界面现象
专题讲解 界面现象 胶体化学

表面吉布斯自由能和表面张力1、界面:密切接触的两相之间的过渡区(约几个分子的厚度)称为界面(interface),通常有液-气、液-固、液-液、固-气、固-液等界面,如果其中一相为气体,这种界面称为表面(surface)。
2、界面现象:由于界面两侧的环境不同,因此表面层的分子与液体内的分子受力不同:1.液体内部分子的吸引力是对称的,各个方向的引力彼此抵销,总的受力效果是合力为零;2.处在表面层的分子受周围分子的引力是不均匀的,不对称的。
由于气相分子对表面层分子的引力小于液体内部分子对表面层分子的引力,所以液体表面层分子受到一个指向液体内部的拉力,力图把表面层分子拉入内部,因此液体表面有自动收缩的趋势;同时,由于界面上有不对称力场的存在,使表面层分子有自发与外来分子发生化学或物理结合的趋势,借以补偿力场的不对称性。
由于有上述两种趋势的存在,在表面会发生许多现象,如毛细现象、润湿作用、液体过热、蒸气过饱和、吸附作用等,统界面现象。
3、比表面(Ao)表示多相分散体系的分散程度,定义为:单位体积(也有用单位质量的)的物质所具有的表面积。
用数学表达式,即为:A0=A/V高分散体系具有巨大的表面积。
下表是把一立方厘米的立方体逐渐分割成小立方体时,比表面的增长情况。
高度分散体系具有巨大表面积的物质系统,往往产生明显的界面效应,因此必须充分考虑界面效应对系统性质的影响。
4、表面功在温度、压力和组成恒定时,可逆地使表面积增加dA所需要对体系做的功,称为表面功(ω’)。
-δω’=γdA(γ:表面吉布斯自由能,单位:J.m-²)5、表面张力观察界面现象,特别是气-液界面的一些现象,可以觉察到界面上处处存在着一种张力,称为界面张力(interface tension)或表面张力(surface tension)。
它作用在表面的边界面上,垂直于边界面向着表面的中心并与表面相切,或者是作用在液体表面上任一条线两侧,垂直于该线沿着液面拉向两侧。
第10章_界面现象-wfz-1

弯曲液面附加压力Δp 与液面曲率半径之间关系的推导: 水平分力相互平衡, 垂直分力指向液体内部 其单位周长的垂直分力为cos 球缺底面圆周长为2r1 ,得垂直分力在圆周上的合力为: F=2r1 cos 因cos = r1/ r ,球缺底面面积为 r12 , 故弯曲液面对于单位水平面上的附加压力 p 整理后得:
表10.1.1 某些液态物质的表面张力
物 质 t / °C
/ mN m-1
18.4 21.8 22.3 26.43 72.75 113.8 137.8 250 582 700 878.5 1300 1800
正己烷 正辛醇 乙醇 乙醚 H2O NaCl LiCl Na2SiO3(水玻璃) FeO Al2O3 Ag Cu Pt
\ dn = - 4p r 2 (dr ) r / M
/mNm-1
1670 1140 685 527 12010 1000 905 4500 1030
Cu Ag Sn 苯 冰 氧化镁 氧化铝 云母 石英(1010晶面)
17
(2) 与接触相的性质有关。
两种互不混溶的液体形成液-液界面时,界面层分子所处力场取 决于两种液体。所以不同液-液对界面张力不同。
18
(3) 温度的影响
T↑ 气相中分子密度↑ 液相中分子距离↑
↓ (有例外)
(表10.1.4) 不同温度下液体的表面张力 0 液体 水 乙醇 甲醇 CCl4 丙酮 甲苯 苯 75.64 24.05 24.5 26.2 30.74 31.6 72.75 22.27 22.6 26.8 23.7 28.43 28.9 69.58 20.60 20.9 24.3 21.2 26.13 26.3 66.18 19.01 21.9 18.6 23.81 23.7 62.61 16.2 21.53 21.3 58.85 15.7 19.39 20 40 60 80 100
物理化学第十章界面现象

第十章界面现象10.1 界面张力界面:两相的接触面。
五种界面:气—液、气—固、液—液、液—固、固—固界面。
(一般常把与气体接触的界面称为表面,气—液界面=液体表面,气—固界面=固体表面。
