x-2+x-2=-x-3,无解;当-3<x≤-2时,等式变为-x-2+x-2=x+3,解得x=-1/2;当-2<x≤2时,等式变为x+2-x+2=x+3,无解;当x>2时,等式变为x+2-x+2=x+3,解得x=3/2.答案:(1)5/3,(2)-1/2,3/2.。

(常考题)人教版初中数学七年级数学下册第二单元《实数》检测卷(包含答案解析)

(常考题)人教版初中数学七年级数学下册第二单元《实数》检测卷(包含答案解析)

一、选择题1.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上 C .在线段OC 上D .在线段OB 上 2.若15的整数部分为a ,小数部分为b ,则a-b 的值为()A .615-B .156-C .815-D .158- 3.在实数3-,-3.14,0,π,364中,无理数有( )A .1个B .2个C .3个D .4个 4.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .6 5.下列说法中,正确的是 ( ) A .64的平方根是8B .16的平方根是4和-4C .()23-没有平方根D .4的平方根是2和-26.如图,在数轴上表示1,3的对应点分别为A B 、,点B 关于点A 的对称点为C ,则点C 表示的数为( )A .31-B .13-C .23-D .32- 7.已知n 是正整数,并且n -1<326+<n ,则n 的值为( )A .7B .8C .9D .108.下列各式中,正确的是( ) A .16=±4 B .±16=4 C .3273-=-D .2(4)4-=- 9.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 1310.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;④49的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行.A.4 B.3 C.2 D.1-的整数部分11.已知无理数m的小数部分与5的小数部分相同,它的整数部分与5π相同,则m为()π-A.5B.10C.51-D.512.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是()A.2-B.7C.11D.无法确定二、填空题13.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;(2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.-+的点,并比较它②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及35们的大小.14.对于结论:当a+b=0时,a3+b3=0也成立.若将a看成a3的立方根,b看成是b3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”.(1)试举一个例子来判断上述结论的猜测是否成立?(2)若332x -与35x +的值互为相反数,求12x -的值. 15.求下列各式中x 的值(1)()328x -=(2)21(3)753x -= 16.把下列各数填入相应的集合里:﹣3,|﹣5|,+(13-),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),34,﹣|45-|,3π 正数集合:{_____________…};整数集合:{_____________…};负分数集合:{_____________…};无理数集合:{_____________…}.17.计算:38642-+--.18.计算:31891224-++-+.19.比较大小:3- _______-2.(填“>”“=”或“<”)20.8的相反数是_____;16的平方根为_____;()34-的立方根是_____.三、解答题21.求下列各式中的x 的值(1)21(1)82x +=;(2)3(21)270x -+=22.计算(1)22234x +=;(2)38130125x +=(3)21|12|(2)16-----;(4)(x +2)2=25.23.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b -++.24.观察下列各式:322111124==⨯⨯,33221129234+==⨯⨯,33322112336344++==⨯⨯,33332211234100454+++==⨯⨯;…回答下面的问题:(1)猜想:33333123(1)n n ++++-+=_________;(直接写出你的结果)(2)根据(1)中的结论,直接写出13+23+33+......+93+103的值是_________; (3)计算:213+223+233+......+293+303的值.25.(1)计算:|3|-.(2)求下列各式中x 的值:③22536x =;④3(1)64x --=.26.求满足下列条件的x 的值:(1)3(3)27x +=-;(2)2(1)218x -+=.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据A 、C 、O 、B 四点在数轴上的位置以及绝对值的定义即可得出答案.【详解】∵|m-5|表示点M 与5表示的点B 之间的距离,|m−c|表示点M 与数c 表示的点C 之间的距离,|m-5|=|m−c|,∴MB =MC .∴点M 在线段OB 上.故选:D .【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应的关系是解答此题的关键. 2.A解析:A【分析】先根据无理数的估算求出a 、b 的值,由此即可得.【详解】91516<<,<<34<<,3,3a b ∴==,)336a b ∴-=-=, 故选:A .【点睛】 本题考查了无理数的估算,熟练掌握估算方法是解题关键.3.B解析:B【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,进行判断即可.【详解】=4,所给数据中无理数有:π,共2个.故选:B .【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式.4.C解析:C【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,…∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8.故答案是:8.【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….5.D解析:D【分析】根据平方根的定义与性质,结合各选项进行判断即可.【详解】A、64的平方根是±8,故本选项错误;=,4的平方根是±2,故本选项错误;B4-=,9的平方根是±3,故本选项错误;C、()239D、4的平方根是±2,故本选项正确.故选:D.【点睛】本题考查了平方根的知识,如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.注意,一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.6.C解析:C【分析】首先根据表示1A、点B可以求出线段AB的长度,然后根据点B 和点C关于点A对称,求出AC的长度,最后可以计算出点C的坐标.【详解】解:∵表示1A、点B,∴AB−1,∵点B关于点A的对称点为点C,∴CA=AB,∴点C的坐标为:1−1)=故选:C.【点睛】本题考查的知识点为实数与数轴,解决本题的关键是求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.7.C解析:C【分析】根据实数的大小关系比较,得到5<6,从而得到n的值.【详解】解:∵<5<6,∴8<<9,∴n=9.故选:C.【点睛】8.C解析:C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A4=,此项错误;B、4=±,此项错误;C3=-,此项正确;D4==,此项错误;故选:C.【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.9.B解析:B【分析】首先确定A,B对应的数,再分别估算四个选项的数值进行判断即可.【详解】解:由数轴得,A点对应的数是1,B点对应的数是3,A.-2<<-1,不符合题意;B.2<3,符合题意;C、34,不符合题意;D. 34,不符合题意;故选:B【点睛】本题主要考查了对无理数的估算.10.D解析:D【分析】根据无理数、平行公理、邻补角、算术平方根、实数与数轴、平行线的判定逐个判断即可得.【详解】①无理数包括正无理数和负无理数,此命题是假命题;②经过直线外一点有且只有一条直线与已知直线平行,此命题是真命题;③和为180︒的两个角不一定互为邻补角,此命题是假命题;=,此命题是假命题;7⑤实数和数轴上的点一一对应,此命题是假命题;⑥在同一平面内,垂直于同一条直线的两条直线互相平行,此命题是假命题; 综上,真命题的个数是1个,故选:D .【点睛】本题考查了无理数、平行公理、邻补角、实数与数轴等知识点,熟练掌握各定义与公理是解题关键.11.C解析:C【分析】m 的整数部分与小数部分,进而可得答案.【详解】解:因为23, 3.14π≈,2,5π-的整数部分为1,所以无理数m 的整数部分是12,所以121m =+=.故选:C .【点睛】m 的整数部分与小数部分是解题的关键.12.B解析:B【分析】首先利用估算的方法分别得到间),从而可判断出被覆盖的数.【详解】 ∵221,23<<,34<<而墨迹覆盖的范围是1-3∴故选B.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.二、填空题13.(1);(2)①见解析;②见解析【分析】(1)设正方形边长为a 根据正方形面积公式结合平方根的运算求出a 值则知结果;(2)①根据面积相等利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正解析:(1)2,2-;(2)①见解析;②见解析, 350.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b ,∴b 2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.14.(1)见解析;(2)【分析】(1)这个结论很简单可选择则2与﹣2互为相反数进行说明(2)利用(1)的结论列出方程(3﹣2x )+(x+5)=0从而解出x 的值代入可得出答案【详解】解:(1)答案不唯一如解析:(1)见解析;(2)123x =-【分析】(10=,则2与﹣2互为相反数进行说明.(2)利用(1)的结论,列出方程(3﹣2x )+(x +5)=0,从而解出x 的值,代入可得出答案.【详解】解:(10=,则2与﹣2互为相反数;(2)由已知,得(3﹣2x )+(x +5)=0,解得x =8,∴1=1=1﹣4=﹣3.【点睛】本题考查立方根的知识,难度一般,注意一个数的立方根有一个,它和这个数正负一致,本题的结论同学们可以记住,以后可直接运用.15.(1);(2)或【分析】(1)利用立方根的定义得到然后解一次方程即可;(2)先变形为然后利用平方根的定义得到的值【详解】(1)∵∴∴;(2)整理得:∴或∴或【点睛】本题考查了解一元一次方程平方根和立 解析:(1)4x =;(2)18x =或12x =-.【分析】(1)利用立方根的定义得到22x -=,然后解一次方程即可;(2)先变形为()23225x -=,然后利用平方根的定义得到x 的值.【详解】(1)∵()328x -=,∴22x -=,∴4x =;(2)21(3)753x -=,整理得:()23225x -=,∴315x -=或315x -=-,∴18x =或12x =-.【点睛】本题考查了解一元一次方程,平方根和立方根,熟练掌握各自的定义是解本题的关键. 16.|﹣5|﹣(﹣25)3π﹣3|﹣5|0+()﹣314﹣||﹣12121121112…3π【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号再根据正数整数负分数无理数的定义求解即可【解析:|﹣5|,﹣(﹣2.5),34,3π ﹣3,|﹣5|,0 +(13-),﹣3.14,﹣|45-| ﹣1.2121121112 (3)【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号,再根据正数、整数、负分数、无理数的定义求解即可.【详解】解:|﹣5|=5,+(13-)13=-,﹣(﹣2.5)=2.5,﹣|45-|45=-, 17.4【分析】原式利用平方根立方根定义及绝对值化简计算即可得到结果【详解】解:原式【点睛】本题考查了实数的运算熟练掌握平方根立方根定义是解本题的关键解析:4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.18.【分析】先根据开方的意义绝对值的意义进行化简最后计算即可求解【详解】解:原式【点睛】本题考查了实数的混合运算理解开方的意义能正确去绝对值是解题关键解析:1【分析】先根据开方的意义,绝对值的意义进行化简,最后计算即可求解.【详解】解:原式123122=-+++⨯1=+ 【点睛】本题考查了实数的混合运算,理解开方的意义,能正确去绝对值是解题关键. 19.>【分析】两个负数比较绝对值大的反而小由此得到答案【详解】∵∴故答案为:>【点睛】此题考查实数的大小比较:负实数都比0小正实数都比0大两个负实数比较大小绝对值大的反而小解析:>【分析】两个负数比较绝对值大的反而小,由此得到答案.【详解】 ∵2<,∴2>-,故答案为:>.【点睛】此题考查实数的大小比较:负实数都比0小,正实数都比0大,两个负实数比较大小,绝对值大的反而小.20.【分析】分别根据算术平方根相反数平方根和立方根的概念直接计算即可求解【详解】解:=所以的相反数是;16的平方根为;的立方根是故答案为:;±4;-4【点睛】本题考查了算术平方根平方根和立方根的概念进行解析:- 4± 4-【分析】分别根据算术平方根、相反数、平方根和立方根的概念直接计算即可求解.【详解】-;16的平方根为4±;()34-的立方根是4-.故答案为:—±4;-4【点睛】本题考查了算术平方根、平方根和立方根的概念进行求解即可.注意一个正数有两个平方根,它们互为相反数,正的平方根即为它的算术平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0. 三、解答题21.(1)3x =或5x =-;(2)1x =-.【分析】(1)适当变形后,利用平方根的定义即可解方程;(2)适当变形后,利用立方根的定义即可解方程.【详解】解:(1)21(1)82x += 两边乘以2得,2(1)16x +=,开平方得,14x +=±,即14x +=或14x +=-,∴3x =或5x =-;(2)3(21)270x -+=移项得,3(21)27x -=-,开立方得,213x -=-,解得,1x =-.【点睛】本题考查的是利用平方根,立方根的含义解方程,掌握平方根与立方根的定义和等式的性质是解题的关键.22.(1)12x x ==-2)x=35;(3)12;(4)123,7x x ==-. 【分析】 (1)方程整理后,利用平方根定义开方即可求出解;(2)先求出x 3的值,再根据立方根的定义解答;(3)直接利用绝对值的性质、平方根定义和负指数幂的性质分别化简得出答案; (4)依据平方根的定义求解即可.【详解】(1)22234x +=,2x²=32,x²=18,,∴12x x ==-(2)38130125x +=, 327125x =-, x=35;(3)2|12|(2)--- =1-1144-=311442-= (4)(x +2)2=25,(x+2)=±5,x+2=5,x+2=-5,∴123,7x x ==-.【点睛】本题考查了利用平方根和立方根解方程,绝对值的性质和负指数幂的性质,掌握有关性质是解题的关键.23.2a-c【分析】根据数轴得到a<b<0<c ,由此得到a-c<0,a+b<0,依此化简各式,再合并同类项即可.【详解】由数轴得a<b<0<c ,∴a-c<0,a+b<0,∴|-|a c=-b-(c-a )+(a+b)=-b-c+a+a+b=2a-c.【点睛】此题考查数轴上的点表示数,利用数轴比较数的大小,绝对值的性质,立方根的化简,整式的加减法计算法则,解题的关键是依据数轴确定各式子的符号由此化简各式. 24.(1)221(1)4n n ⨯⨯+;(2)3025;(3)172125【分析】(1)根据题中所给各式可直接进行分析求解;(2)由(1)可直接代入求值即可;(3)根据(1)可直接进行求解.【详解】解:(1)根据题意可得出:33333123(1)n n ++++-+=221(1)4n n ⨯⨯+; (2)将n =10代入221(1)4n n ⨯⨯+, 原式221×1010130254=⨯+=(); (3)原式=22221130(301)20(201)44⨯⨯+-⨯⨯+=172125.【点睛】本题主要考查实数的运算,熟练掌握实数的运算是解题的关键.25.(1)①13;②9-2)③65x =±;④5x =. 【分析】①先计算根式,再加减计算.②先计算根式和绝对值,再加减计算.(2)③两边除以25,再开算术平方根.④先除以-1,再开立方根.【详解】(1)-+1322=-+13=|3|-1153=-+-9=-(2)③22536x =23625x =65x =± ④3(1)64x --=3(641)x -=-14x -=-5x =【点睛】本题考查根式的化简求值,关键在于化简. 26.(1)6x =-;(2)3x =-或5【分析】(1)根据立方根,即可解答; (2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.。

