几何体的展开与折叠 (讲义及答案)

合集下载

七年级数学上册 第一章 2展开与折叠例题与讲解 北师大版

七年级数学上册 第一章 2展开与折叠例题与讲解 北师大版

2 展开与折叠1.棱柱的表面展开图棱柱是由两个完全相同的多边形底面和一些长方形侧面围成的.沿棱柱表面不同的棱剪开就可以得到不同的表面展开图.如图是棱柱的一种展开图.棱柱的表面展开图是两个完全相同的多边形(底面)和几个长方形(侧面).【例1】如图,请你在横线上写出哪种立体图形的表面能展开成下面的图形.解析:(1)三棱柱两个底面是三角形(2)六棱柱两个底面是六边形(3)长方体两个底面是长方形(4)三棱柱两个底面是三角形答案:三棱柱2.圆柱、圆锥的表面展开图(1)圆柱的表面展开图沿着圆柱的一条高把圆柱剪开,就得到圆柱的表面展开图.圆柱的表面展开图是两个圆(底面)和一个长方形(侧面),如图所示.如果两个底面圆在长方形的同一侧(如图所示),折叠后上端没有底,下端有两个底,则它不能折叠成圆柱.(2)圆锥的表面展开图如图所示,圆锥的表面展开图是一个圆(底面)和一个扇形(侧面).【例2】如图所示图形都是几何体的展开图,你能说出这些几何体的名称吗?分析:主要根据顶点、棱、面的数量及侧面展开图的形状进行判断.解:圆锥、圆柱、五棱柱.3.平面图形的折叠平面图形沿某些直线折叠可以围成一定形状的立体图形,与立体图形展开成平面图形是一个互逆过程.我们已经见过很多平面图形了,但并不是所有的平面图形都能折成几何体.根据平面展开图判断立体图形的方法:(1)能够折叠成棱柱的特征:①棱柱的底面边数=侧面的个数.②棱柱的两个底面要分别在侧面展开图的两侧.(2)圆柱的表面展开图一定是两个相同的圆形和一个长方形.(3)圆锥的表面展开图一定是一个圆形和一个扇形.(4)能够折叠成正方体的特征:①6个面都是完全相同的正方形.②正方体展开图连在一起的(指在同一条直线上的)正方形最多只能为4个.③以其中1个为底面,前、后、左、右、上面都有,且不重叠.4.正方体展开图上的数字问题正方体是立体图形的展开与折叠的代表图形,与正方体的展开图有关的数字问题主要是相对面的找法,确定了三组相对面,数字问题便可迎刃而解.正方体的平面展开图共有11种,可分为四类:(1)1-4-1型相对面的确定:①第一行与第三行的正方形是相对面;②中间一行的4个正方形中,相隔一个是相对面.(2)1-3-2型相对面的确定:①第一行的正方形与第三行的左边第1个正方形是相对面;②中间一行第1个与第3个为相对面;第2个与第三行第2个为相对面.(3)2-2-2型相对面的确定:①第一行的第1个与第二行的第2个是相对面;②第二行第1个与第三行的第2个是相对面;③第三行的第1个与第一行的第2个为相对面.(4)3-3型相对面的确定:①第一行的第1个与第3个为相对面;②第二行的第1个与第3个为相对面;③第一行的第2个与第二行的第2个为相对面.【例3-1】如图所示,哪些图形经过折叠可以围成一个棱柱?分析:(1)底面是四边形,侧面有3个,显然与三棱柱、四棱柱的特征不符;(3)的两个底面在侧面同侧,折叠后也不能围成棱柱;(2)(4)折叠后可以围成棱柱.解:(2)(4)可以.【例3-2】生活中我们经常可以见到各种各样的包装盒,你能用线将图中的实物和它的平面展开图连接起来吗?分析:根据能折叠成不同几何体的特征去判断即可.解:如图所示.【例4-1】如图所示,假定用A,B表示正方体相邻的两个面,用字母C表示与A相对的面,请在下面的正方体展开图中填写相应的字母.分析:先判断属于哪种类型,再确定相对面.前三种的相对面都是隔一个即可;第四种的A与上面第一行中的第2个是相对面.解:如图所示.【例4-2】要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,则x=__________,y=__________.解析:这里关键是要找到相对的面,折叠之后可知,x与1相对,所以x=5,y与3相对,所以y=3.答案:5 3【例4-3】小丽制作了一个对面图案均相同的正方体礼品盒(如图所示),则这个正方体礼品盒的平面展开图可能是( ).___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________解析:这个正方体的平面展开图属于1-4-1型的,根据规律可知,第一行的与第三行的为相对面,中间一行的第1个与第3个、第2个与第4个为相对面,故应选A.答案:A5.表面展开图的应用正方体与图案正方体前面、上面、右面有不同的图案,按不同的类型展开后,其图案也会发生相应的变化.根据展开图判断是否与模型对应的方法:(1)三个面上的不同图案不会对立,所以可排除三种图案对立的情况;(2)位置判断:相邻三个面的图案位置是否一致.当前面和上面的图案确定位置后,另一个图案是在左面还是右面,图案放置的角度是否正确.【例5】图中给出的是哪个正方体的展开图?( ).解析:显然带有黑色的面是相对的面,所以A,B错误.又因为两个黑色小正方形应该是相对的,所以选D.答案:D。

专题4.1 认识立体图形、展开与折叠【八大题型】(举一反三)(人教版)(解析版)

专题4.1 认识立体图形、展开与折叠【八大题型】(举一反三)(人教版)(解析版)

