高数答案第11章

合集下载

高等数学第十一章习题

高等数学第十一章习题
第十一章总习题
1. 填空题

∑ (1)
lim
n→∞
un
= 0 是级数 un 收敛的
n=1
必要
条件,
而不是
充分
条件;



(2) 若级数 ∑un 绝对收敛, 则级数 ∑un 必定 收敛 ; 若级数 ∑un 条件收敛,
n=1
n=1
n=1

则级数 ∑ un 必定 发散 ; n=1


(3) 级数 ∑un 按某一方式经添加括号后所得的级数收敛是级数 ∑un 收敛的
.
n=1 (n − 1)! 3
n=1 (n − 1)!
n=1 (n − 1)!
93
所以
S ( x)
=
x2 (
+
x
x
+ 1)e3
,
x ∈ (−∞, +∞) .
93
∑ ∑ (4) 令 t = x + 1, 则 ∞ (x + 1)n = ∞ tn . n=0 (n + 2)! n=0 (n + 2)!
设 an
−1)
,
而 lim un+1 n→∞ un
=
lim
n→∞
2(n + 1) 2n+1
−1 2n x2 2n −1
=
x2 2
,

x=±
2
时级数


2n

1
发散,
所 以 级 数 的 收 敛 区 间 为 (−
2,
2) .

n=1 2
∑ S ( x)
=
∞ n=1

大学高数英语无机答案

大学高数英语无机答案

⼤学⾼数英语⽆机答案第11章固体结构1、指出下列物质哪些是⾦属晶体?哪些是离⼦晶体?哪些是共价键晶体(⼜称原⼦晶体)?哪些是分⼦晶体?Au (s) AlF3 (s) Ag (s) B2O3 (s) BCl3 (s) CaCl2 (s)H2O (s) BN (s) C (⽯墨)H2C2O4 (s) Fe (s) SiC (s)CuC2O4 (s) KNO3 (s) Al (s) Si (s)解:⾦属晶体:Au(s) Ag(s) Fe(s) Al(s)离⼦晶体:AlF3(s) CaCl 2(s) CuC2O4(s) KNO3(s)共价键晶体:BN(s) C(⽯墨) SiC(s) Si(s)分⼦晶体:B2O3(s) BCl3(s) H2O(s) H2C2O4(s)2、⼤多数晶态物质都存在同质多晶现象。

即在不同的热⼒学条件(温度、压⼒等)下,由于晶体内部粒⼦(原⼦、离⼦或分⼦)的热运动,它们在三维空间的排列⽅式将会发⽣⼀些变化。

例如:α-Fe (体⼼⽴⽅) 906℃γ-Fe (⾯⼼⽴⽅)α-CsCl (简单⽴⽅) 445℃β-CsCl (⾯⼼⽴⽅, NaCl型结构)α-NH4Cl (简单⽴⽅) 184β-NH4Cl (⾯⼼⽴⽅,NaCl型结构) 试问,同⼀种物质的不同类型的晶体,它们的晶⾯⾓是否相同或者守恒?晶⾯⾓守恒的本质原因是什么?解:根据晶⾯⾓守恒定律,同⼀种晶体晶⾯⼤⼩和形状会随外界的条件不同⽽变化,但同⼀种晶体的相应晶⾯(或晶棱)间的夹⾓却不受外界条件的影响,它们保持恒定不变的值。

晶⾯⾓守恒决定于晶体内部的周期性结构。

解:I2,正交晶系;H2C2O4,单斜晶系;NaCl,⽴⽅晶系;β-TiCl3,正交晶系;α-As,三⽅晶系;Sn(⽩锡),四⽅晶系;CuSO4.5H2O,三斜晶系。

4、试画出⾦属Na和Mg单质的分⼦轨道能级图,并据此解释其导电性。

解:根据⾦属能带理论,⾦属Na和Mg基态时的电⼦填充情况如下图所⽰:Na的3s能带半充满,在电场的作⽤下其电⼦获得能量可借助空轨道发⽣定向移动,所以能够导电。

高等数学下册 第十一章 综合练习题答案

高等数学下册 第十一章 综合练习题答案

第十一章自测题参考答案一、填空题: 1.()⎰Γ++ds R Q P γβαcos cos cos 切向量2.()⎰⎰∑++dS R Q P γβαcos cos cos 法向量3.⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂D dxdy y P x Q 4. 0 5. π4 6. π2 7. 0 8.()⎰⎰101,dy y x f dx , ()⎰⎰-110,dy y x f dx , 09.()⎰-Lds x x y x P 22,二、选择题:1.C2.C3.A4.A5.D 三、计算题:1.解 由于曲线L 表达式中x ,y, z 是对称的,所以⎰Lds x 2=⎰Lds y 2=⎰Lds z 2,故⎰L ds x 2=()⎰++ds z y x 22231=3223223131a a a ds a L ππ=⋅=⎰. 2.解 原式=()[](){}⎰+---π20sin cos 1cos 12dt t t t()⎰+=π202sin sindt t t =π202sin 2121⎪⎭⎫ ⎝⎛-t t =π 3.解 记222:y x a z S --=,D :xoy 平面上圆域222a y x ≤+原式=()dxdy y z x z y x a y x D222221⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+--++⎰⎰ =()⎰⎰--⋅--++Ddxdy yx a y x a y x a2222221注意到积分区域D 关于坐标轴的对称性及被积函数的奇偶性知⎰⎰--Ddxdy yx a x 222=⎰⎰--Ddxdy yx a y 222=0,所以原式=⎰⎰Ddxdy a=2aa π⋅=3a π.4.解 利用高斯公式原式=()⎰⎰⎰Ω++dxdydz z y x 2其中Ω为S 所围成的空间区域。

由Ω关于坐标平面的对称性知⎰⎰⎰Ωxdxdydz =⎰⎰⎰Ωydxdydz =0,所以,原式=⎰⎰⎰Ωzdxdydz 2=⎰⎰⎰+1222y x D zdz dxdy xy=()⎰⎰--xyD dxdy y x 221=()⎰⎰-12201ρρρθπd d=2412ππ=⋅5.解 原式=()()[]()⎰+--π202222sin cos 1cos 1dt t a t a t a=()⎰-π20253cos 12dt t a =⎰π20253sin 8dt at=du u a⎰π53sin 16=315256a 6.解 ()()()()()x f y x Q y x f e y x P x -=+=,,,要使曲线积分与路径无关,当且仅当xQ y P ∂∂=∂∂,即()()x f x f e x '-=+ 解此微分方程可得()x xe Cex f 21-=-,又()210=f ,所以C =1,故()x x e e x f 21-=- 现在计算从()0,0A 到()1,1B 的曲线积分的值.由于积分与路径无关,故选取有向折线________CB AC +进行积分,其中()0,1C 。

