高数第一章答案

合集下载

高等数学课后习题答案--第一章

高等数学课后习题答案--第一章

《高等数学》习题参考资料第一篇 一元函数微积分第一章 极限与连续§1 函 数习 题1.确定下列初等函数的定义域:(1) 21)(2−−+=x x x x f ;(2)4)(2−=x x f ;(3) 21arcsin )(−=x x f ;(4)2)5lg()(x x x f −=;(5) 4lg )5lg()(2−−=x x x f ;(6)x x x f cos sin )(−=。

1. 【答案】(1) )},2()2,1()1,(|{:+∞∪−∪−−∞∈=x x D (2) )},2[]2,(|{:+∞∪−−∞∈=x x D (3) ]}3,1[|{:;−∈=x x D (4) )}5,0()0,(|{:∪−∞∈=x x D (5) ]}4,1[|{:∈=x x D (6)+ +∈=+∞−∞=U k k k x x D ππ452,412|:.2. 作出下列函数的图象:(1)|sin |sin )(x x x f −=;(2)|1|2)(−−=x x f ;(3)+−−=,1,1,21)(x x x x f .12,21,1||−<<−<<≤x x x 2 【答案】 (1)2(2)2 (3)3.判断下列函数的奇偶性:(1)x x x f ++−=11)(;(2)xxx f x x +−+−=11lg110110)(;(3)x x a a x f x x sin )(++=−;(4))1lg()(2x x x f ++=。

3. 【答案】 (1) 偶函数; (2) 偶函数; (3) 偶函数; (4) 奇函数 .4.证明:两个奇函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数。

4. 【答案】 设)(x f ,)(x h 是奇函数, )(x g 是偶函数,)()()(x h x f x f =,)()()(x g x f x G =, 于是)()()(x h x f x F −−=−))())(((x h x f −−=)()()(x F x h x f ==, 因此)(x F 是偶函数.)()()(x g x f x G −−=−)()(x g x f −=)(x G −=, 因此)(x G 是奇函数.5.设函数f 满足:D (f )关于原点对称,且()xc x bf x af =+1)(,其中a ,b ,c 都是常数,||||b a ≠,试证明f 是奇函数。

高等数学第一章课后习题答案

高等数学第一章课后习题答案

高等数学(本)第一章 函数与极限1. 设 ⎪⎩⎪⎨⎧≥<=3||,03|||,sin |)(ππϕx x x x , 求).2(446ϕπϕπϕπϕ、、、⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛6sin )6(ππϕ=21=224sin )4(==ππϕ ()0222)4sin()4(==-=-ϕππϕ2. 设()x f 的定义域为[]1,0,问:⑴()2x f ; ⑵()x f sin ; ⑶()()0>+a a x f ; ⑷()()a x f a x f -++ ()0>a 的定义域是什么?(1)][;,-的定义域为所以知-11)(,111022x f x x ≤≤≤≤[]ππππ)12(,2)(sin ),()12(21sin 0)2(+∈+≤≤≤≤k k x f Z k k x k x 的定义域为所以知由][a a a x f ax a a x -+-≤≤≤+≤1,)(110)3(-的定义域为所以知-由][φ时,定义域为当时,定义域为当从而得-知由211,210111010)4(>-≤<⎩⎨⎧+≤≤-≤≤⎩⎨⎧≤-≤≤+≤a a a a a x a ax a a x a x班级 姓名 学号3. 设()⎪⎩⎪⎨⎧>-=<=111011x x x x f ,()x e x g =,求()[]x g f 和()[]x f g ,并做出这两个函数的图形。

⎪⎪⎩⎪⎪⎨⎧>=<==⎪⎩⎪⎨⎧>-=<=⎪⎩⎪⎨⎧>-=<=-1,1,11,)]([.)20,10,00,1)]([1)(,11)(,01)(,1)]([.)11)(x e x x e e x f g x x x x g f x g x g x g x g f x f 从而得4. 设数列{}n x 有界, 又,0lim =∞→n n y 证明: .0lim =∞→n n n y x{}结论成立。