专题4.1 认识立体图形、展开与折叠【八大题型】【人教版】【题型1 几何体的识别、立体图形的分类】 (1)【题型2 动态认识点、线、面、体】 (5)【题型3 立体图形的计算】 (7)【题型4 几何体展开图的认识】 (9)【题型5 由展开图计算几何体的面积或体积】 (11)【题型6 正方体几种展开图的识别】 (14)【题型7 正方体相对两面上的字】 (17)【题型8 含图案的正方体的展开图】 (19)【知识点1立体图形的认识】1.有些几何图形(如长方体、正方体、圆柱、圆锥、棱柱、棱锥、球等)的各部分不都在同一个平面内,这就是立体图形.立体图形除了按照柱体、锥体、球分类,也可以按照围成几何体的面是否有曲面划分:①有曲面:圆柱、圆锥、球等;②没有曲面:棱柱、棱锥等.2.棱柱的有关概念及其特征:①在棱柱中,相邻两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱,棱柱所有侧棱长都相等,棱柱的上下底面的形状、大小相同,并且都是多边形;棱柱的侧面形状都是平行四边形.②棱柱的顶点数、棱数和面数之间的关系:底面多边形的边数n确定该棱柱是n棱柱,它有2n个顶点,3n 条棱,n条侧棱,有n+2个面,n个侧面.【题型1几何体的识别、立体图形的分类】【例1】(2023春·七年级单元测试)下列几何体中,与其他几个不同类的是()A.B.C.D.【答案】C【分析】根据棱柱和圆柱的概念进行区分即可.【详解】A、B、D属于棱柱,C属于圆柱.故选:C.【点睛】本题考查几何体的概念,柱体分为棱柱和圆柱,棱柱所有的侧棱都相等,圆柱没有侧棱,解题的关键是弄清概念.【变式1-1】(2023春·七年级单元测试)下列说法:①棱柱的侧面是长方形;②棱柱的侧面可能是三角形;③正方体的所有棱长都相等;④棱柱的所有侧棱长都相等.其中正确的有_____.(填序号)【答案】③④【分析】要根据各种几何体的特点进行判断.【详解】①当棱柱是侧棱柱时,侧面是平行四边形,不一定是长方形,因是错误的;②棱柱的侧面是平行四边形,棱锥的侧面是三角形,所以是错误的;③正方体的所有棱长都相等,故是正确的;④无论是正棱柱与侧棱柱,侧棱长都相等,所以是正确的;故正确的序号是:③④.故答案为③④.【点睛】本题考查的知识点是认识立体图形,解题关键是准确掌握各种棱柱的特点.【变式1-2】(2023春·七年级单元测试)用线把实物图与相应的几何图形连接起来.【答案】见解析【分析】根据立体图形的相关概念连线即可.【详解】解:连线如图所示:.【点睛】本题考查了立体图形的识别,解题关键是准确识别立体图形.【变式1-3】(2023春·山西晋城·七年级校考期末)综合与实践新年晚会是我们最欢乐的时候,会场上,悬挂着五彩缤纷的小装饰,其中有各种各样的立体图形.下面是常见的一些多面体:操作探究:(1)通过数上面图形中每个多面体的顶点数(V)、面数(F)和棱数(E),填写下表中空缺的部分:多面体顶点数(V)面数(F)棱数(E)四面体4六面体86八面体812十二面体2030通过填表发现:顶点数(V)、面数(F)和棱数(E)之间的数量关系是,这就是伟大的数学家欧拉(L.Euler,1707—1783)证明的这一个关系式.我们把它称为欧拉公式;探究应用:(2)已知一个棱柱只有七个面,则这个棱柱是棱柱;(3)已知一个多面体只有8个顶点,并且过每个顶点都有3条棱,求这个多面体的面数.【答案】(1)表见解析,V+F−E=2(2)五(3)6【分析】(1)通过观察,发现棱数=顶点数+面数−2;(2)根据棱柱的定义进行解答即可;(3)由(1)得出的规律进行解答即可.【详解】(1)解:填表如下:多面体顶点数(V)面数(F)棱数(E)四面体446六面体8612八面体6812十二面体201230顶点数(V)、面数(F)和棱数(E)之间的数量关系是V+F−E=2,故答案为:V+F−E=2;(2)解:∵一个棱柱只有七个面,必有2个底面,∴有7−2=5个侧面,∴这个棱柱是五棱柱,故答案为:五;=12(条),(3)解:由题意得:棱的总条数为8×32由V+F−E=2可得8+F−12=2,解得:F=6,故该多面体的面数为6.【点睛】本题考查了多面体与棱柱的认识,点线面体的相关概念,正确看出图形中各量之间的关系是解题的关键.【知识点2点、线、面、体的关系】①体与体相交成面,面与面相交成线,线与线相交成点.②点动成线,线动成面,面动成体.③点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.【题型2动态认识点、线、面、体】【例2】(2023春·七年级单元测试)哥哥花瓶的表面可以看作由哪个平面图形绕虚线旋转一周而得到?用线连一连.【答案】见解析【分析】根据“面动成体”的原理,结合图形特征进行旋转,判断出旋转后的立体图形即可.【详解】解:如图所示:【点睛】本题主要考查的是点、线、面、体、认识几何体,根据平面图形的特点,判断出旋转后的结合体的形状是解题的关键.【变式2-1】(2023·全国·七年级假期作业)几何图形都是由点、线、面、体组成,点动成线,线动成面,面动成体.下列生活现象中,可以反映“面动成体”的是()A.打开折扇B.流星划过夜空C.旋转门旋转D.汽车雨刷转动【答案】C【分析】根据点动成线,线动成面,面动成体对各选项分析判断后利用排除法求解.【详解】A、打开折扇是“线动成面”,故本选项不合题意;B、流星划过夜空是“点动成线”,故本选项符合题意;C、旋转门的旋转是“面动成体”,故本选项符合题意;D、汽车雨刷的转动是“线动成面”,故本选项不合题意;故选:C.【点睛】本题考查了点、线、面、体的知识,主要是考查学生立体图形的空间想象能力及分析问题,解决问题的能力.【变式2-2】(2023春·全国·七年级专题练习)“笔尖在纸上快速滑动写出数字9”运用数学知识解释这一现象为( )A.点动成线B.线动成面C.面动成体D.面与面相交得线【答案】A【分析】这一现象为:点动成线.【详解】解:笔尖在纸上快速滑动写出数字9,用数学知识解释为点动成线.故选A.【点睛】本题考查点,线,面,体之间的关系.熟练掌握点动成线,线动成面,面动成体,是解题的关键.【变式2-3】(2023春·江苏·七年级专题练习)飞机表演“飞机拉线”时,我们用数学的知识可解释为点动成线.用数学知识解释下列现象:(1)流星从空中划过留下的痕迹可解释为______;(2)自行车的辐条运动可解释为_____;(3)一只蚂蚁行走的路线可解释为_____;(4)打开折扇得到扇面可解释为_____;(5)一个圆面沿着它的一条直径旋转一周成球可解释为____.【答案】(1)点动成线;(2)线动成面;(3)点动成线;(4)线动成面;(5)面动成体.【分析】根据点线面体之间的关系为:点动成线,线动成面,面动成体的规律来解答即可.【详解】(1)解:流行是点,光线是线,流星划出一条长线,所以流星从空中划过留下的痕迹可解释为点动成线;(2)解:自行车的辐条是线,在运动过程中形成面,所以自行车的辐条运动可解释为线动成面;(3)解:蚂蚁可看做是点,行走的路线是线,所以一只蚂蚁行走的路线可解释为点动成线;(4)解:折扇合起来时是一条线,打开折扇得到扇面可解释为线动成面;(5)解:一个圆是面,球是立体图形,一个圆面沿着它的一条直径旋转一周成球可解释为面动成体.【点睛】此题主要考查了点、线、面、体,关键是掌握四者之间的关系.【题型3立体图形的计算】【例3】(2023春·全国·七年级专题练习)直角三角形的两直角边分别为8cm、6cm,以其中一条直角边所在直线为轴旋转一周,得到的几何体的体积是多少?(结果保留π)【答案】96πcm3或128πcm3.【分析】分两种情况讨论:①以8cm的直角边为轴旋转;②以6cm的直角边为轴旋转,得到的几何体为圆锥,再利用圆锥的体积公式即可得到答案.