《高数》第十一章-习题课:级数的收敛、求和与展开

《高数》第十一章-习题课:级数的收敛、求和与展开

概念:
为收敛级数

收敛 , 称

发散 , 称
绝对收敛 条件收敛
Leibniz判别法: 若

则交错级数
收敛 , 且余项
4
例1. 若级数
均收敛 , 且
证明级数
收敛 .
证: 0 c n a n bn a n (n 1 , 2 , ), 则由题收敛


(1)n
n0
x2n ,
x (1,1)

arctan
x

x
01
1 x2
d
x
(1)n x2n1, n02n 1
x [1,1]
于是
f (x) 1 (1)n x2n (1)n x2n2
n1 2n 1
n02n 1
25
f
a 1 时收敛 ; a 1 时发散.
s 1 时收敛;
a 1 时, 与 p 级数比较可知 s 1 时发散.
7
P257 题3. 设正项级数 和 都收敛, 证明级数
也收敛 .
提示:

lim
n
un

lim
n
vn

0
,存在
N
>
0, 当n
>N

又因
2( un2 vn2 )
思考: 如何利用本题结果求级数
提示: 根据付式级数收敛定理 , 当 x = 0 时, 有
e 1 1
2 n1
f (0 ) f (0 ) 1
2
2
28
作业
P257 6 (2); 7 (3); 9(1) ; 10 (1) ;

《高等数学教程》第十一章重积分习题参考答案

《高等数学教程》第十一章重积分习题参考答案

《高等数学教程》第十一章 重积分 习题参考答案习题11-11.(,)DQ x y d μσ=⎰⎰.3.(1)0; (2)0; (3)124I =I4.(1)12I ≥I ; (2) 12I ≤I ; (3)12I ≥I ; (4) 12I ≤I .5.(1)02≤I ≤; (2)20π≤I ≤; (3)28≤I ≤; (4)36100ππ≤I ≤.习题11-2(A)1. (1)40(,)xdx f x y dy ⎰⎰或2404(,)yy dy f x y dx ⎰⎰;(2)12220122(,)(,)x xx x dx f x y dy dx f x y dy +⎰⎰⎰⎰或2122122(,)(,)y y y y dy f x y dx dy f x y dx +⎰⎰⎰⎰;(3)224(,)x xf x y dy -⎰或2402(,)(,)dy f x y dx dy f x y dx +⎰⎰.2. (1)42(,)x dx f x y dy ⎰⎰; (2)101(,)ydy f x y dx ⎰⎰;(3)1102(,)ydy f x y dx -⎰⎰; (4)1(,)y eedy f x y dx ⎰⎰.3. (1)203; (2)32π-; (3)655; (4)6415; (5)1e e -- 4. (1)92; (2)21122e e -+.5. 335.6. (1)20(cos ,sin )bad f r r rdr πθθθ⎰⎰;(2)2cos 202(cos ,sin )d f r r rdr πθπθθθ--⎰⎰;(3)1(cos sin )20(cos ,sin )d f r r rdr πθθθθθ-+⎰⎰;(4)3sec tan cot 444(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθθπθθθθθθ+++⎰⎰⎰⎰sec tan 304(cos ,sin )d f r r rdr πθθπθθθ+⎰⎰;7. (1)sec csc 4402(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθπθθθθθθ+⎰⎰⎰⎰;(2)23cos 04()d f r rdr πθπθ⎰⎰;(3)1210cos sin (cos ,sin )d f r r rdr πθθθθθ+⎰⎰; (4)sec 40sec tan (cos ,sin )d f r r rdr πθθθθθθ⎰⎰.8. (1)434a π; 1. 9. (1)2364π; (2)(2ln 21)4π-; (3)34()33R π-; (4)a .10. 4332a π.习题11-2(B)1. (1)12(,)yydy f x y dx -⎰⎰; (2)110(,)dy f x y dx ⎰;(3)1012111(,)(,)(,)xf x y dy dx f x y dy dx f x y dy --++⎰⎰⎰⎰⎰;(4)0242(,)(,)y dy f x y dx dy f x y dx +-+⎰⎰⎰.2. (1)0; (2)430; (3)8)3(4)1sin1-. 3. (1)2sec 41arctan4(cos ,sin )d f r r rdr πθθθθ⎰;(3)4cos 202cos (cos ,sin )d f r r rdr πθθθθθ⎰⎰;4. (1)38π; (2)52π.5. (1)2π; (2)49-(3)22π-; (4)414a ; (5)2π.6. (1)232a π; (2)22a ; (3)232π-.7. (1)43π; (2)7ln 23; (3)12e -; (4)2ab π. 8. 6π.习题11-3(A)1. (1)22111(,,)x y dx f x y z dz -+⎰⎰;(2)2221212(,,)x x y dx f x y z dz --+⎰⎰;(3)2211(,,)x y dx f x y z dz -+⎰;(4)1111(,,)dx f x y z dz -⎰⎰.2.32; 3. 15(ln 2)28-; 4.21162π-; 5. (1)1(1)e π--; (2)712π; (3)163π; (4)289a . 6. (1)45π; (2)476a π; (3)552()15R a π-; (4)1330π.7. (1)18; (2)8π; (3)10π; (4)ln 3ln 2)3π-. 8. 4k R π习题11-3(B)1. (1)(,,)aa dx f x y z dz -⎰;200(cos ,sin ,)ad rdr f r r z dz πθθθ⎰⎰;2220sin (cos sin ,sin sin ,cos )ad d f d ππθϕϕρθϕρθϕρϕρρ⎰⎰⎰;(2)11(,,)dx f x y z dz -⎰;21(cos ,sin ,)rd rdr f r r z dz πθθθ⎰⎰;2240sin (cos sin ,sin sin ,cos )d d f d ππθϕϕρθϕρθϕρϕρρ⎰⎰.(3)2211(,,)x y dx f x y z dz +-⎰⎰;2200(cos ,sin ,)rr d rdr f r r z dz πθθθ⎰⎰⎰;2csc 220csc cot 4sin (cos sin ,sin sin ,cos )d d f d ππϕπϕϕθϕϕρθϕρθϕρϕρρ⎰⎰⎰;2.222241()3x y x y f dz --+⎰;2224103r rd f dz πθ-⎰⎰,6π3.2020Rd rdr dr πθI =⎰⎰⎰; 23402sin Rd d d πππθϕϕρρI =⎰⎰⎰, 5415R π. 4. (1)835; (2)2845; (3)0; (4)559480R π. 5. 336π; 6. π; 7. 45π.习题11-4(A)1.2.1)6π.3. 22(2)R π-.4.320. 5. (1)0033(,)58x y ; (2)4(0,)3bπ; (3)22(,0)2()a ab b a b +++. 6. (1)34y a b πI =; 220()4ab a b πI =+(2)725x I =, 967y I =;(3) )33x ab I =, 33y a bI =;7. (1)3(0,0)4; (2)44333()(0,0,)8()A B A B --; (3)2227(,,)5530a a a .8. (1)483a ; (2)27(0,0,)60a ; (3) 611245a .9. 649k R π.习题11-4(B)1. .2. 3535(,)4854.3. .4.44()32b a πρ-.5. 43512a π.6. 368105ρ. 7. (0,0,54a ).8.222(3)12a h a h π+. 9. 2432;327r R R π=.10. 2(lnx F G μ=;0y F =; z F Ga πμ=.11. 0x y F F ==; 2)z F G h πρ=-.总复习题十一一、1.B 2.C 3.C 4.A 5.B 6.A 二、1.(1)()x f x -;2.(1,1)y y --;3.54π;4.41(1)2e --; 5.42211()4R a bπ+. 三、1.2409π-;2.314()33R π-; 3.0; 4.2503π;5. 2(,)(,)f x y dx f x y dx +-22(,)(,)f x y dx f x y dx -.6. 42π-.7.212A . 8. 8π.9. 5144. 10. 以球心O 及0P 的连线作为x 轴正方向建立直角坐标系质心:(,0,0)4R-。