)界面不是接触两相间的几何平面!界面有一定的厚度,有时又称界面为界面相(层)。
特征:几个分子厚,结构与性质与两侧体相均不同比表面积:αs=A s/m(单位:㎡·㎏-¹)对于一定量的物质而言,分散度越高,其表面积就越大,表面效应也就越明显,物质的分散度可用比表面积αs来表示。
与一般体系相比,小颗粒的分散体系有很大的表面积,它对系统性质的影响不可忽略。
1. 表面张力,比表面功及比表面吉布斯函数物质表面层的分子与体相中分子所处的力场是不同的——所有表面现象的根本原因!表面的分子总是趋向移往内部,力图缩小表面积。
液体表面如同一层绷紧了的富有弹性的橡皮膜。
称为表面张力:作用于单位界面长度上的紧缩力。
单位:N/m,方向:表面(平面、曲面)的切线方向γ可理解为:增加单位表面时环境所需作的可逆功,称比表面功。
单位:J · m-2。
恒温恒压:所以:γ等于恒温、恒压下系统可逆增加单位面积时,吉布斯函数的增加,所以,γ也称为比表面吉布斯函数或比表面能。
单位J · m-2表面张力、比表面功、比表面吉布斯函数三者的数值、量纲和符号等同,但物理意义不同,是从不同角度说明同一问题。
(1J=1N·m故1J·m-2=1N·m-1,三者单位皆可化成N·m-1)推论:所有界面——液体表面、固体表面、液-液界面、液-固界面等,由于界面层分子受力不对称,都存在界面张力。
2. 不同体系的热力学公式对一般多组分体系,未考虑相界面面积时:当体系作表面功时,G 还是面积A的函数在恒温、恒压、组成不变的情况下,使面积减小或表面张力减小,致系统总界面吉布斯函数减小的表面过程可以自发进行。
界面现象

而处在表面上的 分子则不同,一方面 受到体相分子的作用, 另一方面又受到性质 不同的另一相中物质 分子的作用,使得表 面层分子受到不对称 的作用力。
3
如将内部分子移至 表面,必须对所移动的 分子施加外力、做功, 表面层的分子受到指向 物体内部并垂直于表面 的作用力(合力),使物 体表面有自动缩小的趋 势,表面能量较物体内 部大。因而产生各种表 面现象。
48
弗罗因德利希(Freundlich)方程适用范围: 中等压力范围内气体在固体表面上的吸附。 弗罗因德利希(Freundlich)方程如应用于 溶液中溶质的吸附,则其形式为:
物理吸附
吸附类型 化学吸附
40
物理吸附
吸附力 吸附热 选择性
分子间力(范德华力)
较小,近于液体热 ,约为 几百-几千焦耳每摩尔 无选择性 不稳定,易解吸
吸附稳定性 分子层
吸附速率
单分子层或多分子层
较快,不受温度影响,故 一般不需要活化能。
41
化学吸附
吸附力 吸附热 选择性
化学鍵力
较大,近于化学反应热 , 一般大于几万焦耳每摩尔 有选择性 稳定,不易解吸
(1) 液面为水平面时, r,pr = p。 液面为凸面(液滴)时, r > 0, pr > p 。 液面为凹面时(如液体内气泡), r < 0, p r < p 。 (2) 液滴越小,其饱和蒸气压越大。 (3) 应用,如毛细管凝结现象、人工降雨、 过冷、过热、暴沸等现象。
29
毛细管凝结现象:水在玻璃 毛细管内形成凹面, r < 0, pr < p 。对平面未饱和的蒸气,在毛 细管内可能已达饱和或过饱和, 导致蒸气在毛细管内凝结。如硅 胶吸水等。 人工降雨:AgI等微小粒子作成核中心。
界面现象

太原理工大学物理化学第八章界面现象界面是指相互接触的两相的交界面。
自然界中的物质一般以三种聚集状态存在,三种相态相互接触可 以形成五种界面:液-气、固-气、液-固、液-液和固-固界面。
习惯上将液-气和固-气界面称为表面;而其余 的相界面都称为界面。
由于历史的原因, “表面”和“界面”这两个词经常混用。
界面并不是一个几何平 面,它是从一个相到另一个相的过渡层,有一定的厚度,通常称为界面相或界面层,与界面层相邻的两相 称为体相。
界面现象就是在相界面上所发生的物理化学现象。
许多自然现象、生理现象、工农业生产以至日常生 活上的许多问题都与界面现象有密切的关系,如:液滴呈球形、活性炭能脱色、粉尘容易爆炸等都与界面 现象有关。