高等数学讲义答案第一章

高等数学讲义答案第一章

第一章 极限与连续第一节 函 数【例1】研究函数)1ln()(2x x x f ++=的奇偶性,并求其反函数. 【分析】()f x 定义域为R ,()ln(ln(()f x x x f x -=-==-+=-故()f x 为奇函数.由)1ln()(2x x x f ++=得,y e x =yex -=-+两式相减得.2y ye e x --=【例2】设0,0()1,0x f x x <⎧=⎨≥⎩, 22,1()||2,1x x g x x x ⎧-<⎪=⎨-≥⎪⎩, 试求[()],[()]f g x g f x .【分析】0,12[()]1,12x f g x x x ⎧≤<⎪=⎨<≥⎪⎩或,2,0[()]=1,0x g f x x <⎧⎨-≥⎩.【例3】设函数2||sin(2)()(1)(2)x x f x x x x -=--在下列哪个区间内有界( ).()()A 1,0- ()()B 0,1 ()()C 1,2 ()()D 2,3【分析】()1,0x ∈-,2||sin(2)11()(1)(2)144x x f x x x x -=≤=--⨯,故有界,选(A ) 2111||sin(2)sin(2)lim ()lim lim (1)(2)(1)x x x x x x f x x x x x ---→→→--===+∞--- 111sin(2)sin(2)lim ()lim lim (1)(1)x x x x x f x x x +++→→→--===-∞-- 222222sin(2)(2)1lim ()lim lim lim (2)(2)2x x x x x x f x x x x ++++→→→→--====+∞--- 故BCD 均不正确.第二节 极 限【例1】讨论11012lim12x x x→-+.【分析】1111001212lim 1,lim 11212x x x x xx+-→→--=-=++,故此极限不存在.【例2】讨论1121lim ()xx x x e e+→-. 【分析】111111221122lim ()lim ,lim ()limttttt t xx xx t t x x e e e ex e e x e e t t +-++++→+∞→-∞→→---==+∞-==故此极限不存在.【例3】110|sin |lim 21x x x x e x e →⎛⎫⎪- ⎪ ⎪+⎝⎭. 【分析】1111000|sin |sin lim 2lim 2lim 12111x xx x x x x x e x e x x e e +++→→→⎛⎫ ⎪-=-=-=- ⎪ ⎪++⎝⎭1111000|sin |sin lim 2lim 2lim 10111x xx x x x x x e x e x x e e --+→→→⎛⎫- ⎪-=-=--=- ⎪ ⎪++⎝⎭,故110|sin |lim 2 1.1x x x x e x e →⎛⎫⎪-=- ⎪ ⎪+⎝⎭【例1】)0,0,0()(lim 1>>>++∞→c b a c b a nnnn n【分析】不妨设0a b c ≥≥>,由3n n n nna abc a ≤++≤得11()3n nn n na abc a ≤++≤ 又因为1lim lim3nn n a a a →∞→∞==,由三明治定理得1lim().nnn nn a b c a →∞++=故()1lim()max ,,.nnn nn a b c a b c →∞++=【例2】)2211(lim 222n n nn n n +++++∞→【分析】由2221i i i n n n i n ≤≤+++得2221111n n n i i i i i in n n i n ===≤≤+++∑∑∑又因为22111lim lim 12nn n n i i i i n n n →∞→∞====++∑∑,由三明治定理得211lim .2nn i i n i→∞==+∑题型一 极限概念与性质【例1】设数列{}n x 与{}n y 满足lim 0n n n x y →∞=, 则下面断言正确的是 ( ).(A)若{}n x 发散,则{}n y 必发散 (B)若{}n x 无界,则{}n y 必有界 (C)若{}n x 有界, 则{}n y 必为无穷小 (D)若1{}nx 为无穷小,则{}n y 必为无穷小 【分析】令,0n n x n y ==,(A)不正确;令0,n n x y n ==,(C)不正确;令,1,3,50,1,3,5,0,2,4,6,2,4,6n n n n n x y n n n ==⎧⎧==⎨⎨==⎩⎩(B)不正确;选(D). 事实上,lim lim01nn n n n ny x y x →∞→∞==,分母趋于0,分子趋于0,(D)正确. 【例2】{},{},{}n n n a b c 均为非负数列, 且lim 0n n a →∞=,lim 1n n b →∞=,lim n n c →∞=∞, 则 ( ). (A),n n a b n <∀ (B),n n b c n <∀ (C)lim n n n a c →∞不存在 (D)lim n n n b c →∞不存在【分析】对n ∀,(A) (B)肯定不正确,lim n n n a c →∞可能存在可能不存在,选(D).【例3】设函数()f x 在(),-∞+∞内单调有界, {}n x 为数列, 下面命题正确的是 ( ). (A)若{}n x 收敛,则{()}n f x 必收敛 (B)若{}n x 单调,则{()}n f x 必收敛 (C)若{()}n f x 收敛, 则{}n x 收敛 (D)若{()}n f x 单调, 则{}n x 收敛【分析】{}n x 单调,由于()f x 单调,则{()}n f x 单调,又因为其有界,故由单调有界定理,(B)正确.题型二 不定式求极限【例1】(1) 0x0011233lim .3x x xx o x o x x (2) )cos 1(sin 1tan 1limx x xx x -+-+→()30002tan 1cos 1tan sin 1lim lim .1222x x x x x x xx x x →→→--===⨯(3) limxlimlimlim1.x x x ===(4) 3012cos lim 13x x x x32200012cos 12cos 1cos 11lim 1lim ln lim .3336x x x x x x x xx x(5) sin 30limx xx e e x →-()sin sin 3330001sin 1lim lim lim .6x x x x x x x x e e e e x x x x x -→→→---===-(6) 211lim (arctan arctan )1x x x x →∞-+()222220011arctan arctan 11111lim (arctan arctan )lim lim 12x t t t t t t t t x x x t t →∞→→--++++-==+()()222011lim1.2t t t t t→++-+==(7) ()()4sin sin sin sin limx x x x x →-()()()34330001sin sin sin sin sin sin sin sin 16lim lim lim .6x x x x x x x x x x x x →→→--=== (8)()()()401cos ln 1tan limsin x x x x x→--+()()()()()42220001cos ln 1tan ln 1tan tan ln 1tan 11tan limlim lim sin 22x x x x x x x x x x x x