【详解】解:①以8cm的直角边为轴旋转,得到的是一个底面半径为6cm,高为8cm的圆锥,π×62×8=96π(cm3),体积是:13②以6cm的直角边为轴旋转,得到的是一个底面半径为8cm,高为6cm的圆锥,π×82×6=128π(cm3),体积是:13答:绕它的一条直角边旋转一周,得到的几何体的体积是96πcm3或128πcm3.【点睛】本题考查了点、线、面、体,圆锥的体积公式,解题关键是理解点、线、面、体,熟记圆锥体积公式.【变式3-1】(2023春·七年级单元测试)从棱长为2的正方体毛坯的一角挖去一个棱长为1的小正方体,得到一个如图的零件,求:(1)这个零件的表面积(包括底面);(2)这个零件的体积.【答案】(1)24;(2)7.【详解】试题分析:本题考查整体的思想及简单几何体表面积的计算能力.从正方体毛坯一角挖去一个小正方体得到的零件的表面积等于原正方体表面积;这个零件的体积为原正方体的体积减去挖去的小正方体的体积.试题解析:解:(1)挖去一个棱长为1的小正方体,得到的图形与原图形表面积相等,则表面积是2×2×6=24,答:这个零件的表面积为24;(2)23﹣13=8﹣1=7.答:这个零件的体积为7.点睛:本题考查了几何体的表面积与体积,(1)可以有多种解决方法,一种是把每个面的面积计算出来然后相加,这样比较麻烦,另一种算法就是解答中的这种,这种方法的关键是能想象出得到的图形与原图形表面积相等.【变式3-2】(2023·全国·七年级假期作业)如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积为__cm3.(结果保留π)【答案】27π【详解】正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体为底面半径为3,高为3的圆柱体,该圆柱体的体积为:π×32×3=27πcm3.故答案为:27π.【变式3-3】(2023春·江苏淮安·七年级统考期末)如图所示,由直角三角形和正方形拼成的四边形.(1)将这个四边形绕图中虚线旋转一周,可以得到一个立体图形,这能说明的事实是(选择正确的一项序号)①点动成线;②线动成面;③面动成体.(2)求得到的立体图形的体积.(V圆柱=πr2ℎ,V圆锥=13πr2ℎ,r为圆柱和圆锥底面半径,h为圆柱和圆锥的高,结果保留π)【答案】(1)③(2)39π【分析】(1)由四边形绕图中虚线旋转一周,可以得到一个立体图形可知是面动成体;(2)分别求出圆柱体和圆锥体的体积,作差即可【详解】(1)∵四边形是平面图形,绕图中虚线旋转一周,可以得到一个立体图形∴是面动成体故选③(2)∵V圆柱=πr2ℎ=π×32×5=45πV圆锥=13πr2ℎ=13×π×32×2=6π∴V=V圆柱−V圆锥=45π−6π=39π【点睛】本题考查面动成体,圆柱和圆锥的体积公式,记忆理解公式是解题的关键【题型4几何体展开图的认识】【例4】(2023•南开区七年级期末)下列图形中,是长方体表面展开图的是()A.B.C.D.【答案】C【分析】根据长方体有六个面,以及Z字型进行判断即可.【详解】解:A中展开图有7个面,不符合要求;B中展开图无法还原成长方体,不符合要求;C正确,故符合要求;D中展开图有5个面,不符合要求,故选:C.【点睛】本题考查了长方体的展开图.解题的关键在于对知识的熟练掌握.【变式4-1】(2023·江苏泰州·统考二模)下列图形中,为棱锥侧面展开图的是()A.B.C.D.【答案】B【分析】由棱锥的侧面展开图的特征可知答案.【详解】棱锥的侧面是三角形.故选:B.【点睛】本题考查了几何体的展开图,熟记常见立体图形的侧面展开图和侧面的特征是解决此类问题的关键.【变式4-2】(2023春·山西吕梁·七年级统考期末)如图是某几何体的平面展开图,则该几何体是()A.圆锥B.圆柱C.三棱柱D.长方体【答案】C【分析】由平面图形的折叠及三棱柱的展开图的特征作答.【详解】解:由侧面是3个矩形,上下为2个三角形,可得该几何体为三棱柱.故选:C.【点睛】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.【变式4-3】(2023春·七年级单元测试)如图,六个平面图形中,有圆柱、圆锥、三棱柱(它的底面是三边相等的三角形)的表面展开图,请你把立体图形与它的表面展开图用线连起来(不考虑尺寸).【答案】见解析【分析】根据立体图形的平面展开图求解即可.【详解】解:如图,【点睛】本题考查立体图形的平面展开图,培养空间想象力是解题关键.【题型5由展开图计算几何体的面积或体积】【例5】(2023春·浙江·七年级专题练习)如图,是一个几何体的表面展开图:(1)请说出该几何体的名称;(2)求该几何体的表面积;(3)求该几何体的体积.【答案】(1)长方体(2)22平方米(3)6立方米【分析】(1)根据几何体的展开图可知,该几何体为长方体;(2)求出各个面的面积,然后相加即可;(3)根据长方体体积公式求出体积即可.【详解】(1)解:该几何体展开图中六个面均为长方形,因此该几何体为长方体.(2)解:3×1×2+3×2×2+2×1×2=22(平方米),答:该几何体的表面积为22平方米.(3)解:3×2×1=6(平方米),答:该几何体的体积为6立方米.【点睛】本题主要考查了长方体的展开图,求长方体的表面积和体积,解题的关键是熟记长方体的展开图.【变式5-1】(2023春·广东茂名·七年级信宜市第二中学校考期中)如图,是某几何体的表面展开图(1)指出这个几何体的名称;(2)求这个几何体的体积.(结果保留π)【答案】(1)圆柱体(2)4000πcm3【分析】(1)根据圆柱体的展开图解答;(2)求出圆柱的底面半径,然后利用圆柱的体积公式列式计算即可得解.【详解】(1)解:根据题意得∶这个几何体是圆柱体;(2)解:由图可知,圆柱的底面圆的半径是20÷2=10cm,体积=π×102×40=4000πcm3.【点睛】本题考查了几何体的展开图,解题的关键是主要利用了圆柱体的展开图和体积公式.【变式5-2】(2023春·全国·七年级专题练习)如图,是一个几何体的表面展开图.(1)该几何体是________;A.正方体B.长方体C.三棱柱D.四棱锥(2)求该几何体的体积.【答案】(1)C;(2)4【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C.×2×2=2;该几何体的高为2;(2)由图已知:该几何体底面积为等腰三角形面积=12故该几何体体积=底面积×高=2×2=4.【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.【变式5-3】(2023·湖北黄冈·七年级专题练习)已知一个圆柱的侧面展开图为如图所示的长方形,则其底面圆的面积为()A.πB.4πC.π或4πD.2π或4π【答案】C【分析】分底面周长为4π和2π两种情况讨论,先求得底面半径,再根据圆的面积公式即可求解:【详解】解:①底面周长为4π时,半径为4π÷π÷2=2,底面圆的面积为π×22=4π;②底面周长为2π时,半径为2π÷π÷2=1,底面圆的面积为π×12=π.故选C.【点睛】本题考查了求圆柱展图的底面半径,分类讨论是解题的关键.【知识点3正方体的平面展开图】正方体是特殊的棱柱,它的六个面都是大小相同的正方形,将一个正方体的表面展开,可以得到11种不同的展开图,把它归为四类:一四一型有6种;二三一型有3种;三三型有1种;二二二型有一种.正方体展开图口诀:①一线不过四;田凹应弃之;②找相对面:相间,“Z”端是对面;③找邻面:间二,拐角邻面知.【题型6正方体几种展开图的识别】【例6】(2023·吉林长春·东北师大附中七年级期末)下列图形中,不是正方体的平面展开图的是()A.B.C.D.【答案】B【分析】根据正方体的展开图对本题进行判断即可.