产生界面现象的根本原因是由于界面相中的分子与体相中的分子所处的力场不同,因此界面相 的性质和两个体相的性质就会不一样。
在一般情况下,系统所具有的比表面积相当小,表面上的物质、能 量都比体相小得多, 故表面的特殊性质可不考虑。
但当系统的表面积很大时,表面分子所占的比例就很大, 它的特殊性质就成为矛盾的主要方面而表现出各种界面现象。
为了便于比较不同物质的表面性质,提出了比表面积的概念。
比表面积(as)是指单位质量或单位体 积的物质所具有的表面积,用公式表示为: as = As / m 或 as = As / V通常用比表面积来表示物质的分散程度,即分散度。
比表面积越大,分散度越高,表面效应就越明显, 这必然对系统的物理化学性质产生影响,此时就必须考虑界面的特殊性。
这种特殊性反映出的宏观现象就 是人们观察到的界面现象,其具体体现就是界面张力。
§ 8.11.液体的表面吉布斯函数和表面功界面张力界面现象产生的根本原因是由于两相界面上的分子与体相分子所 处环境不同引起的,以液-气界面为例说明之。
如图 8.1.1 所示,处于液 体内部的分子,受周围各分子对它的作用力是对称的,可以相互抵消, 这些分子在液体内部运动时无须对它做功。
第十章 界面现象

在恒温恒压、各相组成和量不变时:
dG dAs
dG称为表面吉布斯函数变化dGs。
当界面面积自0到As变化时:Gs=As
在恒温恒压下,系统的自发过程总是 朝着表面吉布斯函数减小的方向进行。
3.影响表面张力的因素 (1)物质的本性
不同物质其分子间作用力不同,表面 张力也不同。分子间作用力大,其表面张 力也大。 同一物质: (固)>(液)>(气)
kc
n
(c为被吸附物质浓度)
Freundlich公式不能说明吸附作用的机理, 公式中n和k没有明确的物理意义。
6.单分子层吸附理论(Langmuir吸附理论) (1)理论要点(基本假设)
表面层分子、 内部分子所处 的力场不同。
表面层的分子受到指向物体内部并垂直 于表面的作用力,使物体表面有自动缩小 的趋势。若将内部分子移至表面,必须对 所移动的分子施加外力(做功)。 产生界面现象的原因:物质表面层分子 与内部分子所具有的能量、作用力不相同。
(2)表面张力(surface tension)
而 r1=r/cos
2 cos 则有: h r g
当液体不能湿润管壁时,>90,cos<0, h为负值,表示管内凸液面下降深度。 毛细现象应用之一:锄地可破坏土壤毛 细管,以减少水分蒸发。
(4)表面张力测定方法
最大气泡法、毛细管法等。 机械、自动、全自动表面张力仪。
2.微小液滴的饱和蒸气压—开尔文公式
对于一定的吸附剂与吸附质的体系,达到吸附
平衡时:
=f (T,P)
通常固定一个变量,求出另外两个变量之间的关系:
(1)T=常数, = f (p),得吸附等温线。 (2)p=常数, = f (T),得吸附等压线。 (3) =常数,P = f (T),得吸附等量线。
界面现象 化学理论

界面现象化学理论
界面理论包括在相界面上的各种物理、化学过程而引起的现象。
它既涉及界面区内物质的化学组成、物理结构和电子状态,又与界面两边的主体相物质的性质有关。
界面现象是研究各种不同界面的性质,随着分散度的增加,体系的比表面也相应增大,胶体的各种性质与比表面密切相关,所以对界面现象的研究就成为胶体化学的主要内容之一。
界面理论的示例:
大自然中,早晚所见到的曙光和晚霞、雨后的彩虹和光环等;日常生活中,所用的肥皂和洗衣粉的去污过程就是一种典型的界面现象,有时我们还会碰到水温低于冰点而不结冰的过冷现象、高于沸点而不沸腾的过热现象。
而在工业生产中,也常碰到废气的吸收,结晶制糖、制盐,纺织印染等许多过程,就是借助界面所具有的独特性质而得以进行的。
由于这些现象均与界面性质有关,一般又总称为界面现象。
界面现象

3 8
ΔG = ×ΔAS = ×N×4πr
3 10 r
J
=3.04J
3
483 10 3 10
3
3
13.6 10 3 5 10
由基本方程可知,在等温、等压和组成不变的条件下,当↓ 和As↓, dG = dAs ≤ 0 ,过程都可自发进行,这就是表面现象 产生的热力学原因。