xx x x →→→--+-+-+⎛⎫-==+ ⎪⎝⎭2201tan 112lim .24x xx →==【例2】 (1) 22211lim sin cos x x x x →⎛⎫- ⎪⎝⎭()()2222222224000cos sin cos sin 11cos sin lim lim lim sin cos cos sin x x x x x x x x x x x x x x x x x x x →→→+--⎛⎫-== ⎪⎝⎭30cos sin 22lim.3x x x x x →-==-(2)()12lim x x x x e →+∞⎛- ⎝ ()()()121222011lim lim 1.txx t t e t x x e t +→+∞→--+⎛-==- ⎝【例3】(1) 310sin 1tan 1lim x x x x ⎪⎭⎫ ⎝⎛++→()333000tan 1cos 11tan 1tan sin 1limln lim lim .1sin 1sin 2x x x x x x x x x x x x x →→→-+-⎛⎫⎛⎫=== ⎪ ⎪++⎝⎭⎝⎭ 311201tan lim .1sin x x x e x →+⎛⎫= ⎪+⎝⎭(2) 21coslim x x x ⎪⎭⎫ ⎝⎛∞→ 222211111lim ln cos lim cos 1lim .22x x x x x x x x x →∞→∞→∞⎛⎫⎛⎫⎛⎫=-=-⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2121lim cos .x x e x -→∞⎛⎫= ⎪⎝⎭ (3) ()110ln 1lim xe x x x -→+⎛⎫ ⎪⎝⎭()()()2000ln 1ln 1ln 1111lim ln lim 1lim .12x x x x x x x x e x x x x →→→+++-⎛⎫⎛⎫=-==- ⎪ ⎪-⎝⎭⎝⎭()11120ln 1lim .xe x x e x --→+⎛⎫= ⎪⎝⎭(4)()()2lim xx xx a x b →∞⎡⎤⎢⎥-+⎣⎦()()()()()()22lim ln lim .x x x x a x b x x x a b x a x b x a x b →∞→∞⎡⎤--+==-⎢⎥-+-+⎣⎦()()2lim .xa b x x e x a x b -→∞⎡⎤=⎢⎥-+⎣⎦(5) 11ln lim 1xxx x →+∞⎛⎫- ⎪⎝⎭()1112111ln 1ln 1ln 11ln lim ln 1lim lim lim 1.ln 111xx x x x x x x x x x x x x x x x x x x x x x x e →+∞→+∞→+∞→+∞-⎛⎫ ⎪⎛⎫--⎝⎭-=⋅===- ⎪⎛⎫⎛⎫⎝⎭--- ⎪ ⎪⎝⎭⎝⎭ 11ln 1lim 1.xxx x e -→+∞⎛⎫-= ⎪⎝⎭(6) lim nn →∞⎣⎦()02ln ln 1lim ln lim 1lim ln 22222t t x x t a b a b x x ab t +→+∞→+∞→⎤+-+=-===⎢⎢⎥⎣⎦⎣⎦lim lim n xn x →∞→+∞==⎣⎦⎣⎦【例4】 (1) 若30sin 6()lim0x x xf x x →+=, 求206()lim .x f x x →+233300006()sin 6()6sin 6sin 6()6sin 6limlim lim lim 36.x x x x f x x xf x x x x xf x x xx x x x →→→→+++-+-==+=(2)设0ln(1()sin 5)lim 121x x f x x →+=-, 求0lim ().x f x →000ln(1()sin 5)()sin 55()lim lim lim 1.21ln 2ln 2x x x x f x x f x x f x x →→→+===-0ln 2lim ().5x f x →= 题型三 连加或连乘求极限【例1】(1) ()11lim ()nn i l N i i l +→∞=∈+∑(2)231lim nn i i n →∞=∑ (3) n n x x x 2cos 4cos 2cos lim ∞→ 11111111111,11,lim 1.()22311()nnn i i l i i l n n n i i l →∞====-+-++-=-=++++∑∑1111111111112,11,()232422212ni l i i l n n n n =⎛⎫⎛⎫==-+-++-=+-- ⎪ ⎪++++⎝⎭⎝⎭∑1111lim 1.()22nn i i i l →∞=⎛⎫=+ ⎪+⎝⎭∑同理,得()11111lim1.()2nn i l N i i l l l +→∞=⎛⎫∈=+++ ⎪+⎝⎭∑ (2)231lim nn i i n →∞=∑ ()()2331111lim lim 121.63nn n i i n n n nn →∞→∞==⨯++=∑ (3) n n xx x 2cos 4cos 2coslim ∞→cos cos cos 2sin sin sin 2422lim cos cos cos limlim .2422sin 2sin 22n n nn n n n n n n nx x x xx x x x x x x x →∞→∞→∞⋅===【例2】 (1))212654321(lim nn n -⋅⋅∞→()()()()()22222212+11352113355711()=24622462+12+12n n n n n n n --⨯⨯⨯⋅⋅⋅⋅⋅≤ 因为1lim=02+1n n →∞,由三明治定理得213521lim()=02462n n n →∞-⋅⋅, 故13521lim()=0.2462n n n→∞-⋅⋅ (2)⎰∞→xx dt t x 0sin 1lim()()()10sin sin 11,sin 1n n xt dtt dt n x n t dt n x n ππππππ+≤<+≤≤+⎰⎰⎰即()()02121sin 1xn n t dt n x n ππ+≤≤+⎰ ()()2122lim lim 1x x n n n n πππ→∞→∞+==+,由三明治定理得012lim sin .x x t dt x π→∞=⎰(3))0,0i n p a >>设()12max ,,p M a a a =M ≤≤lim n n M M →∞==,由三明治定理得()1max ,,.p n M a a == 【例3】(1)1limn n i →∞=11011limlnln 1112lim lim .nn i in nxdxn n n n i n e e e n n n →∞=-→∞→∞=∑⎛⎫⎰=⋅⋅⋅=== ⎪⎝⎭(2)lim n11013lim 112lim .n n i i xdxn n n e e e →∞=⎛⎫+ ⎪+⎝⎭∑⎰===【例4】(1) 1limn i →∞=111nnni i i ===≤≤11lim lim 1.nnn n i i →∞→∞====由三明治定理,得1lim 1.nn i →∞==(2)1limnn i →∞=((11111lim lim ln ln 1.nnn n i i x n →∞→∞======+⎰(3)1limnn i →∞=)10111lim lim 21.nn n n i i n →∞→∞======⎰(4)21limnn i →∞=222111nn ni i i ===≤≤22111lim lim .3n n n n i i →∞→∞====故211lim.3nn i →∞==(5)11limnn i n i →∞=+∑()1100111111lim