【详解】解:根据正方体的十一种展开图可知,B选项不能折成正方体,故选:B.【点睛】本题主要考查的是正方体的展开图,熟记十一种模型规律,以及不能折叠的“凹”,“田”两种特殊形态是解题的关键.【变式6-1】(2023·河北沧州·校考模拟预测)如图,点P,Q是一正方体展开图上的两个顶点,则顶点P,Q在正方体上的位置标记正确的是()A.B.C.D.【答案】C【分析】根据正方体展开图直接判断即可得到答案;【详解】解:由图像可得,P,Q在相对的两面,且与相邻正方形顶点重合,故P,Q在同一条棱上,故选C;【点睛】本题考查正方体展开图,解题的关键是熟练掌握展开图的相对相邻面及相邻棱之间的关系.【变式6-2】(2023·江苏南京·统考二模)如图,将左图的正方形纸盒切去一角得到下图,下列选项中,不能作为纸盒剩余部分的展开图的是()A.B.C.D.【答案】C【分析】根据正方体展开图的特征,由条件结合图形验证是否能拼成正方体,逐项判断即可得出结论.【详解】解:根据正方体的展开图的特征可知:A.图形是中间四个连一行,两边随意摆的形式,符合正方体的展开图,所以A选项正确;B.图形是二三相连错一个,三一相连随意的形式,符合正方体的展开图,所以B选项正确;C.图形是三个两排一对齐,不符合正方体的展开图,无法拼成正方体,所以C选项不正确;D.图形是两两相连各错一的形式,符合正方体的展开图,所以D选项正确;故选:C.【点睛】本题主要考查了正方体展开图的特征,熟练掌握正方体展开图的各种形式,是解题的关键.【变式6-3】(2023·河北衡水·校联考二模)如图,将一个无盖正方体盒子展开成平面图形的过程中,需要剪开的棱的条数是()A.2条B.3条C.4条D.5条【答案】C【分析】根据无盖正方体的棱的条数及展开图之间的棱计算即可得到答案.【详解】解:由题意可得,无盖正方体连接相邻面的棱:8条,展开图连接相邻面的棱:4条,8−4=4,∴要剪开4条棱,故选B.【点睛】本题考查正方体的棱及展开图棱的关系,解题的关键是根据图形得到两个棱的数量.【题型7正方体相对两面上的字】【例7】(2023春·广东茂名·七年级统考期末)有同样大小的三个立方体骰子,每个骰子的展开图如图1所示,现在把三个骰子放在桌子上(如图2),凡是能看得到的点数之和最大是_______.【答案】51【分析】观察图形可知,1和6相对、2和5相对,3和4相对;要使能看到的纸盒面上的数字之和最大,则把第一个正方体的数字1的面与第二个正方体的数字2的面相连,把数字2的面放在下面,则第一个图形露出的数字分别是3、4、5、6;第二个正方体的数字1面与第三个正方体的数字1的面相连,数字3的面放在下面,则第二个正方体露在外面的数字是4、5、6,第三个正方体露在外面的数字就是3、4、5、6,据此可得能看得到的点数之和最大值.【详解】解:根据题意得:露在外面的数字之和最大是:3+4+5+6+4+5+6+3+4+5+6=51,故答案为:51.【点睛】本题主要考查学生的空间想象能力和推理能力,也可动手制作一个正方体,根据题意在各个面上标上数字,再确定对面上的数字,可以培养动手操作能力和空间想象能力.【变式7-1】(2023春·山西吕梁·七年级统考期末)如图是一个正方体的平面展开图,把展开图折叠成正方体后,“孝”字一面相对面上的字是()A.和B.谐C.美D.丽【答案】D【分析】利用正方体及其表面展开图的特点解题.【详解】解:这是一个正方体的平面展开图,共有六个面,其中有“和”字的一面相对面上的字是“义”,“孝”字的一面相对面上的字是“丽”,“谐”字的一面相对面上的字是“美”.故选:D.【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.【变式7-2】(2023春·七年级单元测试)如图,已知一个正方体的六个面上分别写着六个连续的正整数,且每个相对面上的两个数的和都相等,图中所能看到的数是20,23和24,求这六个正整数的和.【答案】135【分析】根据六个面上的数是连续整数可得另外三个面上的数有两个是21,22,再根据已知数有23,24可知另一个数不可能是19,只能是25,然后求解即可.【详解】解:∵六个面上分别写着六个连续的整数,∴看不见的三个面上的数必定有21,22,若另一个面上数是19,则23与20是相对面,所以,另一面上的数是25,此时20与25相对,21与24相对,22与23相对,所以,这六个正整数的和为3×(20+25)=135.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题,难点在于确定出看不见的三个面中有一个是25.【变式7-3】(2023春·七年级单元测试)请根据图中(1)(2)两图所示的数字,在图(3)的空格中应如何填数字.【答案】见解析【分析】根据图(3)判断出4与9是相对面,根据(1)(2)判断出5、6是相对面,再根据图(2)8在前面时,6在上面,4在左面判断出7在4的左边,8在4的右边,然后填写即可.【详解】解:如图所示.【点睛】本题考查了正方体相对面上的文字,难点在于判断出7、8的位置.【题型8含图案的正方体的展开图】【例8】(2023春·江西吉安·七年级统考期末)如图所示,正方体的展开图为()A.B.C.D.【答案】A【分析】根据正方体的展开与折叠,正方体展开图的形状进行判断即可.【详解】解:根据正方体表面展开图的“相对的面”的判断方法可知,“<”与“等号”不是相对的面,故选项B不合题意;“当“圆圈”在前面时,“等号”在右面时,上面的“不等号”的方向与题意不一致,故选项C不合题意;“等号”方向与“圆圈”与题意不一致,故选项D不合题意;通过折叠可得,选项A符合题意.故选:A.【点睛】题考查几何体的展开图,掌握正方体展开图的特征是正确判断的前提.【变式8-1】(2023春·七年级单元测试)将一个小正方体按图中所示的方式展开,则在展开图中表示棱a的线段可以是()A.线段CD B.线段EF C.线段AD D.线段BC【答案】C【分析】将原图复原找出对应边.【详解】解:在正方体中,阴影三角形面的对面为面ABCD,边a对应的边为边AD.故选:C.【点睛】本题考查几何体的展开图,解题关键是具备一定的空间想象力.【变式8-2】(2023春·全国·七年级专题练习)如图,正方体纸盒的底面和侧面的下半部分涂有黑色漆,下列不是由它展开得到的表面展开图的是_________.(填序号)【答案】②③④【分析】根据正方体展开图的特点找出下底面和上底面,再根据涂有黑色漆的部分作出选择即可.【详解】解:正方体纸盒的底面和侧面的下半部分涂有黑色漆,将它展开得到的表面展开图如下:则不是由正方体纸盒展开得到的表面展开图的是②③④,故答案为:②③④.【点睛】本题考查了正方体的展开图,熟练掌握正方体展开图的特点是解题关键.【变式8-3】(2023春·全国·七年级专题练习)如图是正方体的表面展开图,折叠成正方体后,其中哪两个完全相同_____.【答案】(2)(4).【分析】首先确定每个图形的对面是谁,然后再找同一个基准图形,将其周围四个图案按照顺时针或逆时针的顺序排列,就会发现其不同,从而找到答案.【详解】解:∵(1)菱形对面是×,正方形对面是※,+对面是○;(2)菱形对面是×,○对面是※,+对面是正方形;以※为正面,(上,左,下,右)=(+,X,正方形,菱形);(3)菱形对面是×,○对面是※,+对面是正方形;以※为正面,(上,左,下,右)=(+,菱形,正方形,X);(4)菱形对面是×,○对面是※,+对面是正方形;以※为正面,(上,左,下,右)=(+,X,正方形,菱形).∴两个完全相同的是(2)(4).故答案为:(2)(4).【点睛】本题考查立体图形的展开图.培养了学生的立体思维与空间想象能力,注意找同一个基准图形,再将其周围四个图案按照顺时针或逆时针顺序排列.。