高等数学2第十一章答案

高等数学2第十一章答案

习题11-1 对弧长的曲线积分1.计算下列对弧长的曲线积分: (1)22()n Lx y ds +⎰Ñ,其中L 为圆周cos x a t =,sin y a t = (02)t π≤≤;(2)Lxds ⎰Ñ,其中L 为由直线y x =及抛物线2y x=所围成的区域的整个边界;(3)22x y Leds +⎰Ñ,其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限内所围成的扇形的整个边界;(4)2x yzds Γ⎰,其中Γ为折线ABCD ,这里A 、B 、C 、D 依次为点(0,0,0)、(0,0,2)、(1,0,2)、(1,3,2);(5)2Ly ds ⎰,其中L 为摆线的一拱(sin )x a t t =-,(1cos )y a t =-(02)t π≤≤.2.有一段铁丝成半圆形22y a x -其上任一点处的线密度的大小等于该点的纵坐标,求其质量。

解 曲线L 的参数方程为()cos ,sin 0x a y a ϕϕϕπ==≤≤ ()()22sin cos ds a a d ad ϕϕϕϕ=-+=依题意(),x y y ρ=,所求质量220sin 2LM yds a d a πϕϕ===⎰⎰习题11-2 对坐标的曲线积分1.计算下列对坐标的曲线积分: (1)22()Lx y dx -⎰,其中L 是抛物线2y x =上从点(0,0)到点(2,4)的一段弧;(2)22()()Lx y dx x y dy x y+--+⎰Ñ,其中L 为圆周222x y a +=(按逆时针方向绕行);(3)(1)xdx ydy x y dz Γ+++-⎰,其中Γ是从点(1,1,1)到点(2,3,4)的一段直线;(4)dx dy ydz Γ-+⎰Ñ,其中Γ为有向闭折线ABCA ,这里A 、B 、C 依次为点(1,0,0)、(0,1,0)、(0,0,1);2.计算()()Lx y dx y x dy ++-⎰,其中L 是:(1)抛物线2y x =上从点(1,1)到点(4,2)的一段弧;(2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从点(1,1)到点(1,2),然后再沿直线到(4,2)的折线;(4)曲线221x t t =++,21y t =+上从点(1,1)到点(4,2)的一段弧。

