简单回归分析计算例
SPSS教程-简单回归分析-案例及结果解释

案例:
10学生中考和末考成绩如下,请问以中考成绩来预测末考成绩的回归分析如何?输入数据,点分析-回归-线性
结果:
模型汇总
模型R R 方调整R 方标准估计的误
差
1 .822a.676 .635 2.729
a. 预测变量: (常量), 中考成绩。
Anova b
模型平方和df 均方 F Sig.
1 回归124.038 1 124.038 16.660 .004a
残差59.562 8 7.445
总计183.600 9
R平方的F检验为16.660,达显著水平。
系数估计:个别变量,B,beta及显著性检验。
中考变量beta为0.822,达显著水平。
结果分析:
以中考成绩预测末考成绩,为单一回归分析,由于数学基础相同,简单回归与相关分析的主要结果相同。
Pearson相关系数、Multiple R与Beta皆为0.822,这几个系数的检验值均相同,达显著水平。
R平方则提供回归变异量,显示中考成绩预测末考成绩有63.5%的解释力,F(1,8)=16.66,p=0.004,显示该解释力具有统计上的意义。
系数估计的结果指出,中考成绩能够有效预测末考成绩,beta系数达0.822(t=4.082, p=0.004), 表示中考成绩越高,末考成绩越好。
回归计算公式举例分析

回归计算公式举例分析回归分析是一种统计方法,用于研究变量之间的关系。
它可以帮助我们了解一个或多个自变量对因变量的影响程度,以及它们之间的关联性。
在实际应用中,回归分析被广泛应用于经济学、金融学、社会学、医学等领域,用于预测、解释和控制变量之间的关系。
回归分析的基本公式如下:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε。
其中,Y表示因变量,X1、X2、...、Xn表示自变量,β0表示截距,β1、β2、...、βn表示自变量的系数,ε表示误差项。
下面我们以一个简单的例子来说明回归分析的计算公式。
假设我们想研究一个人的身高(Y)与其父母的身高(X1、X2)之间的关系。
我们收集了100对父母和子女的身高数据,并进行回归分析。
首先,我们需要建立回归方程:Y = β0 + β1X1 + β2X2 + ε。
然后,我们使用最小二乘法来估计回归系数β0、β1、β2。
最小二乘法是一种常用的参数估计方法,它可以最小化误差平方和,找到最优的回归系数。
假设我们得到了如下的回归方程:Y = 60 + 0.5X1 + 0.3X2 + ε。
接下来,我们可以使用这个回归方程来进行预测。
比如,如果一个孩子的父母身高分别为170cm和165cm,那么根据回归方程,这个孩子的身高预测值为:Y = 60 + 0.5170 + 0.3165 = 60 + 85 + 49.5 = 194.5。
这个预测值可以帮助我们了解一个孩子的身高可能在哪个范围内,以及父母的身高对孩子身高的影响程度。
除了预测,回归分析还可以帮助我们了解变量之间的关系。
比如,根据回归系数,我们可以得知父母的身高对孩子的身高有正向影响,而且父亲的身高对孩子的身高影响更大。
此外,回归分析还可以帮助我们检验变量之间的关系是否显著。
通过t检验或F检验,我们可以得知回归系数是否显著不等于0,从而判断变量之间的关系是否存在。
综上所述,回归分析是一种强大的统计方法,可以帮助我们了解变量之间的关系,进行预测和解释。
回归分析案例

年人均收入 (元)x2
1250 1650 1450 1310 1310 1580 1490 1520 1620 1570
回归方程 (模型) 的显著性谁对销售 额的影响 更显著一 点?
人均 消费金额
643 690 713 803 947 1148
解:根据样本相关系数的计算公式有
r n xy x y
2
n x 2 x n y 2 y
2
2
13 9156173.99 12827.5 7457 13 16073323.77 12827.5 13 5226399 7457
回归分析案例
Spss-回归分析
【例10.1】在研究我国人均消费水平的问题中,把全国人均消费额记 为y,把人均国民收入记为x。我们收集到1981~1993年的样本数据(xi , yi),i =1,2,…,13,数据见表10-1,计算相关系数。
表10-1 我国人均国民收入与人均消费金额数据
年份
1981 1982 1983 1984 1985 1986 1987
单位:元
人均 国民收入
393.8 419.14 460.86 544.11 668.29 737.73 859.97
人均 消费金额
249 267 289 329 406 451 513
年份
1988 1989 1990 1991 1992 1993
人均 国民收入
1068.8 1169.2 1250.7 1429.5 1725.9 2099.5
712.5734.469
人均消费金额95%的预测区间为678.101元~747.039元之间
到2010年若国民收入到10000元,消费金额会 是多少?置信区间?
logistic回归分析案例