( )T , p ,n , G As
dG d ( As ) dAs As d
dG d ( As ) dAs As d
(1)当γ一定时,dG = γ dAs 要 dG < 0,则 dAs < 0。 所以,缩小表面积的过程为自发过程。 液体表面处处存在着一种使液面绷紧的张力。
参考文献
1. Hiemeng PC and Rajagopalan, Principles of Colloid and Surface Chemistry, 3rd ed. New York: Marcel Dekker Inc. 1997 2. Adamson AW and Gast AP, Physical Chemistry of Surface, 6th ed. New York: John Wiley and Sons., 1997 3. 江龙,胶体化学概论,北京:科学出版社,2002 4. 沈钟,王果庭,胶体与表面化学(第三版),北京:化学工业出版社, 2004 5. 顾惕人,朱步瑶等,表面化学,北京:科学出版社,1999 6. 朱步瑶,赵振国,界面化学基础,北京:化学工业出版社,1996。 7. 傅献彩,沈文霞,姚天扬,物理化学(第四版)(下册),北京:高等 教育出版社,1995 8. 周祖康,顾惕人,马季铭,胶体化学基础(第二版),北京:北京大学出 版社, 1997 9. 陈宗淇,王光信, 徐桂英,胶体与界面化学,北京:高等教育出版社, 2001 10. 赵国玺,朱步瑶,表面活性剂作用原理,北京:中国轻工业出版社, 2003 11. 赵国玺,表面活性剂物理化学,北京:北京大学出版社, 1991 12. 肖进新, 赵振国,表面活性剂原理,北京:化学工业出版社, 2003 13. 赵振国,胶体与界面化学——概要、演算与习题,北京:化学工业出版 社,2004
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 界面现象讲解:日常生活和生产中,有很多现象和界面有关。
如:水在玻璃细管中会上升,这叫毛细现象;水可以在桌面上铺开,水银却成球状等。
通常把气液和气固界面成为表面。
第一节 表面张力和表面吉布斯函数一、表面现象及其本质 1.界面层的定义界面的5种类型:g-l,g-s,l-l,l-s,s-s. 其中g-l 和g-s 界面也叫表面。
界面分子和内部分子的区别:内部分子受力对称,界面分子受力不对称,不均匀。
液体自发使表面积缩小。
讲解:测定液体蒸气压,不能有空气存在,液体表面指纯液体与其纯蒸气之间的过渡层,只有几个分子厚。
日常生活中讲的液体表面,是指液体与空气之间的界面,其中空气被液体蒸气饱和。
2.系统的比表面(分散度)单位质量具有的表面积,或单位体积具有的表面积。
def defS S m V A AA A m V==质量表面积体积表面积例:一个边长为0.01米的立方体表面积是多少?把这个立方体分成10-9m 的小立方体,求其总面积。
解:边长为0.01米的立方体表面积 2-421=60.01=610m A ⨯⨯()321390.011010-=小立方体的个数为-92213226(10)10610m A =⨯⨯=⨯小立方体总面积物体被分散后的体积变化,请看358页表9.1。
二、表面张力、表面功、表面吉布斯函数 在等温等压条件下者3个概念是一回事。
讲解:吉布斯函数变就是等温等压条件下可逆过程得体积功。
:γ等温等压下可逆地增加单位表面积所需的功。
B,,S T p n G A γ⎛⎫∂=⎪∂⎝⎭ 表面张力就是表面功表面张力F:表面上,每米长度所受的收缩力,垂直于表面切线方向。
-2-2-1J m N m m N m⋅=⋅⋅=⋅单位: 表面功 表面张力2F l γ= 2Flγ= 影响表面张力的因素 (1)物质的本性()()s l γγ>一般相同聚集态时(γγγγ>>>金属键)(离子键)(极性共价键)(非极性共价键)讲解:可以看出键的极性越强,σ越大,因为非极性共价键组成的非极性分子之间只有色散力,极性分子间有色散力、取向力、诱导力。
(2)某物质的表面张力与其接触相有关(3)温度升高,表面张力降低。