(完整版)七年级下册数学实数试卷及答案(人教版)

(完整版)七年级下册数学实数试卷及答案(人教版)

一、选择题1.对一组数(x,y)的一次操作变换记为P 1(x,y),定义其变换法则如下:P 1(x,y)=(x+y,x-y),且规定P n (x,y)=P 1(P n-1(x,y))(n 为大于1的整数),如:P 1(1,2)=(3,-1),P 2(1,2)= P 1(P 1(1,2))= P 1(3,-1)=(2,4),P 3(1,2)= P 1(P 2(1,2))= P 1(2,4)=(6,-2),则P 2017(1,-1)=( ). A .(0,21008) B .(0,-21008) C .(0,-21009) D .(0,21009)2.定义一种新运算“*”,即()*23m n m n =+⨯-,例如()2*322339=+⨯-=.则()6*3-的值为( ) A .12 B .24 C .27 D .30 3.若29x =,|y |=7,且0x y ->,则x +y 的值为( )A .﹣4或10B .﹣4或﹣10C .4或10D .4或﹣104.以下11个命题:①负数没有平方根;②内错角相等;③同旁内角互补,两直线平行;④一个正数有两个立方根,它们互为相反数;⑤无限不循环小数是无理数;⑥数轴上的点与实数有一一对应关系;⑦过一点有且只有一条直线和已知直线垂直;⑧不相交的两条直线叫做平行线;⑨从直线外一点到这条直线的垂线段,叫做这点到直线的距离.⑩开方开不尽的数是无理数;⑪相等的两个角是对顶角;其中真命题的个数为( ) A .5B .6C .7D .85.数轴上A ,B ,C ,D 四点中,两点之间的距离最接近于6的是( )A .点C 和点DB .点B 和点CC .点A 和点CD .点A 和点B6.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n7.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9 -17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是( ) A .-130B .-131C .-132D .-1338.如图,点A 表示的数可能是( )A .21+B .6C .11D .179.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)2的立方根为32;(4)7是7的平方根. A .1B .2C .3D .410.如图,数轴上,A B 两点表示的数分别为1,2--,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A .12-B .21-C .22-D .22-二、填空题11.请先在草稿纸上计算下列四个式子的值:①31;②3312+;③333123++;④33331234+++,观察你计算的结果,用你发现的规律直接写出下面式子的值333312326++++=__________.12.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕=__________.13.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.14.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是_____.15.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.16.对于正整数a ,我们规定:若a 为奇数,则()f a 3a 1=+;若a 为偶数,则()af a .2=例如()f 15315146=⨯+=,()8f 842==,若1a 16=,()21a f a =,()32a f a =,()43a f a =,⋯,依此规律进行下去,得到一列数1a ,2a ,3a ,4a ,⋯,n a ,(n ⋯为正整数),则1232018a a a a +++⋯+=______.17.将1,2,3,6按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,如(5,4)表示的数是2(即第5排从左向右第4个数),那么(2021,1011)所表示的数是 ___.18.将1,2,3,6按如图方式排列.若规定m ,n 表示第m 排从左向右第n 个数,则()7,3所表示的数是___________.19.已知M 是满足不等式27a <N 52M N +的平方根为__________.20.规定:用符号[x ]表示一个不大于实数x 的最大整数,例如:[3.69]=3,3=2,[﹣2.56]=﹣3,[3=﹣2.按这个规定,[131]=_____.三、解答题21.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.(1)2020属于 类(填A ,B 或C );(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C ); ②从A 、B 类数中任取一数,则它们的和属于 类(填A ,B 或C );③从A 类数中任意取出8个数,从B 类数中任意取出9个数,从C 类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号). ①2m n +属于C 类;②m n -属于A 类;③m ,n 属于同一类.22.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法. (1)图2中A 、B 两点表示的数分别为___________,____________;(2)请你参照上面的方法:①把图3中51⨯的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长a=___________.(注:小正方形边长都为1,拼接不重叠也无空隙)②在①的基础上,参照图2的画法,在数轴上分别用点M、N表示数a以及3a-.(图中标出必要线段的长)23.阅读材料:求2320192020122222++++++的值.解:设2320192020122222S=++++++①,将等式①的两边同乘以2,得234202020212222222S=++++++②,用②-①得,2021221S S-=-即202121S=-.即2320192020202112222221++++++=-.请仿照此法计算:(1)请直接填写231222+++的值为______;(2)求231015555+++++值;(3)请直接写出202123452019202010 110101*********11-+-+-+-+-的值.24.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).Q W E R T Y U I O P A S D 12345678910111213 F G H J K L Z X C V B N M给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN,请找出它的明文. 25.先阅读然后解答提出的问题:设a 、b 是有理数,且满足3=-a b a 的值. 解:由题意得(3)(0-++=a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数, a-3=0,b+2=0, 所以a=3,b=﹣2, 所以3(2)8=-=-a b .问题:设x 、y 都是有理数,且满足2210x y -=+x+y 的值. 26.a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,现已知a 1=12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,… (1)求a 2,a 3,a 4的值;(2)根据(1)的计算结果,请猜想并写出a 2016•a 2017•a 2018的值; (3)计算:a 33+a 66+a 99+…+a 9999的值. 27.观察下列各式:21131222-=⨯;21241333-=⨯;21351444-=⨯;……根据上面的等式所反映的规律, (1)填空:21150-=______;2112019-=______; (2)计算:2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭28.(阅读材料)数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:第一步:∵10=100,1000593191000000<<,∴10100<<.∴能确定59319的立方根是个两位数. 第二步:∵59319的个位数是9,39729= ∴能确定59319的立方根的个位数是9.第三步:如果划去59319后面的三位319得到数59,34<<,可得3040<<, 由此能确定59319的立方根的十位数是3,因此59319的立方根是39. (解答问题)根据上面材料,解答下面的问题 (1)求110592的立方根,写出步骤.(2=__________.29.小学的时候我们已经学过分数的加减法法则:“同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,转化为同分母分数,再加减.”如:1132321123232323236--=-===⨯⨯⨯⨯,反之,这个式子仍然成立,即:1132321162323232323-===-=-⨯⨯⨯⨯. (1)问题发现 观察下列等式: ①1212111121212122-==-=-⨯⨯⨯⨯, ②13232112323232323-==-=-⨯⨯⨯⨯, ③14343113434342334-==-=-⨯⨯⨯⨯,…, 猜想并写出第n 个式子的结果:1(1)n n =+ .(直接写出结果,不说明理由) (2)类比探究将(1)中的的三个等式左右两边分别相加得: 1111111113111223342233444++=-+-+-=-=⨯⨯⨯, 类比该问题的做法,请直接写出下列各式的结果: ①111112233420192020++++=⨯⨯⨯⨯ ;②1111122334(1)n n ++++=⨯⨯⨯+ ; (3)拓展延伸 计算:111113355799101++++⨯⨯⨯⨯.30.请观察下列等式,找出规律并回答以下问题. 111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯,…… (1)按照这个规律写下去,第5个等式是:______;第n 个等式是:______. (2)①计算:11111223344950⨯⨯⨯⨯++++.②若a 0=,求: ()()()()()()()()111111122339797ab a b a b a b a b +++++++++++++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D【解析】分析:用定义的规则分别计算出P 1,P 2,P 3,P 4,P 5,P 6,观察所得的结果,总结出规律求解.详解:因为P 1(1,-1)=(0,2); P 2(1,-1)=P 1(P 1(1,-1))=P 1(0,2)=(2,-2); P 3(1,-1)=P 1(P 2(2,-2))=(0,4); P 4(1,-1)=P 1(P 3(0,4))=(4,-4); P 5(1,-1)=P 1(P 4(4,-4))=(0,8); P 6(1,-1)=P 1(P 5(0,8))=(8,-8); ……P 2n-1(1,-1)=……=(0,2n ); P 2n (1,-1)=……=(2n ,-2n ). 因为2017=2×1009-1, 所以P 2017=P 2×1009-1=(0,21009). 故选D.点睛:对于新定义,要理解它所规定的运算规则,再根据这个规则进行相关的计算;探索数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程和结果中归纳出运算结果或运算结果的规律.2.C解析:C 【分析】根据新定义的公式代入计算即可. 【详解】∵()*23m n m n =+⨯-, ∴()6*3-=()623(3)27+⨯--=, 故选C . 【点睛】本题考查了新定义下的实数计算,准确理解新定义公式是解题的关键.3.B解析:B 【分析】先根据平方根、绝对值运算求出,x y 的值,再代入求值即可得. 【详解】解:由29x =得:3x =±, 由7y =得:7y =±,0x y ->, x y ∴>,37x y =-⎧∴⎨=-⎩或37x y =⎧⎨=-⎩, 则3(7)10x y +=-+-=-或3(7)4x y +=+-=-, 故选:B . 【点睛】本题考查了平方根、绝对值等知识点,熟练掌握各运算法则是解题关键.4.A解析:A 【分析】根据相关知识逐项判断即可求解. 【详解】解:①“负数没有平方根”,是真命题②“内错角相等”,缺少两直线平行这一条件,是假命题;③“同旁内角互补,两直线平行”,是真命题;④“一个正数有两个立方根,它们互为相反数”,一个正数有一个立方根,是假命题;⑤“无限不循环小数是无理数”,是真命题;⑥“数轴上的点与实数有一一对应关系”,是真命题;⑦“过一点有且只有一条直线和已知直线垂直”,缺少在同一平面内条件,是假命题;⑧“不相交的两条直线叫做平行线”,缺少在同一平面内条件,是假命题;⑨“从直线外一点到这条直线的垂线段,叫做这点到直线的距离”,应为“从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离”,是假命题.⑩“开方开不尽的数是无理数”,是真命题;⑪“相等的两个角是对顶角”,相等的角有可能是对顶角,但不一定是对顶角,是假命题. 所以真命题有5个. 故选:A 【点睛】本题考查判断真假命题、平方根、立方根、平行线的判定、无理数、实数与数轴关系、直线外一点到直线的距离、对顶角等知识,综合性较强,熟知相关知识点是解题关键.5.A解析:A【分析】的范围,结合数轴可得答案.【详解】解:∵4<6<9,∴2<3,∴的是点C和点D.故选:A.【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.6.B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.7.C解析:C【分析】通过观察发现:每一行等式右边的数就是行数的平方,故第n行右边的数就是n的平方,而左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.【详解】解:第一行:211=;第二行:224=;第三行:239=;第四行:2416=;……第n行:2n;∴第11行:211121=.∵左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.∴第11行左起第1个数是-122,第11个数是-132. 故选:C . 【点睛】此题主要考查探索数与式的规律,正确找出规律是解题关键.8.C解析:C 【分析】先确定点A 表示的数在3、4之间,再根据夹逼法逐项判断即得答案. 【详解】解:点A 表示的数在3、4之间,A 、因为12<,所以213<<,故本选项不符合题意;B 23<<,故本选项不符合题意;C ,所以34<,故本选项符合题意;D ,所以45<<,故本选项不符合题意; 故选:C . 【点睛】本题考查了实数与数轴以及无理数的估算,属于常见题型,正确理解题意、熟练掌握基本知识是解题的关键.9.C解析:C 【详解】4-,故(1)对;根据算术平方根的性质,可知49的算术平方根是7,故(2)错; 根据立方根的意义,可知23)对;7的平方根.故(4)对; 故选C.10.D解析:D 【分析】设点C 的坐标是x ,根据题意列得12x=-,求解即可. 【详解】解:∵点A 是B ,C 的中点. ∴设点C 的坐标是x ,=-,1则2x=-∴点C表示的数是2-.故选:D.