logistic回归分析案例Logistic回归分析案例。
Logistic回归分析是一种常用的统计分析方法,主要用于预测二分类或多分类的结果。
在实际应用中,Logistic回归分析可以帮助我们理解影响某一事件发生的因素,以及对事件发生的概率进行预测。
本文将通过一个实际的案例来介绍Logistic回归分析的应用。
案例背景。
假设我们是一家电商公司的数据分析师,现在我们需要分析用户的购买行为,并预测用户是否会购买某一产品。
我们收集了一些用户的个人信息和他们最近一次购买的产品,希望通过这些数据来预测用户是否会购买新产品。
数据准备。
首先,我们需要收集用户的个人信息和购买行为数据。
个人信息包括年龄、性别、职业等;购买行为数据包括购买的产品类型、购买时间等。
在收集完数据后,我们需要对数据进行清洗和预处理,包括缺失值处理、异常值处理等。
模型建立。
在数据准备完成后,我们可以开始建立Logistic回归模型。
首先,我们需要将数据划分为训练集和测试集,以便对模型进行验证。
然后,我们可以利用训练集来拟合Logistic回归模型,并利用测试集来评估模型的预测效果。
模型评估。
在模型建立完成后,我们需要对模型进行评估。
常用的评估指标包括准确率、精确率、召回率等。
这些指标可以帮助我们判断模型的预测效果,并对模型进行调优。
模型应用。
最后,我们可以利用建立好的Logistic回归模型来预测用户是否会购买新产品。
通过输入用户的个人信息和购买行为数据,模型可以给出用户购买新产品的概率,从而帮助我们进行精准营销和推广。
结论。
通过以上实例,我们可以看到Logistic回归分析在预测用户购买行为方面具有很好的应用价值。
通过收集用户数据、建立模型、评估模型和应用模型,我们可以更好地理解用户行为,并做出更精准的预测和决策。
总结。
Logistic回归分析是一种强大的统计工具,可以帮助我们预测二分类或多分类的结果。
在实际应用中,我们可以根据具体情况收集数据、建立模型,并利用模型进行预测和决策。
回归经典案例

回归经典案例
回归分析是一种统计学方法,用于研究变量之间的关系。
以下是一个经典的回归分析案例:
假设我们有一个数据集,其中包含一个人的身高(height)和体重(weight)信息。
我们想要研究身高和体重之间的关系,以便预测一个人
的体重。
1. 首先,我们使用散点图来可视化身高和体重之间的关系。
从散点图中可以看出,身高和体重之间存在一定的正相关关系,即随着身高的增加,体重也会增加。
2. 接下来,我们使用线性回归模型来拟合数据。
线性回归模型假设身高和体重之间的关系可以用一条直线来表示,即 y = ax + b。
其中,y 是体重,x 是身高,a 和 b 是模型参数。
3. 我们使用最小二乘法来估计模型参数 a 和 b。
最小二乘法是一种优化方法,它通过最小化预测值与实际值之间的平方误差来估计模型参数。
4. 拟合模型后,我们可以使用回归方程来预测一个人的体重。
例如,如果我们知道一个人的身高为米,我们可以使用回归方程来计算他的体重。
5. 最后,我们可以使用残差图来检查模型的拟合效果。
残差图显示了实际值与预测值之间的差异。
如果模型拟合得好,那么残差应该随机分布在零周围。
这个案例是一个简单的线性回归分析案例。
在实际应用中,回归分析可以应用于更复杂的问题,例如预测股票价格、预测疾病发病率等。
回归分析数据案例

