第3章微波平面传输线
合集下载
3微波集成传输线

微带线 微带线的特性参量
有效介电常数 e: e c / v p
2
1 e r,数值由相对介电常数 r和边界条件决定
工程上,用填充因子q来定义有效介电常数,即:
e 1 q( r 1)
q 0时, e 1,全空气填充 q 1时, e r,全介质填充
r 9.5 ~ 10 , tg 0.0003
r 2.1, tg 0.0004
聚四氟乙烯
聚四氟乙烯玻璃纤维板 砷化镓
r 2.55, tg 0.008
r 13.0, tg 0.006
jingqilu@
微带线
在导体带上面即 y>h的为空气
jingqilu@
微带线 微带线的特性参量
有效介电常数法
引入有效介电常数 e, 非均匀填充 均匀填充
纯TEM波,v p c
纯TEM波,v p c / r
准TEM波,c / r v p c
准TEM波,v p c / e
jingqilu@
传输波型:
★传输特性参数主要有:特性阻抗Z0、衰减常数α、相速vp和 波导波长λg。
jingqilu@
带状线(三板线) 特性阻抗
由于带状线上的传输主模为TEM模,因此可用准 静态分析法求得单位长分布电容C和分布电感L, 从而有: L 1
Z0
工程中:
C
v pC
b ①导带厚度为0时:Z 0 r we 0.441b 0 we w we是中心导带的有效宽度, b b (0.35 w / b) 2
微波集成传输线
各种微波集成传输系统,归纳起来可分为四大类:
微波技术Chapter 3 广义传输线理论 PPT课件

不变。在讨论中只考虑前进的波;
三、电磁场用横向分量 与纵向分量表示
E
Et
zˆEz
H Ht zˆH z
t
zˆ
z
四、Maxwell方程的对应形式
t
zˆ
z
(Et
t Et t (
zˆEz ) zˆEz )
H y
z
j
H
y
j
Ex
H
x
z
j
H
x
j
Ey
Hy
x
Hx
y
j
Ez
(3-18)
五、波导的一般解
用 纵向分量
H jE
E jH
来表示电、磁场横向分量
H
x
j
2
Kc
Ez
y
H
x
z
EX
j
2
第3章 广义传输线理论
Generalized Transmission Line Theory
从本门课程一开始,我们就强调从最宏观的角度: 微波工程有两种方法——场论的方法和网络的方法。
首先,我们要把传输线理论推广到波导,由微波 双导线发展到波导是因为当其它人或物靠近双导线时 会产生较大影响。这说明:传输线与外界有能量交换 ,它带来的直接问题是:能量损失和工作不稳定。究 其原因是开放(Open)造成的特点。
远离场源无源区 麦克斯韦方程组
三、电磁场用横向分量 与纵向分量表示
E
Et
zˆEz
H Ht zˆH z
t
zˆ
z
四、Maxwell方程的对应形式
t
zˆ
z
(Et
t Et t (
zˆEz ) zˆEz )
H y
z
j
H
y
j
Ex
H
x
z
j
H
x
j
Ey
Hy
x
Hx
y
j
Ez
(3-18)
五、波导的一般解
用 纵向分量
H jE
E jH
来表示电、磁场横向分量
H
x
j
2
Kc
Ez
y
H
x
z
EX
j
2
第3章 广义传输线理论
Generalized Transmission Line Theory
从本门课程一开始,我们就强调从最宏观的角度: 微波工程有两种方法——场论的方法和网络的方法。
首先,我们要把传输线理论推广到波导,由微波 双导线发展到波导是因为当其它人或物靠近双导线时 会产生较大影响。这说明:传输线与外界有能量交换 ,它带来的直接问题是:能量损失和工作不稳定。究 其原因是开放(Open)造成的特点。
远离场源无源区 麦克斯韦方程组
微波技术基础知识

准TEM模(电磁场的纵向分量很小) 具有色散持性,这与纯TEM模不同, 而且随着工作频率的升高,这两种模之 间的差别也愈大。
传输媒质为空气和介质的非均匀媒质,微带线的电磁场存 在纵向分量,不能传播纯TEM波。