(4)压力增大表面张力降低。
讲解:温度上升,分子间作用力减小,故γ减小。
请看362页表9.2,注意温度不同。
按照课件纠正362-363页多处印刷错误。
361页例9.1:25℃时,可逆地把一个半径为1.00×10-3m 的水滴,分散为半径为1.00×10-6m 的小水滴。
(1)体积表面积为原来的多少倍?(2)分散过程中的吉布斯函数变和功各是多少?已知25℃时水的表面张力为0.07275N·m -1。
解:(1)233,216,1243 (431.001010001.0010S V V V A r A V r r A r A r ππ--===⨯===⨯体积表面积公式)体积表面积为原来的1000倍。
(2)()33,2,111212133226343311()4311 4 1.0010 1.2610m 1.00101.0010S V V A V A A r r r r r r πππ----⎛⎫⎛⎫∆=-=-=- ⎪ ⎪⎝⎭⎝⎭⎛⎫=⨯-=⨯ ⎪⨯⨯⎝⎭240.07275 1.26109.1710J G W A γ--∆==⨯∆=⨯⨯=⨯作业:9.12。
第二节 弯曲液面的附加压力及其后果讲解:液体的界面现象可以为我们所利用,例如,水在植物叶面会形成液珠滑落下来,但我们喷洒液体农药时希望它在叶面铺展。
我们清洗物体也希望清洁剂铺展。
一、弯曲液面的附加压力讲解:把一玻璃管插入水中,管内液面上升,且玻璃管越细,上升越多,这就是毛细现象。
上升的原因是附加压力。
1p ∆()附加压力产生的原因0p p p p p p p∆==+∆=-∆凸凹水平液面凸面液体 凹面液体 讲解:如第一节所示,平面液体表面的分子受两侧分子的吸引,形不成向下合力。
凸面可形成向下合力,凹面可形成向上合力。
2p ∆()的大小—拉普拉斯公式S S d ,d d d p V p V A A γ∆∆活塞加压,液滴体积增加体积功。
液滴表面积增加,表面功 S d d p V A γ∆=324d 4d 3V R V R R ππ==球体2S S 4 d 8d A R A R R ππ==2 p Rγ∆=实心液面或液珠 讲解:拉普拉斯公式的推导与书中略有不同,结果一样。
4 p Rγ∆=气泡 例:如图,2个气泡的趋势:A.一样大B.大的更大,小的更小C.保持现状二、毛细管现象毛细管现象:细管中液面上升或下降的现象。
1.液面变化的方向 p p ∆∆能润湿的液体形成凹液面,抵消外压,液面上升。
不能润湿的液体形成凸液面,增加外压,液面下降。
2.液面升降的高度0190,r r θθ<为毛细管半径;为液面的曲率半径。
为接触角,说明液体能润湿管壁。
11cos cos r rr r θθ==从数学上讲 122cos p r rγγθ∆==-代入拉普拉斯公式得 p gh g ρ∆=根据物理知识,有为自由落体加速度2cos h r gγθρ=根据这个公式,测定毛细管中液体升降的高度,可以计算液体的表面张力,如果已知毛细管半径和表面张力,可以预测液面升降高度。
15℃时水的极限毛细上升高度,粗砂为0.2m ,细砂为1.2m ,而纯粘土则为12m 。
讲解:水在植物的毛细管中上升,使植物吸收水分。
土壤中的毛细管,可使地下水上式,供植物吸收,锄地时,切断上面的毛细管,可防止水分蒸发。
2块玻璃中间有水,形成凹液面,中间为负压,难以打开。
讲解:请看368页例9.2。
三、微小液滴的饱和蒸气压—开尔文公式讲解:平面液体的饱和蒸气压主要与温度有关,液气平衡时,蒸气压与外压相等,曲面液体有附加压力,相当于改变了外压,蒸气压也要随之改变,才能平衡。
开尔文公式02lnr p Mp RT rγρ=凸面液体与平面液体相比02lnr p M p RT rγρ=-凹面液体与平面液体相比 凹面蒸气压比平面低,凸面蒸气压比平面高。
2121211lnp M p RT r r γρ⎛⎫=- ⎪⎝⎭弯曲程度不同的液体相比 四、开尔文公式的应用 1.过饱和蒸气压液滴为凸面液体,蒸气压大于平面液体。
液滴越小,蒸气压越大,对小液滴不饱和的蒸气,对大液滴饱和或过饱和。
讲解:将大小不等的液滴放在钟罩内,小液滴越来越小,大液滴越来越大。