【点睛】此题考查数轴上两点的中点的计算公式:两点的中点所表示的数等于两点所表示的数的平均数,正确掌握计算公式是解题的关键.二、填空题11.351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】+3++=1+2+3+nn∴3+=35126++=1+2+326故答案为:351【点睛】本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.12.【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=818181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.13.403【解析】当k=6时,x6=T (1)+1=1+1=2,当k=2011时,=T()+1=403.故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达解析:403【解析】当k=6时,x 6=T (1)+1=1+1=2,当k=2011时,2011 x =T(20105)+1=403. 故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk的表达式并写出用T表示出的表达式是解题的关键.14.4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.15.、、、.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.16.4728【分析】先求出,,,,寻找规律后即可解决问题.【详解】由题意,,,,,,,,从开始,出现循环:4,2,1,,,,故答案为4728.【点睛】本题考查了规律型——数字的变解析:4728【分析】先求出1a ,2a ,3a ,⋯,寻找规律后即可解决问题.【详解】由题意1a 16=,2a 8=,3a 4=,4a 2=,5a 1=,6a 4=,7a 2=,8a 1=⋯,, 从3a 开始,出现循环:4,2,1,()201823672-÷=,2018a 1∴=,1232018a a a a 16867274728∴+++⋯+=++⨯=,故答案为4728.【点睛】本题考查了规律型——数字的变化类问题,解题的关键是从一般到特殊,寻找规律,利用规律解决问题.17.1【分析】所给一系列数是4个数一循环,看是第几个数,除以4,根据余数得到相应循环的数即可.【详解】解:前2020排共有的个数是:,表示的数是第个数,,第2021排的第1011个数为1.解析:1【分析】所给一系列数是4个数一循环,看(2021,1011)是第几个数,除以4,根据余数得到相应循环的数即可.【详解】解:前2020排共有的个数是:(20201)20201234202020412102+⨯++++⋯⋯+==, (2021,1011)∴表示的数是第204121010112042221+=个数,204222151055541=⨯+,∴第2021排的第1011个数为1.故答案为:1.【点睛】本题考查算术平方根与规律型:数字的变化类,根据规律判断出是第几个数是解本题的关键.18.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1,1+2+3+4+5+6+3=24,24÷4=6,则(7,3,.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.19.±3【分析】先通过估算确定M、N的值,再求M+N的平方根.【详解】解:∵,∴,∵,∴,∵,∴,∴a的整数值为:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7解析:±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵< ∴221, ∵∴23<,∵a <∴23a -<<,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2, ∵∴78<,N=7,M+N=9,9的平方根是±3;故答案为:±3.【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.20.-5【详解】∵3<<4,∴−4<−<−3,∴−5<−−1<−4,∴[−−1]=−5.故答案为−5.点睛:本题考查了估算无理数的大小的应用,解决此题的关键是求出的范围. 解析:-5【详解】∵,∴,∴,∴故答案为−5..三、解答题21.(1)A;(2)①B;②C;③B;(3)①③.【分析】÷,结合计算结果即可进行判断;(1)计算20203(2)①从A类数中任取两个数进行计算,即可求解;②从A、B两类数中任取两个数进行计算,即可求解;③根据题意,从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,再除以3,即可得到答案;(3)根据m,n的余数之和,举例,观察即可判断.【详解】解:(1)根据题意,÷=,∵202036731∴2020被3除余数为1,属于A类;故答案为:A.(2)①从A类数中任取两个数,如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴两个A类数的和被3除余数为2,则它们的和属于B类;②从A、B类数中任取一数,与①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴从A、B类数中任取一数,则它们的和属于C类;③从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,则⨯+⨯+=,8192026÷=,∴26382∴余数为2,属于B类;故答案为:①B;②C;③B.(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m×1+n×2=m+2n,∵最后的结果属于C类,∴m+2n能被3整除,即m+2n属于C类,①正确;②若m=1,n=1,则|m-n|=0,不属于B类,②错误;③观察可发现若m+2n属于C类,m,n必须是同一类,③正确;综上,①③正确.故答案为:①③.【点睛】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答.22.(1);(2)①②见解析【分析】(1)根据图1得到小正方形的对角线长,即可得出数轴上点A和点B表示的数(2)根据长方形的面积得正方形的面积,即可得到正方形的边长,再画出图象即可;(3)从原点开始画一个长是2,高是1的长方形,对角线长即是a,再用圆规以这个长度画弧,交数轴于点M,再把这个长方形向左平移3个单位,用同样的方法得到点N.【详解】(1)由图1知,小正方形的对角线长是2,∴图2中点A表示的数是2-,点B表示的数是2,故答案是:2-,2;(2)①长方形的面积是5,拼成的正方形的面积也应该是5,∴正方形的边长是5,如图所示:故答案是:5;②如图所示:【点睛】本题考查无理数的表示方法,解题的关键是理解题意,模仿题目中给出的解题方法进行求解.23.(1)15;(2)11514-;(3)111.【分析】(1)先计算乘方,即可求出答案;(2)根据题目中的运算法则进行计算,即可求出答案;(3)根据题目中的运算法则进行计算,即可求出答案;【详解】解:(1)231248125122=++++=++;故答案为:15;(2)设231015555T=+++++①,把等式①两边同时乘以5,得112310555555T=+++++②,由②-①,得:11451T=-,∴11514T -=, ∴31121015551455++=+++-; (3)设234520192020110101010101010M =-+-+-+-+①, 把等式①乘以10,得:3456222019020202110101010101010101010M =-+-+-+-++②,把①+②,得:202111110M =+, ∴202110111M +=, ∴232452019200022111010101010110010111-+-+-+-++=, ∴20212345201920201011010101010101011-+-+-+-+- 20212021101101111+=- 111=. 【点睛】本题考查了数字的变化规律,熟练掌握运算法则,熟练运用有理数乘法,以及运用消项的思想是解题的关键.24.(1)N,E,T 密文为M,Q,P;(2)密文D,W,N 的明文为F,Y ,C .【分析】(1) 由图表找出N,E,T 对应的自然数,再根据变换公式变成密文.(2)由图表找出N=M,Q,P 对应的自然数,再根据变换.公式变成明文.【详解】解:(1)将明文NET 转换成密文:2522517263N M +→→+=→ 3313E Q →→=→ 5158103T P +→→+=→ 即N,E,T 密文为M,Q,P;(2)将密文D,W,N 转换成明文:()133138114D F →→⨯--=→2326W Y →→⨯=→253(2517)222N C →→⨯--=→即密文D,W,N 的明文为F,Y ,C .【点睛】本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换.25.7或-1.【分析】根据题目中给出的方法,对所求式子进行变形,求出x、y的值,进而可求x+y的值.【详解】解:∵2210 x y-=+∴()22100x y--+-=,∴2210x y--=0-=0∴x=±4,y=3当x=4时,x+y=4+3=7当x=-4时,x+y=-4+3=-1∴x+y的值是7或-1.【点睛】本题考查实数的运算,解题的关键是弄清题中给出的解答方法,然后运用类比的思想进行解答.26.(1)a2=2,a3=-1,a4=1 2(2)a2016•a2017•a2018= -1(3)a33+a66+a99+…+a9999=-1【分析】(1)将a1=12代入11a-中即可求出a2,再将a2代入求出a3,同样求出a4即可.(2)从(1)的计算结果可以看出,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=12,a2018=2然后计算a2016•a2017•a2018的值;(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,即可求出结果.【详解】(1)将a1=12,代入11a-,得21=211-2a=;将a2=2,代入11a-,得31=-11-2a=;将a3=-1,代入11a-,得411=1--12a=().(2)根据(1)的计算结果,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=12,a2018=2所以,a2016•a2017•a2018=(-1)×12×2= -1(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,a33+a66+a99+…+a9999=(-1)3+(-1)6+(-1)9+…+(-1)99=(-1)+1+(-1)+…(-1)=-1【点睛】此类问题考查了数字类的变化规律,解题的关键是要严格根据定义进行解答,同时注意分析循环的规律.27.(1)49515050⨯;2018202020192019⨯;(2)10102019. 【分析】(1)根据已知数据得出规律,2111111n n n ⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,进而求出即可; (2)利用规律拆分,再进一步交错约分得出答案即可.【详解】解:(1)21150-=49515050⨯; 2112019-=2018202020192019⨯; (2)2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=1324352018202022334420192019⨯⨯⨯⨯⨯⨯⨯⨯…… =1202022019⨯ =10102019. 【点睛】此题主要考查了实数运算中的规律探索,根据已知运算得出数字之间的变化规律是解决问题的关键.28.(1)48;(2)28【分析】(1)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.(2)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.【详解】解:(1)第一步:10100=,11059210100000000<<,10100∴, ∴能确定110592的立方根是个两位数.第二步:110592的个位数是2,38512=,∴能确定110592的立方根的个位数是8.第三步:如果划去110592后面的三位592得到数110,45,可得4050,由此能确定110592的立方根的十位数是4,因此110592的立方根是48;(2)第一步:10=100=,1000219521000000<<,10100∴<,∴能确定21952的立方根是个两位数.第二步:21952的个位数是2,38512=,∴能确定21952的立方根的个位数是8.第三步:如果划去21952后面的三位952得到数21,23<,可得2030,由此能确定21952的立方根的十位数是2,因此21952的立方根是28.28,故答案为:28.【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度.29.(1) 111n n -+;(2)①20192020;②1n n +;(3) 50101. 【分析】(1)根据题目中的式子可以写出第n 个式子的结果;(2)①根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值; ②根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值;(3)根据题目中式子的特点,可以求得所求式子的值.【详解】解:(1)由题目中的式子可得,111(1)1n n n n =-++, 故答案为:111n n -+; (2)①111112233420192020++++⨯⨯⨯⨯ 111111112233420192020-+-+-++-= 211200=- 20192020=, 故答案为:20192020; ②1111122334(1)n n ++++⨯⨯⨯+11111111223341n n =-+-+-+⋯+-+ 111n =-+ 1n n =+, 故答案为:1n n +; (3)111113355799101++++⨯⨯⨯⨯ 11111111123355799101⎛⎫=⨯-+-+-++- ⎪⎝⎭ 1112101⎛⎫=⨯- ⎪⎝⎭ 11002101=⨯ 50101=. 【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值.30.(1)1115656=-⨯,()11111n n n n =-⨯++;(2)①4950;②1465119800【分析】(1)根据规律可得第5个算式;根据规律可得第n 个算式;(2)①根据运算规律可得结果.②利用非负数的性质求出a 与b 的值,代入原式后拆项变形,抵消即可得到结果. 【详解】(1)根据规律得:第5个等式是1115656=-⨯,第n 个等式是()11111n n n n =-⨯++; (2)①11111223344950⨯⨯⨯⨯++++, 111111111223344950=-+-+-++-, 1150=-, 4950=;②a 0=,1a ,3b =, 原式111111324354698100=+++++⨯⨯⨯⨯⨯,11111111111111=⨯-+⨯-+⨯-⨯-++⨯-,(1)()()+()() 23224235246298100 1111111111(1)=⨯-+-+-+-++-,23243546981001111(1)=⨯+--,229910014651=.19800【点睛】本题主要考查了数字的变化规律,发现规律,运用规律是解答此题的关键.。