六年级数学上册知识讲义-1.几何体的平面展开图-鲁教版(五四学制)

六年级数学上册知识讲义-1.几何体的平面展开图-鲁教版(五四学制)

课标定位一、考点突破认识几何体的平面展开图,会画圆柱和圆锥、常见棱柱的平面展开图,能够形象地理解几何体与它的平面展开图的关系,并能根据所给几何体的表面展开图判定几何体的形状。

二、重难点提示重点:了解基本几何体与其展开图的关系,体会一个立体图形可以有多种展开图。

难点:把立体图形展成平面图形所蕴藏的数学思想。

考点精讲1. 几何体的平面展开图立体图形都是由平面图形围成的,将它们沿着适当的位置剪开,展开成一个整体的平面图形,我们称其为立体图形的平面展开图。

2. 常见几何体的平面展开图(1)棱柱的平面展开图:沿棱柱表面不同的棱剪开,可能得到组合方式不同的平面展开图;(2)圆柱的平面展开图:由两个相同的圆和一个长方形构成,其中长方形的长等于底面圆周长,宽为圆柱体的高;(3)圆锥的平面展开图:由一个圆和一个扇形组成,扇形的弧长等于底面圆周长。

典例精析例题1 如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色。

下列图形中,是该几何体的表面展开图的是()ADBC思路分析:根据几何体的展开图解题,注意带图案的一个面不是底面。

答案:选项A和C带图案的面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同。

故选B。

点评:本题主要考查了几何体的展开图。

解题时勿忘记正四棱柱的特征及正方体展开图的各种情形。

注意做题时可动手操作一下,增强空间想象能力。

例题2 已知:如图所示无盖纸盒的长宽高都是10cm。

(1)画出纸盒的平面展开图;(2)计算纸盒所用材料的面积。

思路分析:(1)展开时注意此纸盒没有盖子,展开后只有5个面;(2)用一个小正方形的面积乘5,即可得出纸盒所用材料的面积。

答案:(1)展开方法不唯一,如图所示:或或等(2)S=5×102=5×100=500cm2。

答:纸盒所用材料的面积为500cm2。

点评:本题考查了几何体的展开图和几何体的表面积,无盖正方体有8种表面展开图。

第1讲几何体的展开与折叠精品讲义

第1讲几何体的展开与折叠精品讲义

几何体的展开与折叠(讲义)一、知识点睛1.研究几何体特征的思考顺序:______________________________________________________________________________________________________2.正方体展开与折叠:_________________________________________________________________ ________________________________________________________________________________________3.利用三视图求几何体的表面积:___________________________________________________二、精讲精练1.下图是某些几何体的表面展开图,请说出这些几何体的名称:①②③④⑤⑥①____________;②____________;③____________;④____________;⑤____________;⑥____________.2.下列图形经过折叠不能围成一个棱柱的是()A.B.C.D.3.如图是一个三棱柱,下列图形中,能通过折叠围成这个三棱柱的是()A.B.C.D.4.下列四个图中,是三棱锥的表面展开图的是()A.B.C.D.5.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,这个平面图形是()MMMMA.B.C.D.6.如图,有一个无盖的正方体纸盒,下底面标有图形“○”,沿图中粗线将其剪开展成平面图形,这个平面图形是()A.B.C.D.7.下面各图都是正方体的表面展开图,若将它们折成正方体,则其中两个正方体各面图案完全一样,它们是()++※×※×××※※++++++①②③④A.①与③B.②与③C.①与④D.③与④8.如图是一个正方体纸盒的表面展开图,下图能由它折叠而成的是()A.B.C.D.9.如图是正方体的一个表面展开图,若将它折叠成原来的正方体,则与边b重合的是边______,与边a重合的是边______,与边e重合的是边________.nmlkjihgfed cbaNMGFEDCBA第9题图第10题图10.一个正方体盒子的表面展开图如图所示,如果把它折叠成一个正方体,那么与点A重合的点是_______________.11.图1是一个正方体,四边形APQC表示用平面截正方体的截面.请在图2中的表面展开图中画出四边形APQC的四条边.图2图1PEHBAD CQFG A B F EHGCD12.如图是一个截去了一个角的正方体纸盒,截面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()ABCA.B.C.D.13.如图是一个正方体的表面展开图,这个正方体是()A.B.C.D.14.如图是一个正方体的表面展开图,这个正方体是()A.B.C.D.15.如图是一个正方体的表面展开图,这个正方体是()A.B.C.D.16.将图1围成图2的正方体,则图1中的“★”标志所在的正方形是正方体中的()A.面CDHEB.面BCEFC.面ABFGD.面ADHG图2图1A BCDEFGH★17.如图是一个正方体的表面展开图,这个正方体是()A.B.C.D.18.如图1,将圆柱沿AB剪开,展开后如图2所示,请在图2中找出对应的点B和点C.AB图1图219.已知O为圆锥的顶点,M为圆锥底面圆周上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展平,则所得侧面展开图是()OPPOPOPOM'MM'MM'MM'MA.B.C.D.20.将如图所示的圆心角为90°的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是()A(B)A(B)A(B)A(B)A.B.C.D.M21.将棱长为a的10个正方体摆放成如图所示的几何体,则该几何体的表面积是________平方单位.22.5个棱长为1的正方体组成如图所示的几何体.(1)画出该几何体的三视图;(2)该几何体的体积是______立方单位,表面积是________平方单位.三、回顾与思考_____________________________________________________________________ _____________________________________________________________________ ________________________【参考答案】一、知识点睛1.面(底面、侧面)→线(棱)→点2.①一个面与四个面相邻,与一个面相对;②一条棱与两个面相连,一条棱被剪开成为两条边;③一个顶点连着三条棱,一个点属于三个面.3.①从三个方向看;②注意凹陷部分.二、精讲精练1.①圆柱;②圆锥;③四棱柱;④三棱柱;⑤四棱锥;⑥三棱锥2. B3. B4. B5. A6. B7. D 8. B 9. c,d,l10. 点E,点C11.略12. B 13. D 14. B 15. D16.A 17. C 18. 略19 . D 20. B21.362a22.(1)略;(2)5,22几何体的展开与折叠(随堂测试)1. 如图是正方体的一个表面展开图,若将它折叠成原来的正方体,则与边c 重合的是边______,与边l 重合的是边______,与边a 重合的是边________.edc b a n ml kj i hg f2. 一个正方体的表面展开图如图所示,用它围成的正方体是( )A .B .C .D .3. 小明用如图所示的硬纸片折成了一个正方体的盒子,里面装了一瓶墨水,只凭观察,选出墨水在哪个盒子中( )A .B .C .D . 4. 7个棱长为1的正方体组成如图所示的几何体. (1)画出该几何体的三视图.(2)该几何体的体积是________立方单位,表面积是 _______平方单位.【参考答案】1. b ,g ,f2. A3. B4. (1)略 (2)7,28几何体的展开与折叠(作业)23.如图是一个正方体纸盒的表面展开图,下图能由它折叠而成的是()A.B.C.D.24. 如图是一个正方体纸盒,那么这个正方体的表面展开图可能是()A.B.C.D.25. 如图是一个表面带有图案的正方体,下面哪一个图形是它的表面展开图()A.B.C.D.26.下面四个图形中,经过折叠能围成如图所示正方体的是()A.B.C.D.27. 如图是一个正方体纸盒的表面展开图,当折叠成纸盒时,标号为1的点与标号为_________的点重合,标号为10的点与标号为_______的点重合.123456789101128. 若在正方体表面上画如图所示的线段,请你在表面展开图上标出对应的其他两条线段.A BCDDCB A D'C'B'A'29. 将棱长为1cm 的小正方体组成如图所示的几何体,该几何体共由10个小正方体组成.(1)画出这个几何体的三视图; (2)求该几何体的表面积.30. 在平整的地面上,由10个完全相同的棱长为1cm 的小正方体堆成一个几何体,如图所示.(1)请画出这个几何体的三视图; (2)求该几何体的表面积.【参考答案】5.B6. B7. C8.B9.2,6;810.略11.(1)略,(2)36cm212.(1)略,(2)38 cm2。