华东理工大学高等数学(下册)第11章作业答案

华东理工大学高等数学(下册)第11章作业答案

第 11 章(之1)(总第59次)教材容:§11.1多元函数 1.解下列各题:**(1). 函数f x y x y (,)ln()=+-221连续区域是 ⎽⎽⎽⎽⎽⎽⎽ . 答:x y 221+>**(2). 函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000, 则( )(A) 处处连续 (B) 处处有极限,但不连续(C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续 答:(A )**2. 画出下列二元函数的定义域: (1)=u y x -;解:定义域为:{}x y y x ≤),(,见图示阴影部分:(2))1ln(),(xy y x f +=;解:{}1),(->xy y x ,第二象限双曲线1-=xy 的上方,第四象限双曲线1-=xy 的下方(不包括边界,双曲线1-=xy 用虚线表示).(3)yx yx z +-=. 解:()()⎩⎨⎧-≠≥⇔⎩⎨⎧≠+≥+-⇔≥+-y x y x y x y x y x y x y x 000.***3. 求出满足22,y x x y y x f -=⎪⎭⎫ ⎝⎛+的函数()y x f ,. 解:令⎪⎩⎪⎨⎧=+=x yt y x s , ∴⎪⎩⎪⎨⎧+=+=t st y t s x 11∴()()()t t s t t s s t s f +-=+-=111,22222, 即 ()()y y x y x f +-=11,2. ***4. 求极限:()()220,0,11limyx xy y x +-+→.解:()()()()()22222222112111110yx xy y x yx xy xyyx xy ++++≤+++=+-+≤()011222→+++=xy y x (()()0,0,→y x ) ∴()()011lim220,0,=+-+→yx xy y x .**5. 说明极限()()22220,0, lim y x y x y x +-→不存在.解:我们证明()y x ,沿不同的路径趋于()0,0时,极限不同.首先,0=x 时,极限为()()1lim 2222220,0,0-=-=+-→=y y y x y x y x x ,其次,0=y 时,极限为()()1lim 2222220,0,0==+-→=x x y x y x y x y ,故极限()()22220,0,y y lim +-→x x y x 不存在.**6. 设112sin ),(-+=xy x y y x f ,试问极限),(lim )0,0(),(y x f y x →是否存在?为什么?解:不存在,因为不符合极限存在的前提,在)0,0(点的任一去心邻域函数112sin ),(-+=xy x y y x f 并不总有定义的,x 轴与y 轴上的点处函数),(y x f 就没有定义.***7. 试讨论函数z x yxy=+-arctan1的连续性. 解:由于arctan x yxy+-1是初等函数,所以除xy =1以外的点都连续,但在xy =1上的点处不连续.**8. 试求函数f x y xyx y(,)sin sin =+22ππ的间断点.解:显然当(,)(,),x y m n m n Z =∈时,f x y (,)没定义,故不连续. 又f x y xyx y(,)sin sin =+22ππ是初等函数. 所以除点(,)m n (其中m n Z ,∈)以外处处连续.第 11 章(之2) (总第60次)教材容:§11.2 偏导数 [§11.2.1]**1.解下列各题: (1)函数32),(y x y x f +=在)0,0(点处 ( )(A ))0,0(x f '和)0,0(y f '都存在; (B ))0,0(x f '和)0,0(y f '都不存在; (C ))0,0(x f '存在,但)0,0(y f '不存在; (D ))0,0(x f '不存在,但)0,0(y f '存在. 答:(D ).(2) 设z x y xy =+-()arcsin2,那么∂∂z y (!,)2= ( )(A) 0 ; (B) 1; (C)π2; (D)π4. 答:(D).(3)设()xy y x f =,,则=)0,0('x f ______,=)0,0('y f __________.解:由于0)0,(=x f ,0)0,0('=∴x f ,同理 0)0,0('=y f .**2. 设z x y x y e xy =-+++2322ln , 求 z z x y ,. 解:z x x y ye x xy=+++1322, z y x yxe y xy =-+++2322.**3. 求函数xyz arctan =对各自变量的偏导数. 解:2222,y x xz y x y z yx +=+-=.**4. 设f x y x x y x y x y (,)ln()=++≠+=⎧⎨⎩222222200,求f f x y (,),(,)0000.解:f x x x x x (,)limln 000022==→, f yy y (,)lim 000000=-=→.***5. 求曲线⎩⎨⎧=+-=122x y xy x z 在()1,1,1点处切线与y 轴的夹角.解:由于曲线在平面1=x ,故由 ()()()121,11,1=+-=y x z y ,得切线与y 轴的夹角为 41arctan π=.[也可求出切向量为{}1,1,0]∴夹角={}{}422arccos12110,1,01,1,0arccos 22π==+.***6. 设函数ϕ(,)x y 在点)0,0(连续,已知函数f x y x y x y (,)(,)=-ϕ在点)0,0(偏导数)0,0(x f '存在,(1)证明ϕ(,)000=; (2)证明)0,0(y f '也一定存在.解:(1)lim(,)(,)lim (,)∆∆∆∆∆∆∆x x f x f x x x x→→-=000000ϕ, 因为)0,0(x f '存在,所以 lim (,)lim(,)∆∆∆∆∆∆∆∆x x x x x x x x→+→-⋅=-⋅0000ϕϕ 即 ϕϕ(,)(,)0000=-, 故 ϕ(,)000=.(2)由于ϕ(,)x y 在点)0,0(连续,且ϕ(,)000=,所以0→∆y 时,),0(y ∆ϕ是无穷小量,而yy ∆∆是有界量,所以0),0(lim )0,0(),0(lim00=∆∆∆=∆-∆→∆→∆yy y y f y f x y ϕ,即0)0,0(='y f .第 11 章(之3) (总第61次)教材容:§11.2 偏导数 [§11.2.2 ~ 11.2.4]**1. 求函数()x y z x z y x f sh ch ,,-=的全微分,并求出其在点()2ln ,1,0=P 处的梯度向量.解:()()()x y d z x d z y x df sh ch ,,-=()zdzx xdy dx x y z xdxy xdy zdz x zdx sh sh ch ch ch sh sh ch +--=--+=∴()()dx z y x df 41,,2ln ,1,0=, ()()⎭⎬⎫⎩⎨⎧=∇0,0,41,,2ln ,1,0z y x f . **2.求函数xyyx z -+=1arctan的全微分: 解:xyyx d dz -+=1arctan)arctan (arctan y x d +=2211)(arctan )(arctan y dy x dx y d x d +++=+=**3. 设z xy xy =-sec ()ln()21,求d z .解:222)]1[ln()]1d[ln()(sec )](d[sec )]1[ln(d ----=xy xy xy xy xy z)]d d (1)(sec )d d )(tan()(sec 2)1[ln()]1[ln(1222y x x y xy xy y x x y xy xy xy xy +--+--= )1(ln )(cos )1()d d ](1)1)(tan()1ln(2[22--+---=xy xy xy y x x y xy xy xy .**4. 利用df f ≈∆,可推出近似公式:()()()y x df y x f y y x x f ,,,+≈∆+∆+, 并利用上式计算()()2203.498.2+的近似值.解:由于()()()y x df y x f y y x x f ,,,+≈∆+∆+, 设()22,y x y x f +=,03.0,02.0,4,3=∆-=∆==y x y x ,于是 ()2222,yx y y x x yx ydy xdx y x df +∆+∆=++=,()()22,,yx y y x x y x f y y x x f +∆+∆+≈∆+∆+,∴()()()()012.54303.0402.034303.498.2222222=++-++≈+.***5.已知圆扇形的中心角为60=α,半径为cm r 20=,如果α增加了 1,r 减少了1cm ,试用全微分计算面积改变量的近似值. 解:180212παrS =, ))(2(3602ααπd r dr dS +=,∴ )(4533.17)3601)20(360)1(60202(22cm dS S -=⨯+-⨯⨯⨯=≈∆π.***6. 计算函数()()z y x z y x f 32ln ,,++=在点()0,2,1=P 处沿给定方向k j i l-+=2 的方向导数Plf∂∂.解:zy x f zy x f zy x f z y x 323,322,321++=++=++=,⎭⎬⎫⎩⎨⎧-=61,61,62l e ,∴ 65161,61,6253,52,51=⎭⎬⎫⎩⎨⎧-⋅⎭⎬⎫⎩⎨⎧=⋅∇=∂∂l Pe f lf.