回归分析数据案例回归分析是一种用来研究变量之间关系的统计方法,在实际情况中有很多可以应用回归分析的案例。
下面以一个销售数据案例为例,详细介绍回归分析的应用。
某电商公司想要分析广告费用与销售额之间的关系,以便确定是否需要增加广告投入来提高销售额。
公司收集了一年的数据,包括每月的广告费用和销售额。
公司使用回归分析来研究广告费用和销售额之间的关系。
首先,需要确定自变量和因变量。
在这个案例中,广告费用是自变量,销售额是因变量。
然后,利用回归模型拟合数据,得到回归方程。
假设回归方程为:销售额= β0+ β1 * 广告费用其中,β0 是截距,表示在广告费用为 0 时的销售额;β1 是斜率,表示每单位广告费用对销售额的影响。
通过计算回归方程的参数,可以得到具体的值。
接下来,用实际数据计算回归方程的参数。
假设公司收集了一年的数据,总共 12 个月的广告费用和销售额。
通过回归分析软件,可以计算得到β0 和β1 的估计值。
假设计算结果为β0= 1000,表示当广告费用为 0 时,销售额约为 1000;β1 = 2,表示每多投入 1 单位的广告费用,销售额约增加 2。
通过计算回归方程的参数,可以预测未来的销售额。
假设公司计划增加下个月的广告费用为 5000,可以利用回归方程计算出销售额的预测值。
根据回归方程:销售额 = 1000 + 2 * 5000 = 11000预测出下个月的销售额为 11000。
公司还可以利用回归方程来评估广告费用对销售额的影响。
根据回归方程的斜率β1,可以计算出每单位广告费用对销售额的影响。
在这个案例中,β1=2,说明每多投入 1 单位的广告费用,销售额平均增加 2。
通过回归分析,公司可以了解广告费用和销售额之间的关系,判断是否需要增加广告投入来提高销售额。
如果回归方程的斜率显著大于 0,说明广告费用对销售额有显著的正向影响,公司可以考虑增加广告投入。
如果回归方程的斜率接近 0 或者小于 0,说明广告费用对销售额的影响较小或者负面,公司就需要重新评估广告策略。
回归分析方法及其应用中的例子

3.1.2 虚拟变量的应用例3.1.2.1:为研究美国住房面积的需求,选用3120户家庭为建模样本,回归模型为:123log log P Y βββ++logQ=其中:Q ——3120个样本家庭的年住房面积(平方英尺) 横截面数据P ——家庭所在地的住房单位价格 Y ——家庭收入经计算:0.247log 0.96log P Y -+logy=4.17 20.371R =()() ()上式中2β=0.247-的价格弹性系数,3β=0.96的收入弹性系数,均符合经济学的常识,即价格上升,住房需求下降,收入上升,住房需求也上升。
但白人家庭与黑人家庭对住房的需求量是不一样的,引进虚拟变量D :01i D ⎧=⎨⎩黑人家庭白人家庭或其他家庭模型为:112233log log log log D P D P Y D Y βαβαβα+++++logQ=例3.1.2.2:某省农业生产资料购买力和农民货币收入数据如下:(单位:十亿元)①根据上述数据建立一元线性回归方程:ˆ 1.01610.09357yx =+ 20.8821R = 0.2531y S = 67.3266F = ②带虚拟变量的回归模型,因1979年中国农村政策发生重大变化,引入虚拟变量来反映农村政策的变化。
01i D ⎧=⎨⎩19791979i i <≥年年 建立回归方程为: ˆ0.98550.06920.4945yx D =++ ()() ()20.9498R = 0.1751y S = 75.6895F =虽然上述两个模型都可通过显着性水平检验,但可明显看出带虚拟变量的回归模型其方差解释系数更高,回归的估计误差(y S )更小,说明模型的拟合程度更高,代表性更好。
3.5.4 岭回归的举例说明企业为用户提供的服务多种多样,那么在这些服务中哪些因素更为重要,各因素之间的重要性差异到底有多大,这些都是满意度研究需要首先解决的问题。
国际上比较流行并被实践所验证,比较科学的方法就是利用回归分析确定客户对不同服务因素的需求程度,具体方法如下:假设某电信运营商的服务界面包括了A1……Am 共M 个界面,那么各界面对总体服务满意度A 的影响可以通过以A 为因变量,以A1……Am 为自变量的回归分析,得出不同界面服务对总体A 的影响系数,从而确定各服务界面对A 的影响大小。
线性回归分析经典例题