液滴都是凸面,小液滴附加压力大,饱和蒸气压高,大液滴附加压力小,饱和蒸气压低,钟罩里同样的蒸气,对小液滴不饱和,小液滴不断蒸发;同样的蒸气对大液滴过饱和,蒸气不断在大液滴上凝结。
人工增雨原理:空气中的小液滴蒸气压太高,水蒸气对它不饱和,有时水蒸气的压力已是平面液体水饱和蒸气压的4倍,仍不能下雨。
打入大一些的物质,水蒸气在其表面凝结,形成大液滴。
2.过饱和溶液小晶体比大晶体溶解度大。
2121l-s 2121211ln 2(s)11ln(s)p M p c p RT r r M c c RT r r γργρ⎛⎫==- ⎪⎝⎭⎛⎫=- ⎪⎝⎭把亨利定律 代入得k由于小晶体溶解度大,溶液对小晶种不饱和,小晶种不易继续增大,形成宏观上的过饱和溶液。
可加较大的晶种,大晶种溶解度小,溶液对大晶种过饱和,大晶种可继续增大。
3.过热液体沸腾原理:液体内部形成小气泡,小气泡内压力大于外压时,小气泡变大,冲出液面。
过热液体的形成:若气泡太小,产生的附加压力相当于增大了外压,气泡无法变大。
继续加热,就形成过热液体。
防止过热:加入多孔性物质,使形成的气泡大一些。
讲解:纠正374页印刷错误。
第2行,将“内部气体”改为“承受”;第3行,将第一个“存在”改为“长大”。
4.过冷液体讲解:凝固点时,液体水与固体水蒸气压相等。
OA 线为液体水的蒸气压曲线,OB 线为大冰粒饱和蒸气压曲线,O 点大冰粒和液体水蒸气压相等,T f 为形成大冰粒的温度;O′A′线为小冰粒饱和蒸气压曲线,O′点小冰粒和液体水蒸气压相等,T f ′为形成大冰粒的温度。
防止办法:加大冰粒。
5.毛细凝聚毛细管内的液面为凹面,蒸气压低,气体易在毛细管内凝聚。
作业:9.16,9.19。
第三节 润湿和接触角一、润湿的类型沾湿、浸湿、铺展润湿 二、铺展润湿s l-s g-l g-s l-s g-l g-sl-s g-l g-s l-s g-l g-s () G A G γγγγγγγγγγγγ∆=+-∆=+-+<+>单位面积时 过程自发,能铺展。
过程不自发,不能铺展。
讲解:纠正375页印刷错误。
讲解:液-固和气-固的表面张力现在无法测定,上式只能用作理论分析。
研究润湿靠接触角。
讲解:水在木头表面能铺展,汞在木头表面不能铺展。
三、接触角与润湿的关系g-s l-s g-l =cos γγγθ+力平衡g-s l-sg-lco s γγθγ-=00g-s l-s 0g-s l-s cos >090,0cos <090, γγθθθγγθθ><=<>时,,润湿。
铺展润湿。
时,,不润湿。
作业:4.14,4.15。
第四节 表面活性剂一、种类和结构表面活性剂:能显著降低溶液表面张力的有机物。
⎧⎧⎪⎪⎨⎪⎨⎪⎩⎪⎪⎩阳离子型离子型阴离子型表面活性剂两性型非离子型1633316333+17351735C H NH Cl C H NH Cl C H COONa C H COO Na +--−−→+−−→+阳离子型阴离子型33++-22 CH CH| | R-N -CH COONa R-N -CH COO Na | +→+两性型33 | CH CH 非离子型:酯类等。
二、胶束和临界胶束浓度讲解:溶液很稀时形不成胶束,增加浓度时,表面活性剂分子自动聚集于表面,以降低表面张力,当表面铺满以后,在增加浓度,就会在溶液内部形成胶束。
临界胶束浓度:表面活性剂分子在溶液表面形成单分子层,开始出现胶束,这时的表面活性剂浓度称为临界胶束浓度。
胶束类型:球状、腊肠状、层状等。
三、亲水-亲油平衡讲解:亲水能力和亲油能力的评价,目前没有统一的标准,因为亲水基和亲油基都有不同的类型,例如羟基和羧基都亲水,不好比较强弱。
类型相同时,亲油基越长,亲油作用越大,乙酸根中的亲油基是甲基,不起什么作用,到十七、八个碳原子的烃基,亲油作用就很明显了。
1945年格里芬提出的HLB 值,为表面活性剂的应用提供了参考依据。
非离子型表面活性剂:HLB=20+ 亲水基质量亲油基质量亲水基质量HLB 越大亲水能力越大。
四、表面活性剂的作用 1.润湿作用降低农药的表面张力,可使农药附着在植物叶面。