lim ln 1ln 2.11nn n n i i dx x i n i n x n→∞→∞=====+=+++∑∑⎰(6)21limn i nn i →∞=++∑2221111nn ni i i i i in n n n n i n n ===≤≤++++++∑∑∑ 22111lim lim .12nnn n i i i i n n n n n →∞→∞====++++∑∑ 故211lim.2nn i i n n i →∞==++∑ (7) 221limnn i n n i →∞=+∑ 1102222011111lim lim arctan .141nnn n i i n dx x n i n x i n π→∞→∞======++⎛⎫+ ⎪⎝⎭∑∑⎰(8) 221lim1nn i n n i →∞=++∑()22222211111nnni i i nn nn i n i ni ===≤≤+++++∑∑∑()1222220111lim lim .141nnn n i i nn dx n i x n i π→∞→∞=====++++∑∑⎰【例5】(1)2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫ ⎪+++ ⎪+ ⎪++⎝⎭222sin sin sin sin sin sin sin sin sin 1111112n n n n n n n n n n n n n n n n nn n n n n πππππππππ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪+++≤+++≤+++ ⎪ ⎪ ⎪++++ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭1022sin sin sin sin sin sin 2lim lim sin .111n n n n n n n n n n xdx n n n n n n ππππππππ→∞→∞⎛⎫⎛⎫ ⎪ ⎪+++=+++== ⎪ ⎪+++ ⎪ ⎪⎝⎭⎝⎭⎰2sin sin sin 2lim .1112n n n n n n n n n ππππ→∞⎛⎫⎪+++=⎪+ ⎪++⎝⎭(2)21tanlim nn i i n n n i →∞=+∑222111tann tan tan 1n n ni i i i i in n n n n n n n i n ===≤≤+++∑∑∑1100222111tantan tanlim lim lim tan ln cos lncos1.1n n n n n n i i i i i in n n n n n xdx x n n n n →∞→∞→∞=======-=-++∑∑∑⎰【例6】(1)1lim 1nn i →∞=⎫⎪⎪⎭∑111lim 1lim .4nn n n i i →∞→∞==⎫==⎪⎪⎭∑ (2)()1222411lim n n n i n i n →∞=+∏()()()12222421011limln 2ln 12242arctan 2411lim25.n n n i n i nn nx dx n i niee e n →∞=⎡⎤+⎢⎥+⎢⎥-+⎣⎦→∞=∏⎰+===∏题型四 数列极限的存在性【例1】(1)设111,0n a a +=+=,证明数列{}n a 收敛,并求lim n n a →∞.121,0a a ==设1k k a a +≤,则≤21k k a a ++≤由数学归纳法得{}n a 递减下面证明n a ≥显然112a ≥-设12k a +≥-则12+≥-,即112k a +≥-由数学归纳法得n a ≥由单调有界必收敛得{}n a 收敛.设lim ,n n a A →∞=两边取极限得0A =,即A =(2) 123a a a === ,证明数列{}n a 收敛,并求lim n n a →∞.lim 2.n n a →∞=(3) 设1111,2n n n a a a a a a +⎛⎫=>=+ ⎪⎝⎭,证明数列{}n a 收敛,并求lim n n a →∞. lim n n a →∞=(4) 设1103,n a a +<<={}n a 收敛,并求lim n n a →∞.3lim .2n n a →∞= 【例2】设)(x f 是区间[)0,+∞上单调减少且非负的连续函数,()()()11,1,2,nnn k a f k f x dx n ==-=∑⎰…证明数列{}n a 的极限存在.()()()()1111110n n n n nna a f n f x dx f n f n dx +++-=+-≤+-+=⎰⎰,即{}n a 递减.()()()()()()23112112nn n k a f k f x dx f f x dx f f x dx ==-=-+-+∑⎰⎰⎰()()()()110.nn f n f x dx f n f n -+--+≥≥⎰故{}n a 有下界.由单调有界定理,{}n a 的极限存在.题型五 含参数的极限【例1】确定,,a b c 值,使()()3sin lim0ln 1x x bax xc c t dtt→-=≠+⎰. 【分析】分式极限不为0,分子趋于0,则分母趋于0,故0.b =()()()233000sin cos cos limlimlim 0ln 1ln 1x x x x ax xa x a xc c x t x dttx→→→---===≠++⎰故11,.2a c ==【例2】()()22ln 1lim2x x ax bx x →+-+=,求,a b .【分析】()()()()222222001ln 12lim lim 2x x x x o x ax bx x ax bx x x →→-+-++-+==故51,.2a b ==-题型六 含变积分限的极限【例1】设()(),g f x x 连续,且()()()g 0f x x x → ,又lim ()0x ax ϕ→=,证明:()()()()()0x x f t dt g t dt x a ϕϕ→⎰⎰.【例2】设)(x f 是[)0,+∞上的连续函数,且满足()2lim 1x f x x →+∞=,求()()220limxx t x e e f t dtf x -→+∞⎰.【分析】()()()()()222222222limlimlimxxxxttt xxx x x ee f t dte f t dte f t dt xf x x e f x x e -→+∞→+∞→+∞=⋅=⎰⎰⎰()()()2222221limlim .22222xxx x f x e f x x x x x xx e →+∞→+∞==⋅=++题型七 函数的连续与间断【例1】设()()()f x x ϕ-∞+∞和在内有定义,()f x 为连续函数,且()()0,f x x ϕ≠有间断点,则 ( ). (A)()f x ϕ⎡⎤⎣⎦必有间断点(B)()2f x ϕ⎡⎤⎣⎦必有间断点(C)()f x ϕ⎡⎤⎣⎦必有间断点 (D)()()x f x ϕ必有间断点【分析】(D) 【例2】设函数nn x xx f 211lim)(++=∞→,讨论函数)(x f 的连续性与间断点.【分析】0,11,11()1,10,1x x x f x x x ≤-⎧⎪+-<<⎪=⎨=⎪⎪>⎩()f x 在1x =处是跳跃间断点,在其他区域均连续.【例3】求()sin sin sin lim sin x t xt x t f x x -→⎛⎫=⎪⎝⎭的间断点,并判别其类型.【分析】()sin sin sin sin lim .sin xx t xxt x t f x e x -→⎛⎫== ⎪⎝⎭其中,,0x k k Z k π=∈≠且为第二类间断点,0x =为可去间断点.。