1. “团购”已经渗透到我们每个人的生活,这离不开快递行业的发展,下表是2013-2017年全国快递业务量(x 亿件:精确到0.1)及其增长速度(y %)的数据(Ⅰ)试计算2012年的快递业务量;(Ⅱ)分别将2013年,2014年,…,2017年记成年的序号t :1,2,3,4,5;现已知y 与t 具有线性相关关系,试建立y 关于t 的回归直线方程a x b yˆˆˆ+=; (Ⅲ)根据(Ⅱ)问中所建立的回归直线方程,估算2019年的快递业务量附:回归直线的斜率和截距地最小二乘法估计公式分别为:∑∑==--=ni ini ii x n xy x n yx b1221ˆ, x b y aˆˆ-=2.某水果种植户对某种水果进行网上销售,为了合理定价,现将该水果按事先拟定的价格进行试销,得到如下数据:单价元 7 8 9 11 12 13 销量120118112110108104已知销量与单价之间存在线性相关关系求y 关于x 的线性回归方程; 若在表格中的6种单价中任选3种单价作进一步分析,求销量恰在区间内的单价种数的分布列和期望.附:回归直线的斜率和截距的最小二乘法估计公式分别为:, .3. (2018年全国二卷)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1217,,…,)建立模型①:ˆ30.413.5y t =-+;根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立模型②:ˆ9917.5y t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.4.(2014年全国二卷) 某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:年份 2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y 2.93.33.64.44.85.25.9(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121niii ni i t t y y b t t ∧==--=-∑∑,ˆˆay bt =-5(2019 2卷)18.11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例9-3】-【例9-8】简单回归分析计算举例
利用例9-1的表9-1中已给出我国历年城镇居民人均消费支出和人均可支配收入的数据,(1)估计我国城镇居民的边际消费倾向和基础消费水平。
(2)计算我国城镇居民消费函数的总体方差S2和回归估计标准差S。
(3)对我国城镇居民边际消费倾向进行置信度为95%的区间估计。
(4)计算样本回归方程的决定系数。
(5)以5%的显著水平检验可支配收入是否对消费支出有显著影响;对Ho:β2=0.7,H1:β2<0.7进行检验。
(6)假定已知某居民家庭的年人均可支配收入为8千元,要求利用例9-3中拟合的样本回归方程与有关数据,计算该居民家庭置信度为95%的年人均消费支出的预测区间。
解:
(1)教材中的【例9-3】
Yt=β1+β2Xt+u t
将表9-1中合计栏的有关数据代入(9.19)和(9.20)式,可
得:
==0.6724
=97.228÷14-0.6724×129.009÷14=0. 7489
样本回归方程为:
=0.7489+0.6724Xt
上式中:0.6724是边际消费倾向,表示人均可支配收入每增加1千元,人均消费支出会增加0.6724千元;0.7489是基本消费水平,即与收入无关最基本的人均消费为0.7489千元。
(2)教材中的【例9-4】
将例9-1中给出的有关数据和以上得到的回归系数估计值代入
(9.23)式,得:
=771.9598-0.7489×97.228-0. 6724×1039.683=0.0808
将以上结果代入(9.21)式,可得:
S2=0.0808/(14-2)=0.006732
进而有:S==0.082047
(3)教材中的【例9-5】 将前面已求得的有关数据代入(9.34)式,可得:
=0.082047÷=0.0056
查t分布表可知:显著水平为5%,自由度为12的t分布双侧临
界值是2.1788,前面已求得,将其代入(9.32)式,可得:即:
(4)教材中的【例9-6】
r2=1 - = 1- =0.9992
上式中的SST是利用表9-1中给出的数据按下式计算的:
SST=∑-(∑Yt)2/n
=771.9598-(97.228)2÷14=96.7252
(5)教材中的【例9-7】
首先,检验收入对消费支出是否有显著影响,提出假设 Ho:β2=0,H1:β2≠0。
利用(9.40)式计算t值
=0. 0.6724/0.0056=119.82
查t分布表可知:显著水平为5%,自由度为12的双侧t检验的临界值是2.178。
以上计算的t值远远大于此临界值,所以拒绝原假设,接受备择假设,即认为可支配收入对消费支出的影响是非常显著的。
其次,对边际消费倾向是否明显小于0.7进行检验。
利用(9.40)式计算t值
=(0. 6724-0.7)/ 0.0056=-4.9210
查t分布表可知:显著水平为5%,自由度为12的单侧t检验的临界值是1.782。
因为计算的t值的绝对值大于此临界值,所以否定β2=0.7的原假设,接受备择假设,认为我国城镇居民的平均消费倾向小于0.7。
(6)教材中的【例9-8】
将有关数据代入拟合好的样本回归方程,可得:
=0.7489+0.6724Xf
=0.7489+0.6724×8=6.1280(千元)
从前面几例的结果可知: S=0.0820
, n=14,
213.7673
,将其代入求预测标准误差估计值的公式(9.47)式,有
Sef=0.0820=0.0852 (千元)
查t分布表可知:显著水平为5%,自由度为12的双侧t检验的临界值是2. 178。
因此,当人均可支配收入为8千元时,置信度为95 %的消费支出的预测区间如下:
6.1280-2.178×0.0852≤Yf≤6.1280+2. 178×0.0852
5.9424(千元)≤Yf≤
6.3135(千元)。