第一讲 立体图形的展开与折叠(学生版)

第一讲 立体图形的展开与折叠(学生版)

第一讲 立体图形的展开与折叠知识清单1. 棱柱棱柱分为直棱柱和斜棱柱,初中阶段只讨论直棱柱.n 棱柱的定点有n 2个,棱有n 3条,面有(2 n )个,因此任意一个棱柱的顶点数、棱数和面数之间存在着这样的关系:顶点数+面数-棱数=2.2. 点、线、面、体从运动的角度看:点动成线,线动成面,面动成体. 3. 展开图与折叠图(1)几种常见的立体图形的展开图:(2)将正方体表面沿着某些棱剪开展成一个平面图形,需要剪开7条棱,由于剪开的方法不同,会得到11种不同形状的展开图.①“一四一”型:如下图,四个一行中排列,上下各一任意放,共6种;①“二三一”型:如下图,二在三上露一端,一在三下任意放,共3种;①“二二二”型:如下图,两两三行排有序,恰是登天上云梯,仅1种;①“三三”型:如下图,三个三排两行,中间一“日”放光芒,仅1中.题型突破题型1 识别几何体1.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥2.下列几何体中,是圆柱的为()A.B.C.D.3.下列图形中,属于立体图形的是()A.B.C.D.4.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学,它有6条棱,则该模型对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥5.一个棱柱共有9条棱,这个棱柱是()A.三棱柱B.四棱柱C.五棱柱D.六棱柱题型2 立体题图像的表面积1.已知正方体的边长为a.(1)一个正方体的表面积是多少?体积是多少?(2)2个正方体(如图②)叠放在一起,它的表面积是多少?体积是多少?(3)n个正方体按照图②的方式叠放在一起,它的表面积是多少?体积是多少?2.一个六棱柱模型如图所示,底面边长都是5cm,侧棱长为4cm,这个六棱柱的所有侧面的面积之和是()A.20cm2B.60cm2C.120cm2D.240cm23.小华自己动手做了一个铁皮圆柱形笔筒,它的底面直径为6cm,高为10cm,则其表面积为()A.156πcm2B.120πcm2C.69πcm2D.60πcm24.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积为()A.36cm2B.33cm2C.30cm2D.27cm25.如图所示的五棱柱的底面边长都是5cm,侧棱长12cm,它有多少个面?它的所有侧面的面积之和是多少?6.棱长为a的正方体,摆成如图所示的形状.(1)如果这一物体摆放三层,试求该物体的表面积;(2)依图中摆放方法类推,如果该物体摆放了上下20层,求该物体的表面积.(3)依图中摆放方法类推,如果该物体摆放了上下n层,求该物体的表面积.题型3 点、线、面、体1.将第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.2.将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.3.天上一颗颗闪烁的星星给我们以“”的形象;中国武术中有“枪扎一条线,棍扫一大片”的说法,这句话给我们以“”的形象;宾馆里旋转的大门给我们以“”的形象.4.流星划过天空时留下一道明亮的光线,用数学知识解释为.5.如图,上面的平面图形绕轴旋转一周,可以得出下面的立体图形,请你把有对应关系的平面图形与立体图形连接起来.题型4 几何体的展开图1.下列图形中,可以是正方体表面展开图的是()A.B.C.D.2.下列图形中,不可以作为一个正方体的展开图的是()A.B.C.D.3.有一种正方体如图所示,下列图形是该方体的展开图的是()A.B.C.D.4.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱5.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是()A.庆B.力C.大D.魅6.如图所示的正方体的展开图是()A.B.C.D.7.如图,在无阴影的方格中选出两个画出阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图1和图2中任选一个进行解答,只填出一种答案即可)题型5 展开图折叠成几何体1.如图给定的是纸盒的外表面,下面能由它折叠而成的是()A.B.C.D.2.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A.富B.强C.文D.民3.下列图形通过折叠能围成一个三棱柱的是()A.B.C.D.4.如图1,观察一个正方体骰子,其中点数1与6相对,点数2与5相对,点数3与4相对,现在图2中②、②、②、②中的某一处画○,然后去掉其余3处后,能围成正方体骰子的是()A.②B.②C.②D.②题组A基础过关一.选择题(共4小题)1.毕业前夕,同学们准备了一份礼物送给自己的母校.现用一个正方体盒子进行包装,六个面上分别写上“祝、母、校、更、美、丽”,其中“祝”与“更”,“母”与“美”在相对的面上.则此包装盒的展开图(不考虑文字方向)不可能是()A.B.C.D.2.小明同学中考前为了给自己加油,课余时间制作了一个六个面分别写有“17”“中”“考”“必”“胜”“!”的正方体模型,这个模型的表面展开图如图所示,与“胜”相对的一面写的()A.17B.!C.中D.考3.将一个棱长为3的正方体的表面涂上颜色,分割成棱长为1的小正方体(如图).设其中一面、两面、三面涂色的小正方体的个数分别为为x1、x2、x3,则x1、x2、x3之间的关系为()A.x1﹣x2+x3=1B.x1+x2﹣x3=1C.x1﹣x2+x3=2D.x1+x2﹣x3=2 4.如图,模块②由15个棱长为1的小正方体构成,模块②﹣②均由4个棱长为1的小正方体构成.现在从模块②﹣②中选出三个模块放到模块②上,与模块②组成一个棱长为3的大正方体.下列四个方案中,符合上述要求的是()A.模块②,②,②B.模块②,②,②C.模块②,②,②D.模块②,②,②二.填空题(共3小题)5.墙角处有若千大小相同的小正方体堆成如图所示实体的立体图形,如果打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后的实体的三种视围分别保持不变,那么最多可以搬走个小正方体.6.“齐天大圣”孙悟空有一个宝贝﹣﹣金箍棒,当他快速旋转金箍棒时,展现在我们眼前的是一个圆的形象,这说明.7.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是cm2.三.解答题(共3小题)8.如图所示为8个立体图形.其中,柱体的序号为,锥体的序号为,有曲面的序号为.9.如图,在平整的地面上,有若干个完全相同的棱长为10cm的小正方体堆成一个几何体.(1)这个几何体由个小正方体组成.(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有个正方体只有一个面是黄色,有个正方体只有两个面是黄色,有个正方体只有三个面是黄色.(3)这个几何体喷漆的面积为cm2.10.值得探究的“叠放”!问题提出:把八个一样大小的正方体(棱长为1)叠放在一起,形成一个长方体(或正方体),这样的长方体(或正方体)表面积最小是多少?方法探究:第一步,取两个正方体叠放成一个长方体(如图②),由此可知,新长方体的长、宽、高分别为1,1,2.第二步,将新长方体看成一个整体,六个面中面积最大的是2,取相同的长方体,紧挨最大面积的面进行“叠放”,可形成一个较大的长方体(如图②),该长方体的长、宽、高分别为2,1,2.第三步,将较大的长方体看成一个整体,六个面中面积最大的是4,取相同的长方体,紧挨最大面积的面进行“叠放”,可形成一个大的正方体(如图②),该正方体的长、宽、高分别为2,2,2.这样,八个大小一样的正方体所叠放成的大正方体的最小表面积为6×2×2=24.仔细阅读上述文字,利用其中思想方法解决下列问题:(1)如图②,长方体的长、宽、高分别为2,3,1,请计算这个长方体的表面积.提示:长方体的表面积=2×(长×宽+宽×高+长×高)(2)取如图②的长方体四个进行叠放,形成一个新的长方体,那么,新的长方体的表面积最小是多少?(3)取四个长、宽、高分别为2,3,c的长方体进行叠放如图②,此时,形成一个新的长方体表面积最小,求c的取值范围.题组B提优过关一.选择题(共3小题)1.如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A.B.C.D.2.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数123456A.15B.16C.21D.173.10个棱长为1的正方体木块堆成如图所示的形状,则它的表面积是()A.30B.34C.36D.48二.填空题(共2小题)4.如图,是由8个相同的小立方块达成的几何体,它的三个方向看到的都是2×2的正方形,拿掉若干个小立方块后,其三个方向观察到图形仍都为2×2的正方形.若已知该几何体不论拿掉哪一块小立方块,剩余立方块在几何体中的位置不变即几何体不会倒掉,则最多能拿掉小立方块的个数为5.墙角处有若千大小相同的小正方体堆成如图所示实体的立体图形,如果打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后的实体的三种视围分别保持不变,那么最多可以搬走个小正方体.三.解答题(共2小题)6.如图所示,左边是小颖的圆柱形的笔筒,右边是小彬的六棱柱形的笔筒.仔细观察两个笔筒,并回答下面问题.(1)圆柱、六棱柱各由几个面组成?它们都是平的吗?(2)圆柱的侧面与底面相交成几条线?它们是直的吗?(3)六棱柱有几个顶点?经过每个顶点有几条棱?(4)试写出圆柱与棱柱的相同点与不同点.7.一个正方体木块粘合成如图所示的模型,它们的棱长分别为1米、2米、4米,要在模型表面涂油漆,如果除去粘合部分不涂外,求模型的涂漆面积(可列式计算).。