高等数学第一章总习题及答案

高等数学第一章总习题及答案

7. 已知 lim
x →0
f ( x) ) sin x = 3 , 求 lim f ( x) . x →0 x 2 2x − 1

因为 lim(2 − 1) = 0 , lim
x →0
x
ln(1 +
x →0
f ( x) ) sin x = 3 , 故必有 lim ln(1 + f ( x) ) = 0 , x →0 sin x 2x − 1
2
2
x
1 1 . = ( )2 = 2 2
1
(4) (5) (6)
lim
x →0
1 x sin x 1 = lim 2 2 = . x →0 2 x
1
x
lim(1 + 3tan 2 x)cot
x →0
= [lim(1 + 3tan 2 x) 3tan x ]3 = e3 .
2
x →0
设 k 为任一个大于 2c 的自然数, 则当 n > k 时,
0 < x ≤ e, 在 x = e 处, lim+ f ( x) = ln e = 1 , lim− f ( x) = 1 , x →e x →e x > e,
故 f ( x) 在 x = e 处连续, 故函数连续区间为 (0, + ∞) .
9.
⎧ cos x , x ≥ 0, ⎪ ⎪x + 2 设 f ( x) = ⎨ 要使 f ( x) 在 (−∞, + ∞) 内连续, 应如何选择 ⎪ a − a − x , x < 0, ⎪ x ⎩
n →∞ n →∞
(B) 无界数列必定发散; (D) 单调数列必有极限.
yn . xn