人教版初中数学七年级数学下册第二单元《实数》测试卷(有答案解析)

人教版初中数学七年级数学下册第二单元《实数》测试卷(有答案解析)

一、选择题1.下列各数中比3-小的数是( ) A .2-B .1-C .12-D .02.如图,数轴上表示实数5的点可能是( )A .点PB .点QC .点RD .点S3.下列各数中无理数共有( ) ①–0.21211211121111,②3π,③227,④8,⑤39.A .1个B .2个C .3个D .4个4.如图,在数轴上表示1,3的对应点分别为A B 、,点B 关于点A 的对称点为C ,则点C 表示的数为( )A 31B .13C .23D 32 581 )A .3B .﹣3C .±3D .66.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★abb;若a b <,则a ★bba.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b+<★ A .①B .②C .①②D .①②③7.85 ) A .4B .5C .6D .7 8.下列计算正确的是( ) A 11-=-B 2(3)3-=-C 42=±D 31182-=-9.和数轴上的点一一对应的数是( ) A .自然数B .有理数C .无理数D .实数10.若将2-711分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .2-B 7C 11D .无法确定11.下列说法正确的有( ) (1)带根号的数都是无理数; (2)立方根等于本身的数是0和1; (3)a -一定没有平方根;(4)实数与数轴上的点是一一对应的; (5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a ,a 一定是一个无理数. A .1个 B .2个 C .3个 D .4个 12.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( )A .1或﹣1B .-5或5C .11或7D .-11或﹣7二、填空题13.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-380,134-14.对于有理数,a b ,我们规定*a b b ab =- (1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值. 15.计算:(1238127(5)-- (2)03(0)8|32|π--+ (3)解方程:4x 2﹣9=0.16.若一个正数的平方根是3m +和215m -,n 的立方根是2-,则2n m -+的算术平方根是______.17.以下几种说法:①正数、负数和零统称为有理数;②近似数1.70所表示的准确数a 的范围是1.695 1.705a <;164±;④立方根是它本身的数是0和1;其中正确的说法有:_____.(请填写序号) 18.计算:(1)(1)|2|3-⨯-+ (2)2111(3)162⎛⎫-+--- ⎪⎝⎭19.若一个正数的平方根是21a -和5a -,则这个正数是______. 20.有个数值转换器,原理如图所示,当输入x 为27时,输出的y 值是________________.三、解答题21.计算:(1)82(22)-+ (2)()238272+--22.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________; (2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.23.(1)小明解方程2x 1x a332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少?(2)设x ,y 是有理数,且x ,y 满足等式2x 2y 2y 1742++=-,求x-y 的值. 24.把下列各数表示在数轴上,并把这些数按从大到小的顺序用“>”连接起来. 0,327-,()2--,1--,9,22-25.“*”是规定的一种运算法则:a*b=a 2-3b . (1)求2*5的值为 ; (2)若(-3)*x=6,求x 的值;26.已知52a +的立方根是3,31a b +-的算术平方根是4,c 11的整数部分. (1)求a ,b ,c 的值; (2)求3a b c -+的平方根.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A【分析】根据实数比较大小的方法分析得出答案即可. 【详解】A .|2|2-=,|= ∴2>2∴-<B .|1|1-=,|= ∴1<,1∴->C .1122-=,|=, 1∴->2D .0> 故选:A . 【点睛】此题主要考查了实数的大小比较,正确掌握比较方法是解题的关键.2.B解析:B 【分析】【详解】 ∵23<<,∴Q .故选:B . 【点睛】3.C解析:C 【分析】根据无理数的概念确定无理数的个数即可解答. 【详解】解:无理数有3π3个. 故答案为C .本题主要考查了无理数的定义,无理数主要有以下三种①带根号且开不尽方才是无理数,②无限不循环小数为无理数,③π的倍数.4.C解析:C 【分析】首先根据表示1A 、点B 可以求出线段AB 的长度,然后根据点B 和点C 关于点A 对称,求出AC 的长度,最后可以计算出点C 的坐标. 【详解】解:∵表示1A 、点B , ∴AB−1,∵点B 关于点A 的对称点为点C , ∴CA =AB ,∴点C 的坐标为:1−1)= 故选:C . 【点睛】本题考查的知识点为实数与数轴,解决本题的关键是求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.5.A解析:A 【分析】9,再利用算术平方根的定义求出答案. 【详解】 ∵9,∴3,故选:A . 【点睛】.6.A解析:A 【分析】①根据新运算a b ★的运算方法,分类讨论:a b ≥,a b <,判断出a b ★是否等于b a ★即可;②由①,推得=a b b a ★★,所以()()1a b b a =★★不一定成立; ③应用放缩法,判断出1a b a b+★★与2的关系即可. 【详解】解:①a b ≥时, a a b b ★, b a ab★, ∴=a b b a ★★;a b <时,a b b a ★, b b aa★, ∴=a b b a ★★; ∴①符合题意.②由①,可得:=a b b a ★★, 当a b ≥时,∴()()()()22a b b a a b a a a b b b ba b ====★★★★, ∴()()a b b a ★★不一定等于1,当a b <时,∴()()()()22a b b a a b b b b a a a aa b ====★★★★, ∴()()a b b a ★★不一定等于1,∴()()1a b b a =★★不一定成立, ∴②不符合题意.③当a b ≥时,0a >,0b >,∴1ab≥,∴(12a b a b a b ab ++====≥≥★★,当a b <时,∴(12a b a b a b ab ++====≥≥★★,∴12a ba b+<★★不成立,∴③不符合题意,∴说法中正确的有1个:①.故选:A.【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.7.B解析:B【分析】直接利用估算无理数的大小的方法得出23<<,进而得出答案.【详解】解:459<<,<<23<<,83882∴-<<-,586∴<,8∴5.故选:B.【点睛】8.D解析:D【分析】根据算术平方根、立方根的定义逐项判断即可得.【详解】A0,没有意义,此项错误;B3==,此项错误;C2=,此项错误;D12=-,此项正确;故选:D.【点睛】本题考查了算术平方根、立方根,熟练掌握算术平方根、立方根是解题关键.9.D解析:D 【分析】根据实数与数轴上的点是一一对应关系,即可得出. 【详解】解:根据实数与数轴上的点是一一对应关系. 故选:D . 【点睛】本题考查了实数与数轴的对应关系,任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.10.B解析:B 【分析】首先利用估算的方法分别得到间),从而可判断出被覆盖的数. 【详解】 ∵221,23<<,34<<而墨迹覆盖的范围是1-3 ∴故选B. 【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.11.B解析:B 【分析】根据无理数的定义、立方根与平方根、实数与数轴的关系逐个判断即可得. 【详解】(12=是有理数,说法错误; (2)立方根等于本身的数是0和±1,说法错误; (3)当a -为非负数时,a -有平方根,说法错误; (4)实数与数轴上的点是一一对应的,说法正确;(50=,说法错误;(6)由正方形的面积公式得:a =是无理数,说法正确;综上,说法正确的有2个, 故选:B . 【点睛】本题考查了无理数、实数的运算、立方根与平方根,掌握理解各概念和运算法则是解题关键.12.A解析:A 【分析】根据题意,利用平方根定义,绝对值的代数意义,以及有理数的乘法法则判断确定出x 与y 的值即可. 【详解】解:∵|x |=2,y 2=9,且xy <0, ∴x=2或-2,y=3或-3, 当x=2,y=-3时,x+y=2-3=-1; 当x=-2,y=3时,原式=-2+3=1, 故选:A . 【点睛】此题考查了有理数的乘方,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.二、填空题13.数轴见解析<<0<<【分析】根据用数轴表示数的方法在数轴上先表示出各数再由数轴上右边的数总比左边的数大把这些数用<连接即可【详解】解:在数轴上表示各数如图:∴<<0<<【点睛】本题主要考查了实数的大解析:数轴见解析,13-< 1.5-<0<38<4-. 【分析】根据用数轴表示数的方法,在数轴上先表示出各数,再由“数轴上右边的数总比左边的数大”把这些数用“<”连接即可. 【详解】解:在数轴上表示各数如图:∴13 1.5-<0384-. 【点睛】本题主要考查了实数的大小比较的方法,掌握利用数轴比较实数的大小是解题的关键.14.(1)3;(2)【分析】(1)由新定义的运算法则进行计算即可得到答案;(2)由新定义列出方程解方程即可得到答案【详解】解:∵∴;(2)由题意则∵∴解得:【点睛】本题考查了一元一次方程新定义的运算法则解析:(1)3;(2)1x =. 【分析】(1)由新定义的运算法则进行计算,即可得到答案; (2)由新定义列出方程,解方程即可得到答案. 【详解】解:∵*a b b ab =-,∴(2)*11(2)1123-=--⨯=+=; (2)由题意,则 ∵(2)*36x -=,∴(2)*333(2)6x x -=--=, 解得:1x =. 【点睛】本题考查了一元一次方程,新定义的运算法则,解题的关键是掌握运算法则进行解题.15.(1)-8;(2)1﹣;(3)x =±【分析】(1)利用算数平方根立方根及二次根式性质计算即可;(2)利用零指数幂立方根及绝对值的代数意义进行化简即可;(3)方程变形后利用开方运算即可求解【详解】解:解析:(1)-8;(2)13)x =±32. 【分析】(1)利用算数平方根、立方根及二次根式性质计算即可; (2)利用零指数幂、立方根及绝对值的代数意义进行化简即可; (3)方程变形后,利用开方运算即可求解. 【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-= (3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键.16.4【分析】首先根据平方根的定义求出m 值再根据立方根的定义求出n 代入-n+2m 求出这个值的算术平方根即可【详解】解:∵一个正数的两个平方根分别是m+3和2m-15∴m+3+2m-15=0解得:m=4∵解析:4 【分析】首先根据平方根的定义,求出m 值,再根据立方根的定义求出n ,代入-n+2m ,求出这个值的算术平方根即可. 【详解】解:∵一个正数的两个平方根分别是m+3和2m-15, ∴m+3+2m-15=0,解得:m=4,∵n的立方根是-2,∴n=-8,把m=4,n=-8代入-n+2m=8+8=16,所以-n+2m的算术平方根是4.故答案为:4.【点睛】本题考查了平方根、算术平方根、立方根.解题的关键是掌握平方根、算术平方根、立方根的定义,能够利用定义求出m、n值,然后再求-n+2m的算术平方根.17.②【分析】根据有理数近似数字平方根立方根等概念即可判断【详解】解:①正有理数负有理数和零统称为有理数故原说法错误;②根据四舍五入可知近似数170所表示的准确数的范围是说法正确;③的平方根是原说法错误解析:②【分析】根据有理数、近似数字、平方根、立方根等概念即可判断.【详解】解:①正有理数、负有理数和零统称为有理数,故原说法错误;②根据四舍五入可知,近似数1.70所表示的准确数a的范围是1.695 1.705a<,说法正确;4=的平方根是2±,原说法错误;④立方根是它本身的数是0和±1,原说法错误;故答案为:②.【点睛】本题考查学生对概念的理解,解题的关键是正确理解有理数、近似数字、平方根、立方根等概念,本题属于基础题型.18.(1)1;(2)【分析】(1)先计算绝对值再计算乘法最后计算加法;(2)先同时计算乘方减法化简算术平方根再计算乘法最后计算加减法【详解】(1)==-2+3=1;(2)===【点睛】此题考查有理数的混解析:(1)1;(2)1 112.【分析】(1)先计算绝对值,再计算乘法,最后计算加法;(2)先同时计算乘方、减法、化简算术平方根,再计算乘法,最后计算加减法.【详解】(1)(1)|2|3-⨯-+=(1)23-⨯+=-2+3=1;(2)2111(3)2⎛⎫-+--- ⎪⎝⎭=11(3)42-+--⨯ =1122-+ =1112. 【点睛】此题考查有理数的混合运算,掌握绝对值的化简,乘方法则,求数的算术平方根,有理数的加减法计算法则,乘除法计算法则是解题的关键.19.9【分析】由于一个正数的两个平方根互为相反数得:2a-1+a-5=0解方程即可求出a 然后依据平方根的定义求解即可【详解】解:由题可知:2a-1+a-5=0解得:a=2这个正数为=(2-5)2=9故答解析:9【分析】由于一个正数的两个平方根互为相反数,得:2a-1+ a-5=0,解方程即可求出a ,然后依据平方根的定义求解即可.【详解】解:由题可知:2a-1+ a-5=0,解得:a=2.这个正数为=(2-5)2=9.故答案为:9.【点睛】本题主要考查的是平方根的定义,熟练掌握平方根的定义和性质是解题的关键. 20.【分析】计算x 的立方根:当x=2727的立方根为3再把x=3代入得到它是无理数于是得到输出的值为【详解】解:当x=27时=33是有理数当x=3时为无理数所以输出的值为故答案为【点睛】本题考查了立方根【分析】计算x 的立方根:当x=27,27的立方根为3,再把x=3,它是无理数,于是.【详解】解:当x=27=3,3是有理数,当x=3..【点睛】本题考查了立方根:若一个数的立方等于a ,那么这个数叫a三、解答题21.(1)-2;(2)【分析】(1)原式去括号合并即可得到结果;(2)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解:(1)原式=2- 2=-(2)原式22=+=【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.22.(1);(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示∴点B 表示∴m =.(2)∵m = ∴12130m +=+=>,12110m -=-=< ∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +∴20c d +=∴2040c d d +=⎧⎨+=⎩∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-= ∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.23.(1)x =−13;(2)(2)x-y 的值为9或-1.【分析】(1)将错就错把x =2代入计算求出a 的值,即可确定出正确的解;(2)根据题意可以求得x 、y 的值,从而可以求得x−y 的值.【详解】(1)把x =2代入2(2x−1)=3(x +a )−3中得:6=6+3a−3,解得:a =1, 代入方程得:2x 1x 1332-+=-, 去分母得:4x−2=3x +3−18,解得:x =−13;(2)∵x 、y 是有理数,且 x ,y 满足等式2x 2y 17++=-∴22174x y y ⎧+=⎨=-⎩, 解得,54x y =⎧⎨=-⎩或54x y =-⎧⎨=-⎩, ∴当x =5,y =−4时,x−y =5−(−4)=9,当x =−5,y =−4时,原式=−5−(−4)=−1.故x-y 的值为9或-1.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.也考查了实数.24.()22012>-->>-->>- 【分析】先把各数化简,在数轴上表示出各数,再根据“在数轴上,右边的数总比左边的数大”把这些数按从大到小的顺序用“>”连接起来.【详解】解:3273-=-,()22--=,11--=-,93=,224-=-,在数轴上表示为:按从大到小的顺序用>()239201272>-->>-->->-. 【点睛】本题主要考查了实数的大小比较,解题的关键是准确在数轴上表示实数,并利用数轴对实数的大小进行比较.25.(1)-11;(2)x=1.【分析】(1)根据新运算的规则,把新运算转化成普通有理数的计算,再按有理数相关计算法则计算即可;(2)根据新运算的规则,把等式左边的新运算转化成普通有理数运算,从而把等式转化成一元一次方程,再解一元一次方程即可.【详解】(1)∵ a ∗b= 23a b -,∴ 2∗5=223541511-⨯=-=- ;(2)∵ a ∗b=23a b -,∴ (−3)∗x=()23393x x --=- 即936x -=解此方程得:1x =.【点睛】本题考察有关新运算的问题,首先要弄清把新运算转化为普通运算的规则,然后根据规则把新运算部分转化为普通运算,再按普通运算的相关计算法则计算即可.26.(1)5a =,2b =,3c =;(3)4±【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵52a +的立方根是3,31a b +-的算术平方根是4,∴5227a +=,3116a b +-=,∴5a =,2b =;∵3114<<,c 11的整数部分,∴3c =;(2)当5a =,2b =,3c =时,3152316-+=-+=,16的平方根是4±a b c-+的平方根是4±.∴3a b c【点睛】本题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.。