***7. 函数z xy=++arctan 11在(0,0)点处沿哪个方向的方向导数最大,并求此方向导数的值. 解:∂∂z xx y y(,)(,)0020011111112=+++⎛⎝ ⎫⎭⎪⋅+=, ∂∂z yx y x y (,)(,)()00220011111112=+++⎛⎝ ⎫⎭⎪⋅-++⎡⎣⎢⎤⎦⎥=-,{}{}∂∂ααααϕz l =+-=-⋅=1212121122cos ()sin ,cos ,sin cos , 其中ϕ为{} l =cos ,sin αα与 g =-⎧⎨⎩⎫⎬⎭1212,的夹角,所以ϕ=0时,即l 与g 同向时,方向导数取最大值∂∂z l =22.**8. 对函数 xyze z y xf =),,( 求出 ),,(z y x f ∇ 以及 )3,2,1(f ∇.解: {}xyz xyz xyzxye xze yze f ,,=∇,{}2,3,6)3,2,1(6e f =∇.**9. 求函数z y x z y x f 1)(),,(+=在点)21,21,21(-+=e e P 处的梯度. 解:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-++=∇--)ln()(,)(1,)(1211111y x z y x y x z y x z f z z z , {}24,2,2)21,21,21(e e e e ef -=-+∇.***10. 讨论函数⎪⎩⎪⎨⎧=+≠+++=0,00,1sin ),(22222222y x y x y x y x y x f 在点(0,0)处的连续性,可导性和可微性.解:因为 lim (,)lim sin(,)x y x y f x y x y x y f →→→→=++==022221000,所以f x y (,)在点(0,0)连续.因为 lim(,)(,)lim sin ()∆∆∆∆∆∆∆x x f x f x x x x →→+-=00200001, 极限不存在,f x y (,)在(0,0)处不可导,从而在(0,0)处不可微.第 11 章(之4)(总第62次)教材容:§11.3 复合函数微分法;§11.4 隐函数微分法**1.解下列各题:(1) 若函数),(v u f 可微,且有x x x x x f ++=3422),(及122),(22 +-='x x x x f u ,则),(2 x x f v '= ( )(A) 1222++x x(B) xx x 21322++ (C) 1222+-x x(D) 1322++x x答:(A)(2)设函数z z x y =(,)由方程xy z x y z 2=++所确定,则∂∂zy=_________. 答: 2112xyz xy-- .(3)方程yzx z ∂∂=∂∂3,在变量代换y x u 3+=,y x v +=3下,可得新方程为_______. 答:0=∂∂uz.**2. 设u x y z x r y r z r =++===222,cos sin ,sin sin ,cos θϕθϕϕ求∂∂∂∂θ∂∂ϕu r u u ,,.解:()∂∂θϕθϕϕurx y z r =++=2222cos sin sin sin cos ,0)sin cos (2]sin )sin ([2=+-=ϕθθϕ∂θ∂r y r x u,0sin 2)cos sin (2)cos cos (2=-+=ϕϕθϕθ∂ϕ∂r z r y r x u.**3. 一直圆锥的底半径以3s cm /的速率增加,高h 以5s cm /的速率增加,试求r=15cm ,h=25cm 时其体积的增加速率. 解:h r V 231π=, s cm h r dtdVdtdhr dt dr rh dt dh h V dt dr r V dt dV /11252515313232πππ===+=⋅∂∂+⋅∂∂=*4. 设,3y e z x -=而4,sin t y t x ==,求dtdz. 解:32334cos y t t e dtdy z dt dx z dt dz xy x -=+=.**5. 若)(22y x f xy z -=,证明:z y z x y z y x x z xy 2222+=∂∂+∂∂. 解:22222,2ff xy xf z f f y x yf z y x '+='-=, 则 z y z x fy x xy yz x z xy y x 222222)(+=+=+. **6. 设 )cos ,,(2x xy ye xe f u x y =,求du yux u ,,∂∂∂∂. 解:3221)2sin cos (f x xy x y f ye f e xux y -++=∂∂ , 3221cos xf x f e f xe yux y ++=∂∂, [][]dy xf x f e f xe dx f x xy x y f ye f e du x y x y 32213221cos )2sin cos (+++-++=.**7. 求由方程y z z x ln =所确定的函数),(y x z z =的偏导数yz x z ∂∂∂∂,. 解:zx zyz y zx zFz Fx z x +=---=-=21,yz xy z z z x y Fz Fy z y +=---=-=2211.**8. 设,0),,(=+xz z y xy F 试求dz yzx z ,,∂∂∂∂. 解:,0),,(=+xz z y xy F 两边对x 求导,得 0)(321=+++x x xz z F F z yF , 解得 3231xF F zF yF z x ++-=,两边对y 求导,得 0)1(321=+++y y xz F z F xF . 解得3221xF F F xF z y ++-= ,所以dy xF F F xF dx xF F zF yF dz 32213231++-++-=.***9. 函数z z x y =(,)由方程F x x y z z xy (,,)+++=1所确定,其中F 具有连续一阶偏导数,F F 230+≠,求∂∂z x 和∂∂z y. 解:F x x y z F z y x x y F 1230d (d d d )(d d d )++++++=,d ()d ()d z F F yF x F xF yF F =-+++++1232323,∂∂z x F F yF F F =-+++12323, ∂∂z y F xF F F =-++2323. ***10. 求由方程z xyz aa 3330-=≠()所确定的隐函数z z x y =(,)在坐标原点处沿由向量{}a =--12,所确定的方向的方向导数. 解:当x y ==00,时,z a 00=≠.0,0)0,0(2)0.0()0,0(2)0.0(=-==-=xyz xz yz xyz yz xz ∂∂∂∂,0=∂∂∴az.***11. 设)0(,1,022≠+=+=-y x xv yu yv xu 求yv y u x v x u ∂∂∂∂∂∂∂∂,,,. 解: ⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂+=∂∂-∂∂+00x v x x u y v xv y x u x u ⎪⎪⎩⎪⎪⎨⎧+--=∂∂++-=∂∂⇒2222y x yu xv x v y x yv xu x u类似地 ⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂+=∂∂--∂∂00y v x y u y u y v y v y ux ⎪⎪⎩⎪⎪⎨⎧++-=∂∂+--=∂∂⇒2222y x yv xu yv y x xv yu y u第 11 章 (之5)(总第63次)教材容:§11.5 多元函数微分法在几何上的应用**1. 曲面x y z xyz x z 2222426-+--+=在点)2,1,0(=A 处的切平面方程为 ( ) (A )31223110()()x y z -+--+= (B )3234x y z +-= (C )032213=--+-+z y x (D )x y z 31223=-=-- 答:(A).**2.设函数F x y z (,,)可微,曲面F x y z (,,)=0过点)0,1,2(-=M ,且F F F x y z (,,),(,,),(,,)210521022103-=-=--=-.过点M 作曲面的一个法向量n ,已知n 与x 轴正向的夹角为钝角,则n 与z 轴正向的夹角γ=______ . 答:π3.***3. 设曲线x t y t z t =+=-=+2131223,,在t =-1对应点处的法平面为S ,则点)1,4,2(-=P 到S 的距离d =______ .答:2.**4. 求曲线ct z t b y t a x L ===,sin ,cos :在点)2,0,(0c a M π=处的切线和法平面方程. 解:,0sin 00=-===t t t a dt dx,cos 00b t b dt dy t t =-=== cdtdzt ==0.∴切线方程为:⎪⎩⎪⎨⎧-==⇔-=-=-c c z by ax c c z b y a x ππ2200,法平面方程为:0)2(=-+c z c by π.***5. 求曲线6,11:==++xyz zx yz xy L 在点)3,2,1(0=M 处的切线和法平面方程.解:设 11),,(-++=zx yz xy z y x F ,6),,(-=xyz z y x G ,)()()(),(),(2x y z z x yz z y xz xz yz z x zy y x G F +-=+-+=++=∂∂,)()()(),(),(2z y x y x xz z x xy xy zx x y z x z y G F -=+-+=++=∂∂,)()()(),(),(2x z y z y xy y x zy zyxy z y y x x z G F -=+-+=++=∂∂.