大学高数高数第一章(终)课后参考答案及知识总结

大学高数高数第一章(终)课后参考答案及知识总结

第一章函数、极限与连续内容概要课后习题全解习题1-1★1.求下列函数的定义域:知识点:自然定义域指实数范围内使函数表达式有意义的自变量x 的取值的集合; 思路:常见的表达式有 ① a log □,( □0>) ② /N □, ( □0≠) ③(0)≥W④ arcsin W (W[]1,1-∈)等解:(1)[)(]1,00,11100101122⋃-∈⇒⎩⎨⎧≤≤-≠⇒⎩⎨⎧≥-≠⇒--=x x x x x x x y ;(2)31121121arcsin≤≤-⇒≤-≤-⇒-=x x x y ; (3)()()3,00,030031arctan 3⋃∞-∈⇒⎩⎨⎧≠≤⇒⎩⎨⎧≠≥-⇒+-=x x x x x x x y ;(4)()()3,11,1,,1310301lg 3⋃-∞-∈⇒⎩⎨⎧-<<<⇒⎩⎨⎧-<-<⇒-=-x x or x x x x x y x;(5)()()4,22,11601110)16(log 221⋃∈⇒⎪⎩⎪⎨⎧-<-≠-<⇒-=-x x x x x y x ; ★ 2.下列各题中,函数是否相同?为什么?(1)2lg )(x x f =与x x g lg 2)(=;(2)12+=x y 与12+=y x知识点:函数相等的条件;思路:函数的两个要素是f (作用法则)及定义域D (作用范围),当两个函数作用法则f 相同(化简后代数表达式相同)且定义域相同时,两函数相同;解:(1)2lg )(x x f =的定义域D={}R x x x ∈≠,0,x x g lg )(=的定义域{},0R x x x D ∈>=,虽然作用法则相同x x lg 2lg 2=,但显然两者定义域不同,故不是同一函数;(2)12+=x y ,以x 为自变量,显然定义域为实数R ;12+=y x ,以x 为自变量,显然定义域也为实数R ;两者作用法则相同“2□1+”与自变量用何记号表示无关,故两者为同一函数;★ 3.设⎪⎪⎩⎪⎪⎨⎧≥<=3,03,sin )(ππϕx x x x ,求)2()4()4()6(--ϕπϕπϕπϕ,,,,并做出函数)(x y ϕ=的图形知识点:分段函数;思路:注意自变量的不同范围; 解:216sin)6(==ππϕ,224sin 4==⎪⎭⎫⎝⎛ππϕ,224sin 4=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππϕ()02=-ϕ;如图:★ 4.试证下列各函数在指定区间内的单调性 :(1)()1,1∞--=xxy (2)x x y ln 2+=,()+∞,0 知识点:单调性定义。

高数练习册答案

高数练习册答案

第一章 函数与极限部分习题答案§1 映射与函数一、填空题:1、224>-<<-x x 或2、)01(1ln>>-=x x x y 3、奇函数 4、41 §2 数列的极限一、填空题:1、不存在 2、必要 3、1二、计算题:1、0 2、1 3、21§3 函数的极限一、填空题:1、 充要 2、1 3、1;不存在 二、计算题:1、 6 2、21 3、62- 4、(1):1;(2):-1;(3):不存在§4 无穷小和无穷大二、计算题:1、0 2、1 3、2§5 极限的运算法则一、计算题:1、-11 2、32 3、214、-15、236、17、528、1二、计算:a=2; b=-8 三、计算;a=1; b=-1§6 极限存在准则 两个重要极限一、填空题:1、0;1;1;0 2、1-e ;2e ;3e ;2e ;二、计算题:1、0; 2、2; 3、2; 4、2e ; 5、 3-e ; 6、6-e ;三、计算:1§7无穷小的比较一、 计算题:1、2; 2、32; 3、0; 4、1 二、 计算题;3=α§8函数的连续性与间断点一、 填空题:1、充要; 2、可去;二、不连续,跳跃间断点 三、跳跃间断点 四、41=a §9连续函数的运算与初等函数的连续性一、计算题;∞,21,31;二、1、2ln π2、1;3、0;4、1三、计算a=1; b=-1第一章自测题一、填空题:1、0≠x,1,-1; 2、0; 3、0; 4、2; 5、21三、计算题:1、2 x ; 2、1; 3、1; 4、3e ; 5、; 6、41; 7、1; 8、1四、计算;a=1; 23-=b§ 2.1 二、 )(a φ;三、 4311;33x ---;四、460;470x y x y --=++=;五、连续且可导。