(必考题)初中七年级数学下册第六单元《实数》经典练习(含答案解析)

(必考题)初中七年级数学下册第六单元《实数》经典练习(含答案解析)

一、选择题1.有下列四种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③平方根等于它本身的数为0和1;④没有最大的正整数,但有最小的正整数;其中正确的个数是( )A .1B .2C .3D .4C 解析:C【分析】根据实数的定义,实数与数轴上的点一一对应,平方根的定义可得答案.【详解】①数轴上有无数多个表示无理数的点是正确的;②2=;③平方根等于它本身的数只有0,故本小题是错误的;④没有最大的正整数,但有最小的正整数,是正确的.综上,正确的个数有3个,故选:C .【点睛】本题主要考查了实数的有关概念,正确把握相关定义是解题关键.2.27(7)0y z ++-=,则x y z -+的平方根为( )A .±2B .4C .2D .±4D 解析:D【分析】根据绝对值,平方,二次根式的非负性求出x ,y ,z ,算出代数式的值计算即可;【详解】∵27(7)0y z ++-=,∴207070x y z -=⎧⎪+=⎨⎪-=⎩,解得277x y z =⎧⎪=-⎨⎪=⎩,∴()27716x y z -+=--+=,∴4=±;故选:D.【点睛】本题主要考查了平方根的求解,结合绝对值、二次根式的非负性计算是解题的关键.3.下列说法中,正确的是()A.64的平方根是8 B4和-4C.()23-没有平方根D.4的平方根是2和-2D解析:D【分析】根据平方根的定义与性质,结合各选项进行判断即可.【详解】A、64的平方根是±8,故本选项错误;B4=,4的平方根是±2,故本选项错误;C、()239-=,9的平方根是±3,故本选项错误;D、4的平方根是±2,故本选项正确.故选:D.【点睛】本题考查了平方根的知识,如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.注意,一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.4)A.3 B.﹣3 C.±3 D.6A解析:A【分析】9,再利用算术平方根的定义求出答案.【详解】∵9,∴3,故选:A.【点睛】. 5.已知实数a的一个平方根是2-,则此实数的算术平方根是()A.2±B.2-C.2 D.4C解析:C【分析】根据平方根的概念从而得出a的值,再利用算术平方根的定义求解即可.【详解】∵-2是实数a的一个平方根,∴4a =,∴4的算术平方根是2,故选:C .【点睛】本题主要考查了平方根以及算术平方根,在解题时要注意一个正数有两个平方根,它们互为相反数.一个正数的算术平方根是它的正的平方根.6.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★a b b;若a b <,则a ★b b a.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b +<★ A .①B .②C .①②D .①②③A 解析:A【分析】 ①根据新运算a b ★的运算方法,分类讨论:a b ≥,a b <,判断出a b ★是否等于b a ★即可;②由①,推得=a b b a ★★,所以()()1a b b a =★★不一定成立;③应用放缩法,判断出1a b a b+★★与2的关系即可. 【详解】解:①a b ≥时,a a bb ★, b a a b ★, ∴=a b b a ★★;a b <时,a b ba ★,b b a a★, ∴=a b b a ★★;∴①符合题意.②由①,可得:=a b b a ★★,当a b ≥时,∴()()()()22a b b a a b aa a ab b b ba b ====★★★★,∴()()a b b a ★★不一定等于1,当a b <时,∴()()()()22a b b a a b bb b b aa a aa b ====★★★★, ∴()()a b b a ★★不一定等于1,∴()()1a b b a =★★不一定成立,∴②不符合题意. ③当a b ≥时,0a >,0b >, ∴1a b≥,∴(12a b a b a b b a ab ab ++===+=≥≥★★, 当a b <时,∴(12a b a b a b a b ab ab ++===+=≥≥★★, ∴12a b a b +<★★不成立, ∴③不符合题意,∴说法中正确的有1个:①.故选:A .【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.7.下列说法中,错误的有( )①符号相反的数与为相反数;②当0a ≠时,0a >;③如果a b >,那么22a b >;④数轴上表示两个有理数的点,较大的数表示的点离原点较远;⑤数轴上的点不都表示有理数.A .0个B .1个C .2个D .3个D解析:D【分析】根据相反数、绝对值、数轴表示数以及有理数的乘法运算等知识综合进行判断即可.【详解】解:符号相反,但绝对值不等的两个数就不是相反数,例如5和-3,因此①不正确; a≠0,即a >0或a <0,也就是a 是正数或负数,因此|a|>0,所以②正确;例如-1>-3,而(-1)2<(-3)2,因此③不正确;例如-5表示的点到原点的距离比1表示的点到原点的距离远,但-5<1,因此④不正确; 数轴上的点与实数一一对应,而实数包括有理数和无理数,因此⑤正确;综上所述,错误的结论有:①③④,故选:D .【点睛】本题考查相反数、绝对值、数轴表示数,对每个选项进行判断是得出正确答案的前提. 8.下列实数中,属于无理数的是( )A .3.14B .227CD .πD 解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、3.14是小数,是有理数,故A 选项错误;B 、227是有限小数,是有理数,故B 选项错误;C =2是整数,是有理数,故C 选项错误.D 、π是无理数,故D 选项正确故选:D .【点睛】本题考查了无理数的定义,无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.设,A B 均为实数,且A B ==,A B 的大小关系是( ) A .A B >B .A B =C .A B <D .A B ≥ D 解析:D【分析】根据算术平方根的定义得出A 是一个非负数,且m-3≥0,推出3-m≤0,得出B≤0,即可得出答案,【详解】解:∵A=∴A是一个非负数,且m-3≥0,∴m≥3,∵B=∵3-m≤0,即B≤0,∴A≥B,故选:D.【点睛】本题考查了算术平方根的定义,平方根和立方根,实数的大小比较等知识点,题目比较好,但有一定的难度.10.已知下列结论:①;②无理数是无限小数;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是()A.① ③B.②③C.③④D.②④B解析:B【分析】根据实数与数轴、无理数与有理数的定义逐个判断即可得.【详解】①,此结论错误;②无理数是无限小数,此结论正确;③实数与数轴上的点一一对应,此结论正确;④有理数有无限个,无理数有无限个,此结论错误;综上,正确的结论是②③,故选:B.【点睛】本题考查了实数与数轴、无理数与有理数的定义,掌握理解实数的相关概念是解题关键.二、填空题11.已知(2m﹣1)2=9,(n+1)3=27.求出2m+n的算术平方根.0或【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3然后再解方程即可;最后分别代入计算即可【详解】解:(2m-1)2=92m-1=±=±32m-1=3或2m-1解析:0.【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3,然后再解方程即可;最后分别代入计算即可.【详解】解:(2m-1)2=9,2m-1=±9=±3,2m-1=3或2m-1=-3,∴m=-1或m=2,(n+1)3=27,n+1=3,∴n=2,当m=-1,n=2时,2m+n=-2+2=0,∴2m+n的算术平方根是0;当m=2,n=2时,2m+n=4+2=6,∴2m+n的算术平方根是6;故2m+n的算术平方根是0或6.【点睛】此题考查了立方根与平方根的定义,此题难度不大,注意掌握方程思想的应用,不要丢解.12.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;(2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.-+的点,并比较它②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及35们的大小.(1);(2)①见解析;②见解析【分析】(1)设正方形边长为a根据正方形面积公式结合平方根的运算求出a值则知结果;(2)①根据面积相等利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正-+<-解析:(12,22)①见解析;②见解析,350.5(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示: ②设拼成的大正方形的边长为b ,∴b 2=5, ∴b=±5, 在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.13.计算:(1)2323615---(2)122334+(1)-4;(2)1【分析】(1)根据乘方开方绝对值的意义化简再计算即可;(2)先根据绝对值的意义脱去绝对值再计算即可求解【详解】解:(1)=-4+6-1-5=-4;(2)=-1+2=1【点睛】本题解析:(1)-4;(2)1.(1)根据乘方、开方、绝对值的意义化简,再计算即可;(2)先根据绝对值的意义脱去绝对值,再计算即可求解.【详解】解:(1)225--=-4+6-1-5=-4;(2)1)1=++1=+1=-+=-1+2=1.【点睛】本题考查了实数的性质与运算,熟知实数的运算法则和性质是解题关键.14.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____.3;【分析】由可求出由可分别求出继而可计算出结果【详解】解:(1)由题意可知:则(2)由题意可知:则∴故答案为:3;【点睛】本题主要考查定义新运算读懂题意掌握运算方法是解题关键 解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知: 4216=,43=81,则2log 164=,3log 814=, ∴223141(log 16)log 811617333+=+=,故答案为:3;1173. 【点睛】 本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.15.实数2-,227,π-中属于无理数的是________.【分析】根据无理数的三种形式:①开方开不尽的数②无限不循环小数③含有π的数找出无理数的个数【详解】解:在这5个数中属于无理数的有这2个数故答案是:【点睛】本题考查了无理数的知识解答本题的关键是掌握无,π- 【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】3=-,在2-,227,π-5, π-,这2个数,π-. 【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.16.