但是,主模的纵向场分量远小于横向场分量。因此, 主模具有纯TEM相似的特性; 纯TEM的分析方法也对微带线适用。 ———准TEM近似法
明显优点是与有源器件和无源元件连接十分方 便。
工作模式非TEM模传播 →便于MMIC
y
s
w
w
t
x
电力线 磁力线
h
r
z
共面波导
3.6 共面传输线
y
s
w
w
t
x
h
r
z
共面带线
共面波导
Z0
30 re
K (k) K (k )
电力线 磁力线
r
第一类完全椭圆 函数、余函数
3.6 共面传输线
2.共面带线
Z0
120 re
平板波 cTE10
导
的2W最
低Tr
E
模边和缘T修M正模
是TE1 c TE10
0模
、T
r
M20W1模,0.8h
微波集成传输线-微带线
表面波模:具有金属接地板的介质中传播, 存在于导带的两侧。表面波中最低的TE和TM 模分别是TE1模和TM0模。它们的截止波长分别 为:
工作频率上限
TE1模激励频率低,但是相速高,与TEM发 生强耦合的最低模的首先是TM0模。 波导横向谐振模易消除。表面波限制了微 带线的工作频率上限。
工作模式为混 合模,特性参量 计算较为复杂, 采用谱域法等数 值方法。
(a) (b)
传输媒质为空气和介质的非均匀媒质,微带线的电磁场存 在纵向分量,不能传播纯TEM波。
但是,主模的纵向场分量远小于横向场分量。因此, 主模具有纯TEM相似的特性; 纯TEM的分析方法也对微带线适用。 ———准TEM近似法
明显优点是与有源器件和无源元件连接十分方 便。
工作模式非TEM模传播 →便于MMIC
y
s
w
w
t
x
电力线 磁力线
h
r
z
共面波导
3.6 共面传输线
y
s
w
w
t
x
h
r
z
共面带线
共面波导
Z0
30 re
K (k) K (k )
电力线 磁力线
r
第一类完全椭圆 函数、余函数
3.6 共面传输线
2.共面带线
Z0
120 re
平板波 cTE10
导
的2W最
低Tr
E
模边和缘T修M正模
是TE1 c TE10
0模
、T
r
M20W1模,0.8h
微波集成传输线-微带线
表面波模:具有金属接地板的介质中传播, 存在于导带的两侧。表面波中最低的TE和TM 模分别是TE1模和TM0模。它们的截止波长分别 为:
工作频率上限
TE1模激励频率低,但是相速高,与TEM发 生强耦合的最低模的首先是TM0模。 波导横向谐振模易消除。表面波限制了微 带线的工作频率上限。
工作模式为混 合模,特性参量 计算较为复杂, 采用谱域法等数 值方法。
(a) (b)
微波技术习题解答(部分)

率的波,而是一个含有多种频率的波。这些多种频率成分构成一个“波群”
又称为波的包络,其传播速度称为群速,用 vg 表示,即 vg v 1 c 2
第三章 微波传输线
TEM波:相速
vp
1 v
相波长
p
2
v f
群速 vg vp v
即导波系统中TEM波的相速等于电磁波在介质中的传播速度,而相波长 等于电磁波在介质中的波长(工作波长)
插入衰减 A
A
1 S21 2
A%11 A%12 A%21 A%22 2 4
对于可逆二端口网络,则有
A
1 S21 2
1 S12 2
第四章 微波网络基础
插入相移 argT arg S21
对于可逆网络,有 S21 S12 T ,故
T T e j S12 e j12 S21 e j21
何不同?
答案:截止波长:对于TEM波,传播常数 为虚数;对于TE波和TM波,对 于一定的 kc 和 、 ,随着频率的变化,传播长数 可能为虚数,也可能为实
数,还可以等于零。当 0 时,系统处于传输与截止状态之间的临界状态,此 时对应的波长为截止波长。
当 c 时,导波系统中传输该种波型。 当 c 时,导波系统中不能传输该种波型。
第三章 微波传输线
3-3 什么是相速、相波长和群速?对于TE波、TM波和TEM波,它们的相速 相波长和群速有何不同?