§2.2 二、2,e e ππ--; 三、(1; (2);(3)1tan 221111(cos sin sec )x e x x x x-+;(4)22sin 2[(sin )(cos )]x f x f x -。

《高等数学一》第一章-函数--课后习题(含答案解析)

《高等数学一》第一章-函数--课后习题(含答案解析)

第一章函数历年试题模拟试题课后习题(含答案解析)[单选题]1、设函数,则f(x)=()A、x(x+1)B、x(x-1)C、(x+1)(x-2)D、(x-1)(x+2)【正确答案】B【答案解析】本题考察函数解析式求解.,故[单选题]2、已知函数f(x)的定义域为[0,4],函数g(x)=f(x+1)+f(x-1)的定义域是().A、[1,3]B、[-1,5]C、[-1,3]D、[1,5]【正确答案】A【答案解析】x是函数g(x)中的定义域中的点,当且仅当x满足0≤x+1≤4且0≤x-1≤4即-1≤x≤3且1≤x≤5也即1≤x≤3,由此可知函数g(x)的定义域D(g)={x|1≤x≤3}=[1,3]. [单选题]3、设函数f(x)的定义域为[0,4],则函数f(x2)的定义域为().A、[0,2]B、[0,16]C、[-16,16]D、[-2,2]【正确答案】D【答案解析】根据f(x)的定义域,可知中应该满足:[单选题]4、函数的定义域为().A、[-1,1]B、[-1,3]C、(-1,1)D、(-1,3)【正确答案】B【答案解析】根据根号函数的性质,应该满足:即[单选题]5、写出函数的定义域及函数值(). A、B、C、D、【正确答案】C【答案解析】分段函数的定义域为各个分段区间定义域的并集,故D=(-∞,-1]∪(-1,+∞).[单选题]6、设函数,则对所有的x,则f(-x)=().A、B、C、D、【正确答案】A【答案解析】本题考察三角函数公式。

.[单选题]7、设则=().A、B、C、D、【正确答案】B【答案解析】令则,故[单选题]8、则().A、B、C、D、【正确答案】D【答案解析】[单选题]9、在R上,下列函数中为有界函数的是().xA、eB、1+sin xC、ln xD、tan x【正确答案】B【答案解析】由函数图像不难看出在R上e x,lnx,tanx都是无界的,只有1+sinx可能有界,由于|sinx|≤1,|1+sinx|≤1+|sinx|≤2所以有界.[单选题]10、不等式的解集为().A、B、C、D、【正确答案】D【答案解析】[单选题]11、().A、B、C、D、【正确答案】A【答案解析】根据二角和公式,[单选题]12、函数的反函数是().A、B、C、D、【正确答案】A【答案解析】由所以,故.[单选题]13、已知则().A、B、C、D、【正确答案】C【答案解析】[单选题]14、已知为等差数列,,则().A、-2B、1C、3D、7【正确答案】A【答案解析】因为同理可得:故d=a4-a3=-2.[单选题]15、计算().A、B、C、D、【正确答案】A【答案解析】根据偶次根式函数的意义,可知,故[单选题]16、计算().A、0B、1C、2D、4【正确答案】C【答案解析】原式=[单选题]17、将函数|表示为分段函数时,=().A、B、C、D、【正确答案】B【答案解析】由条件[单选题]18、函数f(x)=是().A、奇函数B、偶函数C、有界函数D、周期函数【正确答案】C【答案解析】易知不是周期函数,,即不等于,也不等于,故为非奇、非偶函数.,故为有界函数.[单选题]19、函数,则的定义域为().A、[1,5]B、(1,5]C、(1,5]D、[1,5)由反正切函数的定义域知:,故定义域为[1,5].[单选题]20、下列等式成立的是()A、B、C、D、【正确答案】B【答案解析】A中(e x)2=,C中,D中[单选题]21、下列函数为偶函数的是()A、y=xsinxB、y=xcosxC、y=sinx+cosxD、y=x(sinx+cosx)【正确答案】A【答案解析】sinx是奇函数,cosx是偶函数。