把下列各数填在相应的横线里:3,0,10%,﹣112,﹣|﹣12|,﹣(﹣5),2π,0.6,127,0.101001000… 整数集合:{_____________…};分数集合:{_____________…};无理数集合:{_____________…};非负有理数集合{_____________…}.30﹣|﹣12|﹣(﹣5)10﹣100101001000…3010﹣(﹣5)0【分析】按照有理数的分类填写【详解】解:整数集合:(30﹣|﹣12|﹣(﹣5)…);分数集合:(10﹣10);无理数集合解析:3,0,﹣|﹣12|,﹣(﹣5) 10%,﹣112,0.6⋅,127 2π,0.101001000… 3,0,10%,﹣(﹣5),0.6⋅,127 【分析】按照有理数的分类填写.【详解】解:整数集合:( 3,0,﹣|﹣12|,﹣(﹣5)…);分数集合:( 10%,﹣112,0.6⋅,127); 无理数集合:( 2π,0.101001000…); 非负有理数集合( 3,0,10%,﹣(﹣5),0.6⋅,127).故答案为:3,0,﹣|﹣12|,﹣(﹣5);10%,﹣112,0.6⋅,127;2π,0.101001000;3,0,10%,﹣(﹣5),0.6⋅,127. 【点睛】 本题考查了有理数的分类.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.17.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)求11m m ++-的值;(2)在数轴上还有C 、D 两点分别表示实数c 和d ,且有2c d +4d +数,求23c d -的平方根.(1)2;(2)±4【分析】(1)先求出m =2进而化简|m +1|+|m−1|即可;(2)根据相反数和非负数的意义列方程求出cd 的值进而求出2c−3d 的值再求出2c−3d 的平方根【详解】(1)由题意得 解析:(1)2;(2)±4【分析】(1)先求出m =22-,进而化简|m +1|+|m−1|,即可;(2)根据相反数和非负数的意义,列方程求出c 、d 的值,进而求出2c−3d 的值,再求出2c−3d 的平方根.【详解】(1)由题意得:m =22-,则m +1>0,m−1<0,∴|m +1|+|m−1|=m +1+1−m =2;(2)∵2c d +4d +∴2c d +4d +,∴|2c +d|=04d +0,解得:c =2,d =−4,∴2c−3d =16,∴2c−3d 的平方根为±4.【点睛】本题主要考查数轴、相反数的定义,求绝对值,掌握求绝对值的法则以及绝对值与算术平方根的非负性,是解题的关键.18.求下列各式中的x 的值(1)21(1)82x +=;(2)3(21)270x -+=(1)或;(2)【分析】(1)适当变形后利用平方根的定义即可解方程;(2)适当变形后利用立方根的定义即可解方程【详解】解:(1)两边乘以2得开平方得即或∴或;(2)移项得开立方得解得【点睛】本题考查解析:(1)3x =或5x =-;(2)1x =-.【分析】(1)适当变形后,利用平方根的定义即可解方程;(2)适当变形后,利用立方根的定义即可解方程.【详解】解:(1)21(1)82x += 两边乘以2得,2(1)16x +=,开平方得,14x +=±,即14x +=或14x +=-,∴3x =或5x =-;(2)3(21)270x -+=移项得,3(21)27x -=-,开立方得,213x -=-,解得,1x =-.【点睛】本题考查的是利用平方根,立方根的含义解方程,掌握平方根与立方根的定义和等式的性质是解题的关键.19.请仔细阅读材料并完成相应的任务.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求它的立方根(提示:59319是一个整数的立方).华罗庚脱口而出答案,邻座的乘客十分惊奇,忙问计算的奥妙.你知道华罗庚是怎样迅速准确地计算出来的吗?(1)由3101000=,31001000000=,11000593191000000<<______位数;(2)由59319的个位数字是9______;(3)如果划去59319后面的319得到数59,而3327=,3464=上的数是______.(1)两(2)9(3)3【分析】(1)根据题意可以确定为两位数;(2)只有9的立方的个位数字才是9据此可判断;(3)<59<据此可判断【详解】解:(1)∵103=10001003=1 000 000解析:(1)两 (2)9 (3)3.【分析】(1)根据题意可以确定为两位数;(2)只有9的立方的个位数字才是9,据此可判断;(3)33<59<34,据此可判断.【详解】解:(1)∵103=1000,1003=1 000 000,而1000<59319<1000000,∴10100,因此结果为两位数;故答案是:两;(2)因为只有9的立方的个位数字才是9,因此结果的个位数字为9,故答案是:9;(3)∵33<59<343.故答案为:3.【点睛】考查实数的意义,立方根的意义以及立方的尾数特征等知识,理解题意是关键.20.若30a +=,则+a b 的立方根是______.-1【分析】根据绝对值和二次根式的非负性求出ab 的值计算即可;【详解】∵∴∴∴∴的立方根-1故答案是-1【点睛】本题主要考查了代数式求值结合绝对值二次根式的非负性立方根的性质计算是解题的关键解析:-1【分析】根据绝对值和二次根式的非负性求出a ,b 的值计算即可;【详解】∵30a ++=,∴30a +=,20b -=,∴3a =-,2b =, ∴321a b +=-+=-,∴+a b 的立方根-1. 故答案是-1.【点睛】本题主要考查了代数式求值,结合绝对值、二次根式的非负性、立方根的性质计算是解题的关键.三、解答题21.计算:(1321(2)(10)4---⨯-(2)225(24)-⨯--÷解析:(1)-12,(2)-12.【分析】(1)、(2)两小题都属于实数的混合运算,先计算乘方和开方,再计算乘除,最后再算加减即可得出结果.【详解】解:(1321(2)(10)4---⨯- 1100458=⨯+- 1325=-12=-,(2)225(24)-⨯--÷45(24)3=-⨯--÷208=-+12=-.【点睛】本题考查了实数的混合运算,根据算式确定运算顺序并运用相应的运算法则正确计算是解题的关键.22.计算:(12)-+(2解析:(1)-2;(2)【分析】 (1)原式去括号合并即可得到结果;(2)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解:(1)原式=2-2=-(2)原式22=+=【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.23.计算:(1)132322⎛⎫⨯-⨯-⎪⎝⎭ (2)2291|11232⎛⎫-+-⨯- ⎪⎝⎭解析:(1)32;(2). 【分析】(1)直接利用有理数混合运算法则计算得出答案;(2)原式先计算乘方,再计算乘法运算,进而算加减运算即可求出值.【详解】(1)原式=6-3×32=6-92=32;(2)原式=-1-23×152. 【点睛】本题主要考查了有理数和实数的混合运算,正确掌握运算法则是解题关键.24.观察下列各式,并用所得出的规律解决问题:(1=1.414=14.14==0.1732=1.732,=17.32…由此可见,被开方数的小数点每向右移动 位,其算术平方根的小数点向 移动 位;(2=2.236=7.071= ,= ;(3=1=10=100…小数点变化的规律是: .(4=2.154=4.642= ,= .解析:(1)两,右,一;(2)0.7071,22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54,﹣0.4642【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】(1=1.414=14=141.4…=0.1732=1.732=17.32…由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位,(2=2.236=7.071=0.7071=22.36,(3=1=10=100…小数点变化的规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵=2.154=4.642, ∴=21.54,=-0.4642.故答案为:(1)两;一;(2)0.7071;22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54;﹣0.4642【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.25.定义一种新运算,观察下列式子:212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值;(2)猜想:a b =★________;(3)若12162a +=-★,求a 的值. 解析:(1)0;(2)22ab ab +;(3)5a =-【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程,再进一步解方程即可.【详解】解:(1)∵212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;∴()()()232322320-=⨯-+⨯⨯-=★;(2)由(1)可得:22a b ab ab =+★.故答案为:22ab ab +.(3)2111222216222a a a +++=⨯+⨯⨯=-★, 解得:5a =-.【点睛】此题考查有理数的混合运算以及解一元一次方程,理解运算方法是解决问题的关键.26.计算:(1)225--(2)1+解析:(1)-4;(2)1.【分析】(1)根据乘方、开方、绝对值的意义化简,再计算即可;(2)先根据绝对值的意义脱去绝对值,再计算即可求解.【详解】解:(1)225--=-4+6-1-5=-4;(2)1)1=++1=+1=-+=-1+2=1.【点睛】本题考查了实数的性质与运算,熟知实数的运算法则和性质是解题关键. 27.解答下列各题.(1)已知2x +3与x -18是某数的平方根,求x 的值及这个数.(2)已知20c d -=,求d +c 的平方根.解析:(1)x =5,169或21x =-,1521;(2)±3【分析】(1)根据题意,这两个式子互为相反数,列方程求出x 的值,然后算出这个数; (2)根据绝对值和算术平方根的非负性求出c 和d 的值,再算出结果.【详解】(1)解:①23180x x ++-=,315x =,5x =,这个数是()2253169⨯+=,②2318x x +=-,21x =-,这个数是()221181521--=;(2)解:由题意得:2c -d =0,2360d -=,解得:d =±6,c =±3.∵当d =-6,c =-3时,d +c =-9(舍),∴d +c的平方根为.【点睛】本题考查平方根和算术平方根,解题的关键是掌握平方根和算术平方根的性质. 28.求满足下列条件的x 的值:(1)3(3)27x +=-;(2)2(1)218x -+=.解析:(1)6x =-;(2)3x =-或5【分析】(1)根据立方根,即可解答;(2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.。

专题10 实数的运算-2020-2021学年七年级数学下册常考题专练(人教版)(原卷版)

专题10 实数的运算-2020-2021学年七年级数学下册常考题专练(人教版)(原卷版)