答案: 相速 vp 是指导波系统中传输的电磁波的等相位面沿轴向移动的速
度,公式表示为
vp
相波长 p
是等相位面在一个周期T内移动的距离,有
p
2
欲使电磁波传输信号,必须对波进行调制,调制后的波不再是单一频
T S21 0.98e j 0.98
第三章-传输线和波导

Microwave Technique
3.1.1 TEM波
横电磁波(Transverse Electromagnetic Wave)
Ez H z 0
z j E j H y x y H z j E j H x y x
E
(3.3a) (3.4b)
Ez H z 0
内导体的空心金属管内不能传播电磁波的错误理论。
40年后的1936年,索思沃思和巴罗等人发表了有关波导传播模式的激励和测量
方面的文章后,波导才有了重大的发展。
早期的微波系统主要使用波导和同轴线作为传输线,波导功率容量高,损耗低,
但体积大,价格昂贵;同轴线工作频带宽,但难于制作微波元件。
于是有了第二次世界大战中带状同轴线和1952年微带线的出现以及后来更多平
y j H
j E
j H x j E
x y
消去Hx
2 E y 2 E y
k
Microwave Technique
TEM波截止波数 kc k 2 2 为零。
对于Ex的亥姆霍兹方程而言:
(3.9)
对于 的依赖关系:
(3.9)式简化为:
ez 和hz 是 纵 向 电 场 和 磁 场 分 。 量
Microwave Technique
对于无源传输线或波导而言,麦克斯韦方程可写为:
E jH H jE
z j E jH y x y E z jH j E x y x E E y x jH z x y H z j H jE y x y H z jE j H x y x H H y x jE z x y
(3.2a) (3.2b)
3.1.1 TEM波
横电磁波(Transverse Electromagnetic Wave)
Ez H z 0
z j E j H y x y H z j E j H x y x
E
(3.3a) (3.4b)
Ez H z 0
内导体的空心金属管内不能传播电磁波的错误理论。
40年后的1936年,索思沃思和巴罗等人发表了有关波导传播模式的激励和测量
方面的文章后,波导才有了重大的发展。
早期的微波系统主要使用波导和同轴线作为传输线,波导功率容量高,损耗低,
但体积大,价格昂贵;同轴线工作频带宽,但难于制作微波元件。
于是有了第二次世界大战中带状同轴线和1952年微带线的出现以及后来更多平
y j H
j E
j H x j E
x y
消去Hx
2 E y 2 E y
k
Microwave Technique
TEM波截止波数 kc k 2 2 为零。
对于Ex的亥姆霍兹方程而言:
(3.9)
对于 的依赖关系:
(3.9)式简化为:
ez 和hz 是 纵 向 电 场 和 磁 场 分 。 量
Microwave Technique
对于无源传输线或波导而言,麦克斯韦方程可写为:
E jH H jE
z j E jH y x y E z jH j E x y x E E y x jH z x y H z j H jE y x y H z jE j H x y x H H y x jE z x y
(3.2a) (3.2b)
微波技术微波传输线

max
I
max
m in
m in
m in
所以
P(z)
1
V
2 max
•
1
1
I
2
• Z0
2 Z0 2 max
根据这个表达式:
P(z)
1
V
2 max
•
1
1
I
2
• Z0
2 Z0 2 max
我们可以分析,当传输线的耐压一定或者能载的
电流一定的时候,驻波比越小,所能传输的功率 就越大,因此我们的滤波器在考虑功率因素的时 候,在我们的谐振杆和盖板距离一定,即它们之 间的耐压一定的情况下,驻波比越小的滤波器能 承受的功率就越大。
Zin
V (l) I (l)
V0 (e jl V0 (e jl
e jl ) e jl )
Z0
1 e2 jl 1 e2 jl
Z0
而将我们以前得到的 的表达式带入可以得到
Zin
Z0
ZL Z0
jZ 0 jZ L
tan tan
l l
(传输线阻抗方程
)
1.终端短路传输线
看看右下图的终端短路传输线的示意图,由于 终端短路,因此ZL=0,短路负载处,反射系 数为-1,则其驻波比为无穷大,则线上的电压 和电流为:
由前面的输入阻抗计算公式我们就可以分析任意 长度的传输线的输入阻抗(在已知终端负载和线 上的工作波长情况下)。
a.半波长传输线:l / 2则Zin Z L
可知,不管传输线的特性阻抗为何值,输入阻抗 均和负载阻抗相等。
b.1/4波长传输线:
l
/
4则Z
in=Z
2 0
/
微波传输线
第三章 微波传输线
一、矩形波导中传输波型及其场分量
由于矩形波导为单导体的金属管,波导中不可能传输 TEM波,只能传输TE波或TM波。
(一)TM波
d 2 X x dx 2 d 2Y y dy
2 2 kx X x 0 2 ky Y y 0
三、交变电磁场的能量关系 对于一封闭曲面S,电磁场的能量关系满足复功率 定理,即 1 E H ndS P j 2 W W 2
S L m e
第三章 微波传输线
3-3 理想导波系统的一般理论 导波系统中的电磁波按纵向场分量的有无,可分为 以下三种波型(或模): (1) 横磁波(TM波),又称电波(E波): Hz 0, E z 0 (2) 横电波(TE波),又称磁波(H波): (3) 横电磁波(TEM波):
辅助方程
D E B H J E
第三章 微波传输线
场量的瞬时值与复数振幅值之间的关系为
E x , y , z, t E x , y , z cos t Re E x , y , z e j e j t Re E x , y , z e j t
第三章 微波传输线
二、波的传播速度和色散
1. 相速和相波长
相速是指导波系统中传输电磁波的等相位面沿轴向 移动的速度。 dz vp dt 若将等相位面在一个周期T内移动的距离定义为相 波长,则有
p v pT 2 T
第ቤተ መጻሕፍቲ ባይዱ章 微波传输线
对于TEM波,相速为 其相波长为 对于TE波和TM波, 相速为 相波长为
复数表示式为
《微波传输线》课件
低噪音
微波传输线具备低噪音特性,在信号传输过程中不 会引入过多的干扰。
高灵敏度
微波传输线对微小信号非常敏感,可以实现高精度 的信研究领域
3 工业领域
包括无线通信、光纤通信等, 微波传输线在通信领域中扮 演着重要的角色。
包括辐射研究、涡流损耗测 量等,微波传输线在科学研 究中具备广阔的应用前景。
《微波传输线》PPT课件
微波传输线是一种用于在高频率电路中传输电能和信号的特殊电缆。它通过 高频率、高速度、高精度和高灵敏度的特点,实现了高效的电能传输。
什么是微波传输线?