七年级数学北师大版上册1.2 展开与折叠(含答案)

七年级数学北师大版上册1.2  展开与折叠(含答案)

1.2 展开与折叠专题一正方体的展开与折叠1.以下各图均有彼此连接的六个小正方形纸片组成,其中不能折叠成一个正方体的是()A.B.C.D.2.如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体“着”相对的面上的汉字是()A.冷B.静C.应D.考3.将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A.面CDHE B.面BCEF C.面ABFG D.面ADHG4.如图1-11,有一正方体的房间,在房间内的一角A处有一只蚂蚁,它想到房间的另一角B处去吃食物,试问它采取怎样的行走路线是最近的?如果一只蜜蜂,要从A到B怎样飞是最近呢?请同学们互相讨论一下.BA专题二三棱柱、圆柱与圆锥的展开与折叠5.左图是一个三棱柱,下列图形中,能通过折叠围成该三棱柱的是()A.B.C.D.6.如下图所示的平面图形中,不可能围成圆锥的是()A.B.C.D.状元笔记:【知识要点】1.掌握正方体的展开与折叠,能根据所给平面图形判断是否能折叠成正方体.2.根据简单立体图形的形状画出它的展开图,根据展开图判断立体图形的形状.【温馨提示】1.长方体有8个顶点,12条棱,6个面,且每个面都是长方形(正方形是特殊的长方形).长方体是四棱柱,但四棱柱不一定是长方体,四棱柱的两个底面是四边形,不一定是长方形.2.一个平面展开图,折成立体图形的方式有两种:一种是向里折,一种是向外折,一般易忽略其中一种,造成漏解.3.棱柱的表面展开图是由两个相同的多边形和一些长方形连成的,沿棱柱表面不同的棱剪开,可能得到不同组合方式的平面展开图;圆柱的表面展开图是由两个相同的圆形和一个长方形连成的;圆锥的表面展开图是由一个圆形和一个扇形连成的.【方法技巧】确定正方体展开图的方法以口诀的方式总结出来:正方体经7刀剪,可得六面十四边;中间并排达四面,两旁各一随便站;三面并排在中间,单面任意双面偏;三层两面两层三,好似阶梯入云天;再问邻面何特点,“间二”“拐角”是关键;“隔1”、“Z端”是对面,识图巧排“七”“凹”“田”.参考答案:1.D 解析:选项A 、B 、C 都可以折叠成一个正方体;选项D ,有“田”字格,所以不能折叠成一个正方体.故选D .考点:展开图折叠成几何体.分析:由平面图形的折叠及正方体的展开图解题.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.2.B 解析:这是一个正方体的平面展开图,共有六个面,其中面“静”与面“着”相对,面“沉”与面“应”相对,“冷”与面“考”相对.3.A 解析:由图1中的红心“”标志,可知它与等边三角形相邻,折叠成正方体是正方体中的面CDHE .考点:展开图折叠成几何体.分析:由平面图形的折叠及正方体的展开图解题,注意找准红心“”标志所在的相邻面. 4.解:如图(1)所示,线段AB 是蚂蚁行走的最近路线;如图(2)所示,线段AB 是蜜蜂飞的最近路线.(1)A(2)A5.B 解析:A .折叠后有二个侧面重合,不能得到三棱柱; B .折叠后可得到三棱柱;C .折叠后有二个底面重合,不能得到三棱柱;D .多了一个底面,不能得到三棱柱.6.D 解析:根据圆锥的侧面展开图是扇形,可以直接得出答案,D 选项不符合要求.。

几何体的展开与折叠(二)(含答案)

几何体的展开与折叠(二)(含答案)

几何体的展开与折叠(二)
一、单选题(共8道,每道12分)
1.如图所示的正方体的表面展开图可能是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:正方体的展开与折叠
2.如图所示的正方体的表面展开图可能是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:正方体的展开与折叠
3.如图是一个正方体的表面展开图,这个正方体是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:正方体的展开与折叠
4.如图是一个正方体的表面展开图,这个正方体是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:正方体的展开与折叠
5.如图所示的正方体的表面展开图可能是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:正方体的展开与折叠
6.如图是一个正方体的表面展开图,把它折起来,可以得到图中的( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:正方体的展开与折叠
7.如图是一个正方体的表面展开图,则这个正方体是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:正方体的展开与折叠
8.如图,点A,B,C分别是正方体三条相邻棱的中点,沿着A,B,C三点所在的平面将该正方体的一个角切掉,然后将其展开,其表面展开图可能是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:正方体的展开与折叠。

七年级上册-第二课(展开与折叠)

七年级上册-第二课(展开与折叠)