专题10 实数的运算★ 知识归纳1.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。

我们已经学习过的非负数有如下三种形式:(1)任何一个实数的绝对值是非负数,即||≥0;(2)任何一个实数的平方是非负数,即≥0;(3().非负数具有以下性质:(1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0.2.实数的运算:数的相反数是-;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0. 有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.3.实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数 大; 法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.★ 实操夯实一.选择题(共12小题)a a a 2a 0≥0a ≥a a1.在3,0,﹣2,﹣四个数中,最小的数是()A.3B.0C.﹣2D.﹣2.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.2与(﹣)2D.|﹣|与3.定义一个新运算,若i1=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,i8=1,…,则i2020=()A.﹣i B.i C.﹣1D.14.在实数、3.1415、π、、、2.123122312223……(1和3之间的2逐次加1个)中,无理数的个数为()A.2个B.3个C.4个D.5个5.已知下列结论:①在数轴上能表示无理数,但不能表示无理数π;②两个无理数的和还是无理数;③实数与数轴上的点一一对应;④无理数是无限小数,其中正确的结论是()A.①②B.②③C.③④D.①③④6.下列说法中,正确的是()A.立方根等于本身的数只有0和1B.1的平方根等于1的立方根C.3<<4D.面积为6的正方形的边长是7.设n为正整数,且n<<n+1,则n的值为()A.7B.8C.9D.108.对于任意的实数m,n,定义运算“⊗”,规定m⊗n=,例如:3⊗2=32+2=11,2⊗3=22﹣3=1,计算(1⊗2)⊗(2⊗1)的结果为()A.﹣4B.0C.6D.129.如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC的中点,则点C所表示的数为()A.B.1﹣C.D.2﹣10.有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示.其中正确的说法的个数是()A.1B.2C.3D.411.估计2+的值在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间12.已知a,b为两个连续的整数,且a<<b,则a+b的值等于()A.7B.9C.11D.19二.填空题(共5小题)13.实数a、b在数轴上所对应的点如图所示,则|﹣b|+|a+|+的值.14.对于实数a、b,定义新运算“⊗”:a⊗b=a2﹣ab,如4⊗2=42﹣4×2=8.若x⊗4=﹣4,则实数x的值是.15.若[x]表示实数x的整数部分,例如:[3.5]=3,则[]=.16.下列说法:①无理数就是开方开不尽的数;②满足﹣<x<的x的整数有4个;③﹣3是的一个平方根;④不带根号的数都是有理数;⑤不是有限小数的不是有理数;⑥对于任意实数a,都有=a.其中正确的序号是.17.对于两个不相等的实数a,b,我们规定符号Min{a,b}表示a,b中的较小的值,如Min{2,4}=2,按照这个规定,方程Min(其中x≠0)的解为.三.解答题(共11小题)18.计算:(1)+|1﹣|;(2).19.(1);(2)计算.20.计算:(1)﹣12+﹣(﹣2)×(2)(+1)+|﹣2|21.观察图,每个小正方形的边均为1,可以得到每个小正方形的面积为1.(1)图中阴影部分的面积是;阴影部分正方形的边长是.(2)估计边长的值在整数和之间.(3)在数轴上作出阴影部分正方形边长的对应点(要求保留作图痕迹).22.计算下列各题:(1)(﹣)2×+×﹣(﹣5)3×;(2)(+3﹣)(﹣3﹣).23.已知x=,y=.(1)求x2+xy+y2.(2)若x的小数部分为a,y的整数部分为b,求ax+by的平方根.24.已知5a+b的立方根是3,3a+b﹣1的算术平方根是4,c是的整数部分.(1)求3a﹣b+c的平方根;(2)求关于x,y的方程ax+by+c=23所有非负整数解.25.阅读下面的文字,解答问题,例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)的整数部分是,小数部分是.(2)已知:9﹣小数部分是m,9+小数部分是n,且(x+1)2=m+n,请求出满足条件的x的值26.将下列各数填入相应的集合内.﹣7,0.32,,0,,,,π,0.1010010001…①有理数集合{ …}②无理数集合{ …}③负实数集合{ …}.27.如图,长方形ABCD的面积为300cm2,长和宽的比为3:2.在此长方形内沿着边的方向能否并排裁出两个面积均为147cm2的圆(π取3),请通过计算说明理由.28.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)的整数部分是,小数部分是.(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值;(3)已知:10+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.。

七年级数学下册《实数》单元测试卷(附答案解析)

七年级数学下册《实数》单元测试卷(附答案解析)

七年级数学下册《实数》单元测试卷(附答案解析)一.选择题1.在0,,,π,,0.010010001…(两个“1”之间依次多一个“0”)这些数中,无理数的个数有()A.1个B.2个C.3个D.4个2.9的算术平方根是()A.3 B.﹣3 C.±3 D.3.无理数的大小在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.如果,那么代数式x(x﹣5)﹣x2的值为()A.15 B.5 C.﹣5 D.﹣155.下列说法中,正确的是()A.B.﹣32的算术平方根是3C.D.0.01的平方根是0.16.已知实数x和y满足+(y3+8)2=0,则x+y的值为()A.0 B.﹣4 C.0或﹣4 D.±47.若m+4与m﹣2是同一个正数的两个平方根,则m的值为()A.3 B.﹣3 C.1 D.﹣1二.填空题8.比较大小:.(用“>”或“<”或“=”连接)9.计算:|﹣2022|=,(﹣1)2023=,=.10.立方根等于﹣4的数是.11.已知a的立方根是2,b是的整数部分,c是9的平方根,则a+b+c的算术平方根是.12.一个正方体形状的木箱容积是8m3,则此木箱的边长是m.13.现定义一个新运算“※”,规定对于任意实数x,y,都有x※y=+,则7※9的值为.14.按如图所示的程序计算,若输入的a=3,b=4,则输出的结果为.三.解答题15.计算:.16.已知5a﹣2的立方根是﹣3,2a+b﹣1的算术平方根是4,c是的整数部分,求3a+b+c 的平方根.17.计算:(1)﹣32+﹣|﹣5|×(﹣1)2022;(2).18.解方程:(1)9x2﹣729=0;(2)64(x﹣1)3+8=0.19.阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但是由于1<<2,所以的整数部分为1,将减去其整数部分1,所得的差﹣1就是其小数部分,根据以上的内容,解答下面的问题:(1)的整数部分是,小数部分是;(2)若设2+整数部分是x,小数部分是y,求3x﹣y的值.20.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来400m2的正方形场地改建成315m2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.参考答案一.选择题1.解:,∴无理数是,π,0.010010001…(两个“1”之间依次多一个“0”),共3个,故选:C.2.解:9的算术平方根是3,故选:A.3.解:∵9<14<16,∴3<<4;故选:C.4.解:∵,∴x(x﹣5)﹣x2=x2﹣5x﹣x2=﹣5x=﹣5×(﹣3)=15,故选:A.5.解:A、,故该选项错误,不符合题意;B、﹣32=﹣9,负数没有算术平方根,故该选项错误,不符合题意;C、,故该选项正确,符合题意;D、0.01的平方根是±0.1,故该选项错误,不符合题意,故选:C.6.解:由题意可知:x2﹣4=0,y3+8=0,∴x=±2,y=﹣2,∴x+y=0或﹣4,故选:C.7.解:∵m+4与m﹣2是同一个正数的两个平方根,∴m+4+m﹣2=0,解得m=﹣1,故选:D.二.填空题8.解:∵,∴.故答案为:>.9.解:|﹣2022|=2022,(﹣1)2023=﹣1,,故答案为:2022;﹣1;4.10.解:∵(﹣4)3=﹣64,∴立方根等于﹣4的数是﹣64,故答案为:﹣64.11.解:∵a的立方根是2,b是的整数部分,c是9的平方根,∴a=8,b=3,c=±3,当a=8,b=3,c=3时,a+b+c=14,∴a+b+c的算术平方根是;当a=8,b=3,c=﹣3,a+b+c=8,∴a+b+c的算术平方根是=2,故答案为:或2.12.解:设木箱的边长是xm,由题意得:x3=8,∴x==2(m).故答案为:2.13.解:7※9=+=+=4+4=8.故答案为:8.14.解:当a=3,b=4时,===5,所以输出的结果为5.故答案为:5.三.解答题15.解:=5﹣(﹣2)﹣2﹣=5﹣.16.解:∵5a﹣2的立方根是﹣3,∴5a﹣2=﹣27,∴a=﹣5,∵2a+b﹣1的算术平方根是4,∴2a+b﹣1=16,∴b=27,∵16<17<25,∴4<<5,∴的整数部分是4,∴c=4,∴3a+b+c=3×(﹣5)+27+4=﹣15+27+4=16,∴3a+b+c的平方根是±4.17.解:(1)﹣32+﹣|﹣5|×(﹣1)2022=﹣9+6﹣5×1=﹣9+6﹣5=﹣8.(2)=2﹣6+﹣1﹣2=3﹣9.18.解:(1)9x2﹣729=0,9x2=729,x2=81,x=±9;(2)64(x﹣1)3+8=0,(x﹣1)3=﹣,x﹣1=﹣,x=.19.解:(1)∵1<<2,∴的整数部分是1,小数部分是﹣1.故答案为:1,﹣1.(2)∵4<5<9,∴2<<3,∴4<2+<5,∴2+的整数部分是4,即x=4,2+的小数部分是(2+)﹣4=﹣2,即y=﹣2,∴3x﹣y=3×4﹣(﹣2)=12﹣+2=14﹣.20.解:(1)=20(m),4×20=80(m),答:原来正方形场地的周长为80m.(2)设这个长方形场地宽为3am,则长为5am.由题意有:3a×5a=315,解得:a=,∵3a表示长度,∴a>0,∴a=,∴这个长方形场地的周长为 2(3a+5a)=16a=16(m),∵80=16×5=16×>16,∴这些铁栅栏够用.答:这些铁栅栏够用.。

人教版七年级数学下册 实数 单元专题复习提升训练(,含答案)

人教版七年级数学下册  实数 单元专题复习提升训练(,含答案)