∴8),(),(,1),(),(,9),(),(0=∂∂-=∂∂-=∂∂M M M x z G F z y G F y x G F ,∴切线方程为938211--=-=--z y x , 法平面方程为 ()()()()()0948211=--+-+--z y x ,即 01298=-+-z y x .***6. 求曲面4416222x y z ++=在点1,22,1(-=P )处的法线在yOz 平面上投影方程.解:曲面在点1,22,1(-=P )处的法线方向向量{}{}2,2,248,24,8-=-=→n ,法线方程为:x y z -=-=+-1222212.法线在yOz 平面上投影方程为212220-+=-=z y x .***7.求曲线x t y t z t ===3223,,上的点,使曲线在该点处的切线平行于平面x y z +-=21.解:设所求的点对应于t t =0,则对应的切线方向向量为: {}3,4,3020t t s =→.因为→s 垂直于平面法向量{}1,2,1-=→n ,所以0383020=-+=⋅→→t t n s , 解得:t 013=和t 03=-.所求点为:127291,,⎛⎝ ⎫⎭⎪和(,,)--27189.**8.求曲面xyz 6=上平行于平面.06236=+--z y x 的切平面方程. 解:26,6xyy z xyx z -=∂∂-=∂∂, ∴由条件,得:⎪⎩⎪⎨⎧-=-==⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫-=--=-=-32121366622z y x k k x y k yx∴切平面方程为:,0)3(2)2(3)1(6=+-+--z y x 即 018236=---z y x .***9.求函数22y x ez +=在点),(000y x M =沿过该点的等值线的外法线方向的方向导数.解:等值线方程为x y x y 220202+=+, 在),(000y x M =处的法线斜率为 00x y k =,即法线方向向量为 },1{00x y n =或},{00y x ,方向余弦为:cos cos αβ=+=+x x yy x y0020200202,∂∂zn e x x x y e y y x y x y x y =⋅⋅++⋅⋅+++0202020222000202000202=⋅++202020202e x y x y .***10. 求函数z y x =+sin 在⎪⎭⎫⎝⎛=1,2πP 点沿 a 方向的方向导数,其中 a 为曲线x t y t ==22sin ,cos π在t =π6处的切向量(指向t 增大的方向). 解:tan d d sin cos αππππ==-=-==y xt tt t 66222,1sin 11cos 22+-=+=ππαπα,,221sin 210sin 2cos 1,21,21,21,2=+==+=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛ππππ∂∂∂∂xy yz xy x xz ,,所以 ∂∂πππz a =⨯++⨯-+011122122()()1222+-=ππ.***11. 设f y z g z (,),()都是可微函数,求曲线x f y z y g z ==⎧⎨⎩(,)()在对应于z z =0点处的切线方程和法平面方程.解:z z =0对应点()f g z z g z z [(),],(),0000, 对应的切线方向向量:{}S f g z z g z f g z z g z y z ='+'[(),]()[(),],(),0000001.切线方程:x f g z z f g z z g z f g z z y g z g z z z y z -'+=-'=-[(),][(),]()[(),]()()0000000000,法平面方程: {}{}f g z z g z f g z z x f g z z y z [(),]()[(),][(),]0000000'+-+'-+-=g z y g z z z ()[()]()0000.****12. 在函数yx u 11+=的等值线中哪些曲线与椭圆16822=+y x 相切?解:对等值线 y x u 110+= 两边微分得 022=--ydy x dx , 即 22x y dx dy -=, 同样对16822=+y x 两边微分,有yx dx dy 8-=, 令y xxy 822-=-,得 y x 2=,代入16822=+y x ,得 32,34±=±=y x ,∴ 433110±=+=y x u .***13. 试证明曲面3a xyz =上任一点处的切平面在三个坐标轴上截距之积为定值.解:由3a xyz =, 得 xya z 3=,∴在点),,(000z y x 处法向量为:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-1,,02030203x y a y x a, ∴切平面为:0)()(0020300203=-+-+-z z y y y x a x x y x a ,又 ∵3000a z y x =, ∴ 切平面方程化为:1333000=++z zy y x x , ∴ 截距之积为: 30002727a z y x =(定值).***14. 证明曲面0,=⎪⎭⎫⎝⎛----c z b y c z a x F 的所有切平面都通过一个定点,这里F u v (,)具有一阶连续偏导数.解:曲面上点(,,)x y z 000处的切平面法向量:[]n F z c F z c z c x a F y b F =-----+-⎧⎨⎩⎫⎬⎭10200201021,,()()()[]{}=-----+-10201020102()(),(),()()z c z c F z c F x a F y b F . 切平面方程为: ()()()()z c F x x z c F y y 010020--+--[]0)()()(02010=--+--z z F b y F a x .易知x a y b z c ===,,满足上述方程,即曲面的所有切平面都通过定点(,,)a b c .第 11 章 (之6)(总第64次)教学容:§11.6泰勒展开1.填空:*(1)设u xy yx=+,则∂∂22u x =________ .答:32xy. *(2)设u x xy =ln ,则∂∂∂2ux y= _________.答:y1. *(3)设u x y y x =+22sin cos ,则∂∂∂2ux y= _________ .答: x y y x sin 2cos 2-.*(4)设u x yxy=+-arctan 1,则∂∂∂2u x y =_______ .答:0 .**(5)设z e y e y xx=+-sin cos ,则∂∂∂∂2222z x zy+= _________.答:0.**2.设z f x u =(,)具有连续的二阶偏导数,而u xy =,求∂∂22zx.解:z f yf x x u =+, z f yf y f xx xx xu uu =++22.**3.设z x xy =ln(),求∂∂∂32zx y.解一: z x yy =, z yyx =1, z yx 20=.解二: z xy x =+ln()1, z xx 21=, z yx 20=.**4.设)2,21(),()(4322xy z y x xf xy f y z 求+=. 解:)(3)()('43434324y x f y x y x f xy f y z x ++=,,4)("3)('124)('2)(")('4334343433333432423yx y x f y x y x f y x x y y x f yx xy f y xy f y z xy ⋅++⋅+⋅+=∴)2("24)2('12)2('4)2("32)2('32)2,21(f f f f f z xy ++++= )2("56)2('48f f +=.**5.函数y y x =()由方程x xy y 2221+-=所确定,求22d d xy. 解:xy yx y x y x x y -+=-+-=2222d d ,222)())(1())(1(d d x y y x y x y y x y -+-'--'+= 322)()2(2x y y xy x --+-=3)(2y x -=. ***6.求方程 zy ez x +=+ 所确定的函数),(y x z z =z=z(x,y)的所有的二阶偏导数.解:xz e x z z y ∂∂⋅=∂∂++1, ∴ 11-=∂∂+zy e x z .3222)1()1(--=-∂∂⋅-=∂∂++++z y zy zy z y e e e x ze x z, 因为 )1(y z e y z zy ∂∂+=∂∂+, ∴zy z y z y e e e y z +++-+-=-=∂∂1111. 则 3222)1()1()1(z y z y z y z y e e e yze y z ++++-=-+∂∂=∂∂, 322)1()1()1(z y z y z y z y e e e yze yx z ++++--=-+∂∂-=∂∂∂, 322)1()1(-=-∂∂=∂∂∂++++z y z y z y zy e e e x ze x y z .***7.对于由方程0),,(=z y x F 确定的隐函数),(y x z =,试求 22xz ∂∂.解:由公式zx F F x z-=∂∂两边对x 求偏导数,得。