高数第一章参考答案

高数第一章参考答案

第一章:第1节: 1A 。

2D 。

3A 。

4x y =。

5.21)(nxx x f n +=。

6.当2/10<<a 时,定义域为]1,[a a -;当2/1>a 时,定义域为空集;当2/1=a 时,定义域2/1=x 。

7.)1ln()(x x -=ϕ,定义域为}0|{≤x x 。

第2节: 1D 。

2C 。

3B 。

4.证明:由定义知0>∀ε,N N ∈∃,使得当n N >时,有||n u a ε-<成立。

注意到a u a u n n -≤-。

因此当n N >时,有ε<-≤-a u a u n n 。

即||||lim a u n n =∞→。

反过来若1||lim =∞→n n u ,则n n u ∞→lim 不一定存在。

比如(1),n n u =-则n n u ∞→lim 不存在,但1||lim =∞→n n u 。

若0||lim =→∞n n u ,则由00-=-n n u u 知0lim =∞→n n u 。

第3节:1A 。

2B 。

3D 。

4C 。

5C 。

第4节: 1D 。

2D 。

3D 。

4C 。

5D 。

6.证:假设函数xx y 1sin 1=在区间]1,0(上有界,则0,M ∃>使得函数11sin y M x x =≤。

若取2/)1]([21ππ++=M x ,则有M M y >++=2/)1]([2ππ矛盾。

所以在区间]1,0(上无界,但也不是+→0x 时的无穷大。

因为若取πk x 21=(N k ∈),则当+∞→k 时,+→0x ,而此时0≡y 不是无穷大。

第5节: 1A 。

2C 。

3B 。

4B 。

5.1。

6.21。

7。

a 21-。

8.1。

9.2。

10.21。

11.6。

12.1,1-==b a 第6节: 1C 。

2D 。

3B 。

4.3。

5.3/5。

6.0 。

7.由于()nnn n11333213⋅<++<,所以由夹逼定理可得()3321lim 1=++∞→nn nn 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 函数,极限与连续
第一节 函数
一、集合与区间
1.集合
一般地说,所谓集合(或简称集)是指具有特定性质的一些事物的总体,组成这个集合的事物称为该集合的元素。

由有限个元素组成的集合称为有限集。

由无穷多个元素组成的集合称为无限集。

不含任何元素的集合称为空集。

数集合也可以称为(数轴上的)点集。

区间是用得较多的一类数集。

设a,b 为实数,且a<b
数集{x|a<x<b}称为开区间,记作(a,b),即(a,b)= {x|a<x<b}。

数集}|{b x a x ≤≤称为闭区间,记作[a,b],即[a,b]= }|{b x a x ≤≤。

类似地,[a,b),(a,b]称为半开区间,即[a,b)=}|{b x a x <≤,(a,b]=}|{b x a x ≤< 以上这些区间都称为有限区间,此外还有无限区间,引进记号∞及-∞,则可类似表示
}|{),(},|{),(},|{),[+∞<<-∞=∞-∞<=-∞≤=+∞x x b x x b x a x a 还有一类可变开区间,我们称其为邻域。

设δ与a 是两个实数,且δ>0。

开区间),(δδδ+-a a 称为点a 的δ邻域,记作),(δa U ,即}|{),(δδδ+<<-=a x a x a U 。

其中a 叫作这个邻域的中心,δ称为这个邻域的半径。

在点a 的领域中去掉中心后,称为点a 的去心邻域,记作),(),(}||0|{),(),,(0
0δδδδδ+⋃-=<-<=a a a a a x x a U a U 即 二、函数概念
定义:设x 和y 是两个变量,若对于x 的每一个可能的取值,按照某个法则f 都有一个确定的y 的值与之对应,我们称变量y 是变量x 的函数,记为y =)(x f .这里称x 为自变量,y 为因变量。

自变量x 的所以可能取值的集合称为定义域,记为D(f);因变量y 的相
应的值的集合称为值域,记为R(f)。

这里D(f)与R(f)都是数集,且R(f)={)(x f |x ∈D(f)}。

三、函数的几种特性
1.函数的有界性
设函数)(x f 在D 上有定义,如果存在正数M ,使得对于任何的x ∈D 都满|)(x f |≤M ,则称函数)(x f 在D 上有界,或称)(x f 是D 上的有界函数。

若这样的正数M 不存在,则称)(x f 是D 上无界函数。

2.函数的单调性
设函数)(x f 的定义域为D ,区间D I ⊆,若对于任意的I x x ∈21,,当1x <2x 时总有
f (1x )<f (2x ),
则称)(x f 是区间I 上的单调增加函数;若对于任意的I x x ∈21,,当1x <2x 时总有f (1x )>f (2x ),则称)(x f 是区间I 上的单调减少函数。

单调增加或单调减少的函数均称为单调函数。

若在某个区间上,函数)(x f 为单调函数,则称该区间为函数)(x f 的单调区间。

3.函数的奇偶性
设函数)(x f 的定义域D 关于原点对称,即若x ∈D ,则必x -∈D 。

若对于任意的x ∈D 总有)(x f -=)(x f ,则称)(x f 是偶函数;若对于任意的x ∈D 总有)(x f -=)(x f -,则称)(x f 是奇函数。

4.函数的周期性
设函数)(x f 的定义域为D ,若存在不为零的数T ,使得对于任一x ∈D 有D T x ∈±)(, 且f )(T x ±=)(x f 总成立,则称)(x f 是周期函数,T 称为周期函数)(x f 的周期。

由定义容易得出,若T 为)(x f 的周期,则2T ,3T ,…,nT ,…都是)(x f 的周期。

如果在周期中存在最小的正值,我们把它称为最小正周期,通常我们说周期函数的周期均指最小正周期。

四.反函数
设函数)(x f y =的定义域为D ,值域为R 。

若对于任意的R y ∈只有唯一D x ∈与之。

相关文档
最新文档