人教版七年级数学下册《实数》单元训练一、选择题1、关于12的叙述,错误的是( ) A.12是有理数 B .面积为12的正方形边长是12C.12=2 3 D .在数轴上可以找到表示12的点2、已知a 的算术平方根是8,则a 的立方根是( )A .±2B .2C .±4D .43、下列整数中,与最接近的整数是( )A .3B .4C .5D .64、下列各数是无理数的是( )A. 4 B .-13 C .π D .-15、下列等式一定成立的是( )A.9-4= 5 B .|1-3|=3-1 C.9=±3 D .--52=56、有一个数值转换器,原理如下图所示,当输入x 为64时,输出的y 是( )A .8B .C .D .7、-27的立方根与81的平方根的和是( )A .0B .-6C .0或-6D .68、若方程(x -5)2=19的两根为a 和b ,且a >b ,则下列结论中正确的是( )A .a 是19的算术平方根B .b 是19的平方根C .a -5是19的算术平方根D .b +5是19的平方根9、下列说法:①±3都是27的立方根;②的算术平方根是±;③﹣=2;④的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有( )A .1个B .2个C .3个D .4个10、对于“8”,有下列说法:①它是一个无理数;②它是数轴上离原点8个单位长度的点表示的数;③若a <8<a +1,则整数a 为2;④它表示面积为8的正方形的边长.其中正确的说法是( )A .①②③B .①③④C .②③④D .①②③④二、填空题11、2的立方是 ;23的立方是 ;512的立方根是 ;3512的立方根是 .12、在实数5、227、0、π2、36、-1.414、3-64中,无理数有 个.13、与﹣2最接近的整数是.14、已知有理数m、n满足|n-2|+m-1=0,则m-2n的值为.15、如果2a﹣1和5﹣a是一个数m的平方根,则m的值为.16、已知:2019≈44.93,201.9≈14.21,则20.19≈.17、如果3﹣6x的立方根是﹣3,则2x+6的平方根为.18、在实数﹣5,﹣,0,π,3中,最大的一个数是.19、已知实数a,b在数轴上的位置如图所示,则化简的结果是.20、观察数表:根据数表排列的规律,第10行从左向右数第8个数是.三、解答题21、求下列各式的值.(1)14-3-338+3-125;(2)-1916+3827+19+52-32.22、求下列各式中的x.(1)25(x+1)2=16;(2)127(x-1)3=1.23、已知某正数的两个平方根分别是a+3和2a-15,b的立方根是-2,求3a+b的算术平方根.24、已知2a-1=3,3a+b-1的平方根是±4,c是43的整数部分,求a+b+3c的平方根.25、一个正数的两个平方根为2n +1和n ﹣4,2n 是2m +4的立方根,39的小数部分是k , 求39+-+k n m 的平方根.26、张明想用一块面积为900cm 2的正方形纸片,沿着边的方向裁出一块面积为800cm 2的长方形纸片,使它的长与宽之比为5∶4,他是否能实现这一想法?请说明理由.27、对于一个实数m (m ≥0),规定其整数部分为a ,小数部分为b ,如:当m =3时,则a =3,b =0;当m =4.5时,则a =4,b =0.5.(1)当m =π时,b = ;当m =时,a = ;(2)当m =9﹣时,求a ﹣b 的值;(3)若a ﹣b =﹣1,则m = .28、观察下列各式,并用所得出的规律解决问题:(1)≈1.414,≈14.14,≈141.4…≈0.1732,≈1.732,≈17.32…由此可见,被开方数的小数点每向右移动 位,其算术平方根的小数点向 移动 位;(2)已知≈2.236,≈7.071,则≈ ,≈ ;(3)=1,=10,=100…小数点变化的规律是: .(4)已知=2.154,=4.642,则= ,= .答案)一、选择题1、关于12的叙述,错误的是( A ) A.12是有理数 B .面积为12的正方形边长是12C.12=2 3 D .在数轴上可以找到表示12的点2、已知a 的算术平方根是8,则a 的立方根是( D )A .±2B .2C .±4D .43、下列整数中,与最接近的整数是( )A .3B .4C .5D .6解:∵42=16,52=25,∴,又∵16与19的距离小于25与19的距离,∴与最接近的整数是4.故选:B .4、下列各数是无理数的是( C )A. 4 B .-13 C .π D .-15、下列等式一定成立的是( B )A.9-4= 5 B .|1-3|=3-1 C.9=±3 D .--52=56、有一个数值转换器,原理如下图所示,当输入x 为64时,输出的y 是( )A .8B .C .D .解:由题中所给的程序可知:把64取算术平方根,结果为8,因为8是有理数,所以再取算术平方根,结果为,是无理数,故y =.故选:B .7、-27的立方根与81的平方根的和是( C )A .0B .-6C .0或-6D .68、若方程(x -5)2=19的两根为a 和b ,且a >b ,则下列结论中正确的是( C )A .a 是19的算术平方根B .b 是19的平方根C .a -5是19的算术平方根D .b +5是19的平方根9、下列说法:①±3都是27的立方根;②的算术平方根是±;③﹣=2; ④的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有( )A .1个B .2个C .3个D .4个解:①3是27的立方根,原来的说法错误; ②的算术平方根是,原来的说法错误; ③﹣=2是正确的; ④=4,4的平方根是±2,原来的说法错误;⑤9是81的算术平方根,原来的说法错误.故其中正确的有1个.故选:A .10、对于“8”,有下列说法:①它是一个无理数;②它是数轴上离原点8个单位长度的点表示的数; ③若a <8<a +1,则整数a 为2;④它表示面积为8的正方形的边长.其中正确的说法是( B )A .①②③B .①③④C .②③④D .①②③④二、填空题11、2的立方是 ;23的立方是 ;512的立方根是 ;3512的立方根是 .答案:8 512 8 212、在实数5、227、0、π2、36、-1.414、3-64中,无理数有 2 个.13、与﹣2最接近的整数是 .解:因为3.52=12.25,42=16,而12.25<14<16,所以3.5<<4,所以1.5<﹣2<2,所以﹣2最接近的整数是2,故答案为:2.14、已知有理数m 、n 满足|n -2|+m -1=0,则m -2n 的值为 -3 .15、如果2a﹣1和5﹣a是一个数m的平方根,则m的值为.解:∵2a﹣1和5﹣a是一个数m的平方根,∴2a﹣1+5﹣a=0或2a﹣1=5﹣a,解得:a=﹣4或a=2.当a=﹣4时,2a﹣1=9,m=92=81;当a=2时,2a﹣1=3,m=32=9.故答案为:81或9.16、已知:2019≈44.93,201.9≈14.21,则20.19≈4.493.17、如果3﹣6x的立方根是﹣3,则2x+6的平方根为.解:由题意得,3﹣6x=﹣27,解得:x=5,∴2x+6=16,16的平方根为:±4.故答案为:±4.18、在实数﹣5,﹣,0,π,3中,最大的一个数是.解:∵﹣5<﹣<0<3<π,∴在实数﹣5,﹣,0,π,3中,最大的一个数是π.故答案为:π.19、已知实数a,b在数轴上的位置如图所示,则化简的结果是.解:∵a<0<b,∴=a+(b﹣a)=b.故答案为:b.20、观察数表:根据数表排列的规律,第10行从左向右数第8个数是 98 . 三、解答题 21、求下列各式的值. (1)14-3-338+3-125; (2)-1916+3827+19+52-32.解:(1)原式=21-)23(-+(-5)=-3(2)原式=4313245+++-=15422、求下列各式中的x.(1)25(x +1)2=16; (2)127(x -1)3=1.解:(1)∵25(x +1)2=16,即(x +1)2=1625,∴x +1=±1625,即x +1=±45,∴x =-95或x =-15(2)∵127(x -1)3=1,即(x -1)3=27,∴x -1=327,即x -1=3,∴x =423、已知某正数的两个平方根分别是a +3和2a -15,b 的立方根是-2,求3a +b 的算术平方根.解:∵某正数的两个平方根分别是a +3和2a -15,b 的立方根是-2,∴a +3+2a -15=0,b =(-2)3=-8.∴3a =12,b =-8,∴3a +b =4=2.24、已知2a -1=3,3a +b -1的平方根是±4,c 是43的整数部分,求a +b +3c 的平方根.解:∵2a -1=3,∴2a -1=9,解得a =5.∵3a +b -1的平方根是±4,∴15+b -1=16,解得b =2.∵c 是43的整数部分,∴c =6,∴a +b +3c =5+2+18=25,∴a +b +3c 的平方根是±5.25、一个正数的两个平方根为2n +1和n ﹣4,2n 是2m +4的立方根,39的小数部分是k ,求39+-+k n m 的平方根.解:∵一个数的平方根为2n+1和n﹣4,∴2n+1+n﹣4=0,∴n=1,∴2n=2,∵2n是2m+4的立方根,∴2m+4=8,解得m=2;∵,的小数部分是k,∴k=,∴=2+1﹣(﹣6)+=2+1﹣+6+=9.∴的平方根为±3.26、张明想用一块面积为900cm2的正方形纸片,沿着边的方向裁出一块面积为800cm2的长方形纸片,使它的长与宽之比为5∶4,他是否能实现这一想法?请说明理由.解:不能实现.理由如下:设长方形的长为5xcm,宽为4xcm,根据题意,得5x·4x=800,∴x=40.∴长方形纸片的长为540cm.∵6<40<7,∴30<540<35.∵900=30,∴正方形纸片的边长为30cm,∵540>30,∴张明的想法不能实现.27、对于一个实数m(m≥0),规定其整数部分为a,小数部分为b,如:当m=3时,则a=3,b=0;当m=4.5时,则a=4,b=0.5.(1)当m=π时,b=;当m=时,a=;(2)当m=9﹣时,求a﹣b的值;(3)若a﹣b=﹣1,则m=.解:(1)当m=π时,a=3,b=π﹣3;∵3<<4,∴当m=时,a=3;故答案为:π﹣3,3;(2)∵2<<3,∴﹣3<﹣<﹣2,∴9﹣3<9﹣<9﹣2,即6<9﹣<7,∴a=6,b=9﹣﹣6=3﹣,∴a﹣b=6﹣(3﹣)=3+;(3)∵25<30<36,∴5<<6,∴4<﹣1<5,∵a﹣b=﹣1,0<b<1,∴4<b+﹣1<6,即4<a<6,∵a≥0,且a为整数,∴a=5,b=5﹣(﹣1)=6﹣,∴m=a+b=5+6﹣=11﹣,故答案为:11﹣.28、观察下列各式,并用所得出的规律解决问题:(1)≈1.414,≈14.14,≈141.4…≈0.1732,≈1.732,≈17.32…由此可见,被开方数的小数点每向右移动位,其算术平方根的小数点向移动位;(2)已知≈2.236,≈7.071,则≈,≈;(3)=1,=10,=100…小数点变化的规律是:.(4)已知=2.154,=4.642,则=,=.解:(1)≈1.414,≈14.14,≈141.4…≈0.1732,≈1.732,≈17.32…由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位;(2)已知≈2.236,≈7.071,则≈0.7071,≈22.36;(3)=1,=10,=100…小数点变化的规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)已知≈2.154,≈4.642,则≈21.54,≈﹣0.4642.故答案为:(1)两;一;(2)0.7071;22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54;﹣0.4642。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学第十章 实数单元试卷
(满分:100分 考试时间:100分钟)
班级: 姓名: 座号:
一、耐心填一填,一锤定音! (本大题共12小题,每小题2分,共24分)
1. 请任意写出你喜欢的三个无理数: .
2. 下列各数227π中,无理数共有 个.
3. 的点表示的数是 . 平方根是 .算术平方根是 .
5. 一个数的立方根等于它本身,这个数是 .
6. ,2- 32
-.
7. 比大的负整数的和为 .比的实数是 .
2与2
-的大小关系为 . 9. 已知一个数的平方根为3a +与215a -,则这个数是 .
10. a a =,则____a
11. 已知实数x ,y 满足()2
1310x x y -++-=,的值是 .
12. 请你观察思考下列计算过程.
211121=∵ 111=
211112321=∵ 21111=
______=.
二、精心选一选,慧眼识金!(本大题共8小题,每小题3分,共24分)
13. 三个实数0.2-,12
-,1 )
A.10.212-<-< B.10.212
->->
C.10.212->>- D.110.22
>->- 14. 下列说法正确的是( )
A.无理数都是无限小数 B.有理数都是有限小数
C.无理数都是开方开不尽的数
D.带根号的数都是无理数 15. 下列说法正确的有( )
⑴一个数立方根的相反数等于这个数的相反数的立方根
⑵64的平方根是8±,立方根是4±
a a 的立方根

A.⑴⑶ B.⑵⑷ C.⑴⑷ D.⑴⑶⑷
16. 给出下列说法:①6-是36的平方根;②16的平方根是4;③2=;
⑤一个无理数不是正数就是负数.其中,正确的说法有( ) A.①③⑤ B.②④ C.①③ D.①
17. 343-开立方所得的数是( )
A.7± B.7- C.7 D.
18. 2.078=0.2708=,则y =( )
A.0.8966 B.0.008966 C.89.66 D.0.00008966
19. 以下四个命题
①若a 是无理数,则a 是有理数,则a 是
整数,④若a是自然数,其中,真命题的是()A.①④B.②③C.③D.④
20. 已知实数a满足1992a a
-+=,则2
a-的值是()
1992
A.1991 B.1992 C.1993 D.1994
三、用心做一做,马到成功!(本大题共8小题,第26题10分,其余每小题6分,共52分)
21.
22.计算:(21
-
23.计算:1-+
24.已知:()320.125
x-=-,求x的值.
25.已知:2
x-=,求x的值.
81250
26.若实数a,b,c在数轴上的位置如图,化简:---+--.
a b c a b c a
27.已知x、y互为倒数,c、d互为相反数,a的绝对值为3,z的算术平方根是
5,求22
-++的值。

c d xy
a
28.平面内有三个点,它们的坐标分别为A(1,B(3,C(2。

(1)依次连接A、B、C围成的三角形是一个什么图形?
(2)求这个图形的面积。

2005-2006 学年第二学期七年级数学单元试卷(六)参考答案一、填空题:
1. 如:π
. 2. 2个.
3.
4. 3
±,3 . 5. 0,1±. 6.>,<. 7. 3-,0.
2
2
>-. 9. 49. 10. ≥.
11. 3. 12. 111111111.
二、选择题:
13.C. 14. A. 15.C. 16.A. 17.B.
18.B. 19.D. 20.C.
三、解答题:
22
22
22
1124
12
1.7
2.89 1.8
3.24
1.7 1.8
1.73
2.9929 1.74
3.0276
1.73 1.74
==
∴<<
==
∴<<
==
∴<<
21.解:


22. 23. 4
3
- 24. 1.5
x= 25.
5
9
x=±
26. a. 27. 8
3
或2
3
-
28.(1)是一个等腰三角形(2。

相关文档
最新文档