高数下册第11章复习题与答案

高数下册第11章复习题与答案

高数下册第11章复习题与答案第十一章-无穷级数练习题(一). 基本概念1.设∑∞=1n n U 为正项级数,下列四个命题(1)若,0lim =∞→n n U 则∑∞=1n n U 收敛;(2)若∑∞=1n n U 收敛,则∑∞=+1100n n U 收敛;(3)若,1lim 1>+∞→nn n U U 则∑∞=1n n U 发散;(4)若∑∞=1n n U 收敛,则1lim 1<+∞→nn n U U .中, 正确的是( ) A .(1)与(2); B .(2)与(3);C .(3)与(4);D .(4)与(1).2.下列级数中,收敛的是(). A .∑∞=11n n ; B .∑∞=+112n n n ; C . +++3001.0001.0001.0; D . + +??? ??+??? ??+43243434343. 3.在下列级数中,发散的是(). A .∑∞=-11)1(n n n ;B .∑∞=+11n n n; C .∑∞=131n nn;D . +-+-44332243434343.4.条件()满足时,任意项级数1nn u∞=∑一定收敛.A. 级数1||n n u ∞=∑收敛;B. 极限lim 0n n u →∞=;C .极限1lim1n n nu r u +→∞=<;D. 部分和数列1n n k k S u ==∑有界.5.下列级数中条件收敛的是().A . ∑∞=11cos n n ; B. ∑∞=11n n ;C. ∑∞=-11)1(n n n ; D. ∑∞=-11)1(n n n n .6.下列级数中绝对收敛的是().A . ∑∞=-11)1(n n n ; B. ∑∞=-121)1(n n n ; C. ∑∞=+-11)1(n n n n ; D. ∑∞=11sin n n .(二). 求等比级数的和或和函数。

提示:注意首项 7.幂级数 1021+∞=∑n n n x 在)2,2(-上的和函数=)(x s . 8.幂级数∑∞=-04)1(n n nnx 在)4,4(-上的和函数=)(x s .9.无穷级数1n n ∞=∑的和S = .(三). 判定正项级数的敛散性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章 曲线积分与曲面积分 (09级下学期用) § 1 对弧长的曲线积分 1设 L 关于x 轴对称,1L 表示L 在x 轴上侧的部分,当()y x f ,关于y 是偶函数时,()=⎰Lds y x f ,( B )()⎰1,2L ds y x f C. ()⎰-1,2L ds y x f D.ABC 都不对2、设L 是以点()()()()1,0,0,1,1,0,0,1--D C B A 为顶点的正方形边界,则⎰+Lyx ds =( C )24 D. 223、有物质沿曲线L :()103,2,32≤≤===t tz ty t x 分布,其线密度为,2y =μ,则它=m ( A )⎰++1421dtt ttB.⎰++14221dtt ttC.⎰++1421dtt tD.⎰++1421dtt tt4.求,⎰Lxds 其中L 为由2,xy x y ==所围区域的整个边界解:,⎰Lxds =()22155121241111+-=++⎰⎰xdx dy yy5.,ds y L⎰其中L 为双纽线)0)(()(222222>-=+a y xa y x解:原积分=()()222sin 4sin 44222'2441-==+=⎰⎰⎰ad ad rrr ds y L χππθθθθθ6.⎰+Lds y x ,22 其中L 为()022>=+a axy x原积分222cos 2a adt t a ==⎰π7.,2⎰Lds x 其中L 为球面2222a z y x =++与平面0=-y x 的交线解:将y x =代入方程2222azyx =++得2222az x =+于是L 的参数方程:ta z t a y t a x sin ,sin 2,cos 2===,又adtds =原积分=⎰=ππ203222cos2aadt t a8、求均匀弧()0,sin ,cos ≤<∞-===t e z t e y t e x t t t 的重心坐标33,30===⎰∞-dt e M dt e ds tt,523cos 10==⎰∞-dt e t e Mx tt ,21,5100=-=z y§2 对坐标的曲线积分 一、选择题1.设L 关于x 轴对称,1L 表示L 在x 轴上侧的部分,当()y x P ,关于y 是偶函数 时,()=⎰Ldx y x P , ( D) A.0 B. ()⎰1,2L dx y x P C.()⎰-1,2L dx y x P都不对2.设L 为1=+y x 的正向,则=++⎰Lyx ydyxdx 3.L 为222ayx =+的正向,=+--+⎰Lyxdyy x dx y x 22)()(( B ) A.2ππ C.0 D.π二、计算1.()()dy y x dx y x L⎰-++2222,其中L 由曲线()2011≤≤--=x x y 从()0,2A 到()0,0O 方向 解:()1,1B 01:,:;12:,2:_______→=→-=x x y BO x x y AB=I =+⎰⎰_______BOAB ()()()()()()34122012212222-=++---+-+⎰⎰dx xxdx x xdx x x2.[]d y y x x xy y dx y x L)ln((2222+++++⎰ 其中L 是正向圆周曲线222a y x =+ 解: 由奇偶对称性022=+⎰Ldx y x,L :ππ→-==:,sin ,cos t t a y t a x=I ()()=++⎰-dt t a t t a dt t t acos 1ln cos sin cossin3224πππππ4cossin4224adt t t a=⎰-3.()⎰Γ-+++dz y x ydy xdx 1其中为从点()1,1,1A 到()4,3,2B 的有向线段解:Γ方程:13,12,1+=+=+=t z t y t x ,=I ()136141=+⎰dt t三、过()0,0O 和()0,πA 的曲线族()0sin >=a x a y ,求曲线L 使沿该曲线从()0,0O 到()0,πA 的积分()()dy y x dx y L+++⎰213的值最小解:()()[]333344cos sin 2sin1aa dx x a x a x x aa I +-=+++=⎰ππ()()()0811,014''2'>=⇒=⇒=-=Ia aa I。

,1=a ()a I 最小,此时 x y sin =四、空间每一点处()z y x P ,,有力()z y x F ,,→,其大小与()z y x P ,,到z 轴的距离成反比,方向垂直指向z 轴,试求当质点沿圆周t z y t x sin ,1,cos ===从点()0,1,1M 到()1,1,0N 时,力()z y x F ,,→所作的功解:由已知()}0,,{,,2222yxkyyx kxz y x F +-+-=2ln 2cos 1coscos 222222k t d t tk dy yxkydx yxkxW L=+-=+-++-=⎰⎰π五、将积分y y x Q x y x P L d ),(d ),(⎰+化为对弧长的积分,其中L 沿上半圆周0222=-+x yx).0,2()0,0(B O 到从解:,22x x y -=xxx x y d 21d 2--=,x y dsd 12'+=xxx d 212-=sx d d cos =α,22x x -=xsy -==1d d cos β,于是=+⎰y y x Q x y x P L d ),(d ),(sx y x Q xx y x P Ld )1(),(2),(2⎰⎥⎦⎤⎢⎣⎡-+-§3 格林公式及其应用一、选择题 1.若L 是上半椭圆⎩⎨⎧==,sin ,cos t b y t a x 取顺时针方向,则 ⎰-Lxdyydx = ( C )A.0B.ab2πab π. D ab π22. 设L 为222ay x=+的正向,则=+-⎰yxydyx dx xy 2222( C )A .2π B.-2ππ3.设L 为曲线922=+yx 的正向,则()()=-+-⎰dy x xdx y xyL4222( B )A .9ππ C. -9π D.0二、计算题 1.设L 是圆1222=++x yx 取逆时针方向,则()=++++⎰Lyxy x dyedx yx2ln 22222解:将方程代入被积函数再由格林公式得 原式= ()⎰⎰⎰==+-LDy dxdydy e dx x 0021ln 22.()()⎰+-+-Ldy y x x y dx x y xy ,3sin 21cos 22233其中L 为点()0,0O 到⎪⎭⎫⎝⎛1,2πA 的抛物线x y π22=的弧段。