第二讲展开与折叠一、正方体的展开与折叠下面图形中,都能围成一个正方体?a b c有些立体图形————→平面图形有些平面图形————→立体图形1.展开是将某些立体图形展成一个平面图形,同时这个平面图形可以折叠成相应的立体图形.展开和折叠是过程.2.正方体是一个特殊的四棱柱,它的所有棱长都相等,所有面都是正方形且大小相等,将正方体的表面沿某些棱剪开,展成一个平面图形,其展开图共有11种形式.一四一型二三一型二二二型三三型要点精析:(1)图形的展开与折叠是立体图形与平面图形之间的转化过程;(2)判断一个平面图形能否折叠成立体图形的方法:一看面数够不够;二看各面的位置是否合适,尤其是底面的位置;三看对边的长度是否相等.(3)为了更好地记忆展开图和展开图中相对的面,请同学们熟记口诀“一线不过四,凹、田应弃之,相间、‘Z’的两端是对面”.例1图中能折叠成正方体的是()练1.将一个无底无盖的正方体沿一条棱剪开得到的平面图形为()A.长方形B.正方形C.三角形D.五边形练2.如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分(小正方形之间至少要有一个边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是()A.7 B.6 C.5 D.4练 3.如图,它需再添一个小正方形,折叠后才能围成一个正方体,图中的灰色小正方形分别由四位同学补画,其中正确的是( )二、正方体与其表面展开图间的对应关系图中的图形可以折成一个正方体形的盒子.折好以后,与1相邻的数是什么?相对的数是什么?先想一想,再具体折一折,看看你的想法是否正确.例2把正方体的表面沿某些棱剪开展成一个平面图形(如图(1)),请根据各面上的图案判断这个正方体是图(2)中的()图1图2例3如图,一个立体图形的展开图中,用每个面内的大写字母表示该面,用小正方形边上所标注的小写字母表示该边.(1)说出这个立体图形的名称;(2)写出所有相对的面;练1.如图,有一个正方体纸巾盒,它的平面展开图是()练2.明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其他空盒子混放在一起,只凭观察,选出墨水在哪个盒子中()练3.图①是一个小正方体的表面展开图,小正方体从图②所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A.梦B.水C.城D.美三、柱体的展开与折叠想一想(1)如图,哪些图形经过折叠可以围成一个棱柱?先想一想,再折一折.(2)将图中不能围成棱柱的图形作适当修改使所得图形能围成一个棱柱.1. 棱柱的表面展开图是由两个相同的和一些组成的.2. 棱柱的表面展开图不止一种,沿其不同的棱剪开,可得到不同的表面展开图.3. 圆柱的表面展开图是由两个大小相同的和组成的,其中侧面展开图的一边长是圆柱的,另一边长是底面圆的.例4如图所示的平面图形经过折叠可以围成棱柱的有()A.(1)(2)(4)B.(1)(2)(4)(5)C.(4)(5)D.(2)(4)例5 如图,圆柱的表面展开后得到的平面图形是图中的()练1如图是一个长方体包装盒,则它的平面展开图是( )四、锥体的展开与折叠圆锥的表面展开图是由一个和一个组成的,其中扇形的半径长是圆锥母线(即圆锥底面圆周上任一点与顶点的连线)长,而扇形的弧长则是圆锥底面圆的周长.例3如图所示的平面图形不可能围成圆锥的是()练1将图①的正四棱锥ABCDE沿着其中的四个边剪开后,形成的展开图为图②,判断下列哪一个选项中的四个边可为此四个边?()A.AC,AD,BC,DE B.AB,BE,DE,CDC.AC,BC,AE,DE D.AC,AD,AE,BC小结:正方体、棱锥、棱柱展开图的基本条件:一般地,如果某立体图形的表面展开图由6个正方形组合而成,那么立体图形是正方体;如果是由3个及3个以上的三角形与1个多边形组成的,那么立体图形为棱锥;如果是由3个及3个以上的长方形与两个形状、大小都相同的多边形组合而成的,那么立体图形为棱柱.五、当堂检测1.下列图形中,可以是正方体表面展开图的是()2.将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()3.如图,可以折叠成一个无盖正方体盒子的是()A.①B.①②C.②③D.①③4.图(1)和图(2)中所有的正方形大小都一样,将图(1)的正方形放在图(2)中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③ D.④5.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是() A.中B.考C.顺D.利6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
几何体的展开与折叠(讲义)
➢ 课前预习
1. 正方体的11种展开图:
①(1,4,1)型共_____种;
②(2,3,1)型共_____种;
③(3,3)型共______种;
④(2,2,2)型共_____种.
从上述的四种类型中各选一种,画出展开图,并用相同的符号标注相对面.

2. 一个正方体盒子的表面展开图如图所示,动手操作把它折叠成一个正方体,那么
与点A重合的点是__________,与点B重合的点是__________.

AB
DEF

G
HCNPQM

➢ 知识点睛
1. 研究几何体特征的思考顺序:
3

先研究_______________,再研究__________和__________.
2. 正方体展开与折叠:
①一个面与_____个面相邻,与_____个面相对;
②一条棱与_____个面相连,一条棱被剪开成为_____条边;
③一个顶点连着_____条棱,一个点属于______个面.
3. 利用三视图求几何体的表面积:
①_____________________;②_________________________.
➢ 精讲精练
1. 下图是某些几何体的表面展开图,请说出这些几何体的名称:

①②

④⑤⑥
①____________;②____________;③____________;
④____________;⑤____________;⑥____________.

2. 如图是一个三棱柱,下列图形中,能通过折叠围成这个三棱柱的是( )
3

A. B. C. D.
3. 下列四个图中,是三棱锥的表面展开图的是( )

A. B. C. D.
4. 如图,有一个无盖的正方体纸盒,下底面标有字母“M”,
沿图中粗线将其剪开展成平面图形,这个平面图形是
( )

M
M
M
M

A. B. C. D.
5. 如图,有一个无盖的正方体纸盒,下底面标有图形“○”,
沿图中粗线将其剪开展成平面图形,这个平面图形是
( )

A. B. C. D.
6. 下面各图都是正方体的表面展开图,若将它们折成正方体,则其中两个正方体各
面图案完全一样,它们是( )
++


×
※×××※※++++++

① ② ③ ④
A.①与③ B.②与③ C.①与④ D.③与④
7. 如图是一个正方体纸盒的表面展开图,下图能由它折叠而成的是( )

M
无盖
无盖
3

A. B. C. D.
8. 如图是正方体的一个表面展开图,若将它折叠成原来的正方体,则与边b重合的
是边______,与边a重合的是边______,与边e重合的是边________.

n
m
lkjihgfe
d
c
b
a

N
M
GFED
C

B

A

第8题图 第9题图
9. 一个正方体盒子的表面展开图如图所示,如果把它折叠成一个正方体,那么与点
A重合的点是_______________.
10. 图1是一个正方体,四边形APQC表示用平面截正方体的截面.请在图2中的表
面展开图中画出四边形APQC的四条边.

图2
图1
PEHBADCQF
G
A
BF

E

HGC
D

11. 如图是一个截去了一个角的正方体纸盒,截面与棱的交点A,B,C均是棱的中
点,现将纸盒剪开展成平面,则展开图不可能是( )

A
B

C

A. B. C. D.
12. 如图是一个正方体的表面展开图,这个正方体是( )
3

A. B. C. D.
13. 如图是一个正方体的表面展开图,这个正方体是( )

A. B.
C. D.
14. 如图是一个正方体的表面展开图,这个正方体是( )

A. B. C. D.
15. 将棱长为a的10个正方体摆放成如图所示的几何体,则该几何体的表面积是
________平方单位.

16. 5个棱长为2的正方体组成如图所示的几何体.
(1)画出该几何体的三视图;
(2)该几何体的体积是______立方单位,表面积是________
平方单位.

17. 如图是一个由棱长为1的正方体组成的几何体的俯视图,小正方形中的数字表示
3

在该位置的正方体的个数.
(1)请画出这个几何体的主视图和左视图;
(2)这个几何体的表面积是______平方单位.

12332
1

【参考答案】
➢ 课前预习
1.①6;②3;③1;④1.画图略
3

2.点E,点D
➢ 知识点睛
1.面(底面、侧面),棱(线),顶点.
2.①4,1;②2,2;③3,3.
3.①作三视图;②注意凹陷部分.
➢ 精讲精练
1.①圆柱; ②圆锥; ③四棱柱;
④三棱柱; ⑤四棱锥; ⑥三棱锥.
2.B
3.B
4.A
5.B
6.D
7.B
8.c,d,l
9.点C和点E
10.略
11.B
12.B
13.D
14.D
15.36a2
16.(1)略;(2)40,88
17.(1)略;(2)42

相关文档
最新文档