解:因yP xQ ∂∂=∂∂故积分与路径无关,取⎪⎭⎫⎝⎛0,2πB=I 4232sin 2102122πππ=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-+=+⎰⎰⎰dy y y BAOB3.求⎰+-=Lyxxdy ydx I22,L 为(1)()()11122=-+-y x (2) 正方形边界1=+y x 的正向解:(1)直接用格林公式=0(2) 设l 为圆周:222r y x =+取逆时针方向,其参数方程π20:,sin ,cos →==t t r y t r x原积分为⎰⎰⎰⎰⎰⎰+=--lDlDdxdy0所以ππ2cos sin20222222222-=--=+-=+-⎰⎰⎰dt rtr t r yxxdy ydx yxxdy ydx lL4、验证()()dy e xy dx yeyxx+++22在xoy面上是某函数()y x u ,的全微分,求出()y x u ,证明:xey yP xQ +=∂∂=∂∂2,()xyexyy x u +=2,,5、设曲线积分()⎰+dyx y dx xy ϕ2与路径无关,其中()x ϕ具有连续的导数,且()00=ϕ,计算()()()⎰+1,10,02dyx y dx xy ϕ的值解:取路径:沿0=x 从()0,0到()1,0;再沿1=y 从()1,0到()1,1则()21011=+=⎰⎰xdx dy y I ϕ或()()()2'00,2x x x x yP xQ ===⇒∂∂=∂∂ϕϕϕ得又,代入计算。

§4 对面积的曲面积分 1、计算曲面积分 ⎰⎰∑++ds y x z )342(,其中∑是平面1432=++z y x 在第一卦限的部分解:⎰⎰⎰⎰-==++--=xyD x dy dxdxdy y x y x I2)21(30614361.4361]342)321(4[2、求曲面积分⎰⎰∑++ds zy x 2221 ,其中∑是界于平面z=0和z=H 之间的圆柱面222R y x =+ 解:⎰⎰⎰⎰--+=-++=RRHD dyyRdz zRRdydz yRyzRIyz2222222221.12112=2RH Ry Rz RR Harctan2].[arcsin][arctan0π=-3、求曲面积分⎰⎰∑++ds zx yz xy )( ,其中∑是锥面22y x z +=被柱面ax y x 222=+所截得的有限部分解:dxdyy xy x xy IxyD 2])([22⎰⎰+++==⎰⎰-++22cos 2022]).sin (cos sin cos [ππθθθθθθa rdrr r rd =421564a§ 5 对坐标的曲面积分 一、选择题1.设∑关于yoz 面对称反向,1∑是∑在yoz 面的前侧部分,若()z y x P ,,关于x 为偶函数,则()⎰⎰=dydz z y x P ,,( A )()⎰⎰∑1,,2dydz z y x P C. ()⎰⎰∑-1,,2dydz z y x P D.ABC 都不对2.设()0:2222≥=++∑z a z y x 取上侧,则下述积分不等于零的是( B )A ⎰⎰∑dydzx 2∑xdydzC ⎰⎰∑ydxdyD ⎰⎰∑zdxdz3.设∑为球面1222=++z y x取外侧,1∑为其上半球面,则有( B )A.⎰⎰⎰⎰∑∑=12zdszds⎰⎰∑∑=12zdxdyzdxdyC.⎰⎰⎰⎰∑∑=1222dxdyz dxdyz D.二、计算 1.⎰⎰∑++dxdyz dzdx y dydzx 222其中∑由1=++z y x 及三个坐标面所围成闭曲面的外侧()()112221111214xyxD z dxdy x y dxdy dxx y dy -∑=--=--==⎰⎰⎰⎰⎰⎰解:由轮换对称性原式2.()x y dydz ∑+⎰⎰其中∑为锥面22yxz +=被平面1=z 所截部分的外侧()2221222cos 3xx y ydydz xdydz x z dxdy d rdr ππθθ∑∑∑+≤===-===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰解:由对称性 原式3.()()⎰⎰∑-+-+-dxdy x z dzdx z y dydz y x )(其中∑为22y x z +=被平面1=z 所截部分,其法向量与z 轴成锐角()()()2222221213222cos 2x y ydydz zdzdx xy z x dxdy xy x dxdyd r r dr ππθθ∑∑∑+≤==⎡⎤=--+-=+-⎣⎦=--=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰解:由对称性原式三、用两类曲面积分之间的关系计算1. 求⎰⎰∑++dS z y x )cos cos cos (23γβα其中∑是柱面222ayx =+在hz ≤≤0部分,γβαcos ,cos ,cos 是∑的外法线的方向()3223332244423224cos 4haax dydz y dzdx zdxdydxdy x dydz x dydz dzaydy hatdt a hππ∑∑∑-=++===-==⎰⎰⎰⎰⎰⎰⎰⎰⎰解:原式由奇偶对称性 及 =0 得原式2.()()⎰⎰∑+++++dxdy z z y x f dzdx y z y z f dydzx z y x f ),,(),,(2)),,((其中),,(z y x f 为连续函数,∑为平面1=+-z y x 在第四卦限部分的上侧{1,1,1}n ∑=- 解:的法向量为 .31cos ,31cos ,31cos =-==∴γβα()x y z dS ∑=-+⎰⎰原式 ⎰⎰⋅=xyD dxdy3131=21四、试求向量→→→→+++=k yxej z i A z22穿过由22yxz +=及1=z 及2=z 所围成圆台外侧面(不含上下底)的流量()221021zz r dydz zdzdx dydz zdzdx d e dr e e πθπ∑∑∑∑Φ++⎛⎫=== ⎪ ⎪⎝⎭=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰解:=由奇偶对称性知§6 高斯公式 1. 设∑是抛物面)(2122y xz +=介于0=z 及2=z 之间部分的下侧,求()⎰⎰∑-+zdxdy dydz x z 2解:()=-+⎰⎰∑zdxdy dydz x z 28π,加面后用高斯公式。

相关文档
最新文档