微波传输线是一种用于在高频率电路中传输电能和信号的特殊电缆。它在微波技术中扮演着重要的角色,使得高频 率电路能够稳定地工作。
微波传输线的特点
包括同轴电缆、双对称电缆、单称电缆等不同类型,用于高频率电路的信号传输。
2 无线传输线
包括空气传输线、杆塔传输线、建筑传输线等适用于高频率电路信号传输的无线传输方 式。
微波传输线的优点
高频率响应
微波传输线可以有效地传输高频率信号,确保了电 路的正常工作。
高速传输
微波传输线能够实现快速的数据传输,适用于高速 通信和数据传输领域。
包括雷达、微波炉等,微波 传输线在工业应用中发挥着 重要的作用。
总结
微波传输线是一种高效、高精度的传输方式,被广泛应用于通信、研究和工 业等领域。我们应该进一步研究和探索微波传输线的应用潜力。
高频率
微波传输线可以工作在高频率范围内,实现高速数 据传输。
高速度
微波传输线的传输速度非常快,确保了高频率信号 的准确传输。
高精度
微波传输线具备高精度的信号传输和电能传输效果, 确保了电路工作的稳定性。
《微波传输线》课件
网、云计算等领域提供更好的技术支持。
环境影响与可持续发展
总结词
环境影响与可持续发展是微波传输线发展中必须考虑 的问题,需要采取有效措施降低对环境的影响。
详细描述
随着人们对环境保护意识的提高,微波传输线在发展 过程中必须考虑其对环境的影响。在材料选择、生产 制造、使用过程中,需要采取环保措施,减少对环境 的污染和破坏。同时,为了实现可持续发展,还需要 积极探索可再生能源的应用,如太阳能、风能等,以 降低能源消耗和碳排放量,为构建绿色、低碳的未来 做出贡献。
缺点
尺寸较大,不易实现小型化和集成化。
圆波导
结构特点
由一个金属圆筒和两个金属封盖构成 ,传输TEM模的电磁波。
应用场景
主要用于微波测量和某些特殊应用。
优点
具有低损耗、高带宽和良好的屏蔽性 能。
缺点
尺寸较大,不易实现小型化和集成化 ,且加工难度较高。
光纤
结构特点
由石英或塑料制成的纤芯和包层组成,传输 光波。
《微波传输线》PPT课件
目录
• 微波传输线概述 • 微波传输线的种类与结构 • 微波传输线的传输特性 • 微波传输线的应用场景 • 微波传输线的设计与优化 • 微波传输线的未来发展与挑战
01
微波传输线概述
定义与特点
定义
微波传输线是指用来传输微波信号的 导波结构,通常由金属导体(如铜、 铝等)构成。
06
微波传输线的未来发展 与挑战
新材料的应用
总结词
新材料的应用是微波传输线领域的重要发展 方向,有助于提高传输性能和降低成本。
详细描述
随着科技的不断发展,新型材料如碳纳米管 、石墨烯等在微波传输线中的应用逐渐受到 关注。这些新材料具有优异的电性能和机械 强度,可以替代传统的铜线材料,降低传输 损耗,提高传输速度,同时也有助于减轻线 缆重量和减小线缆尺寸,为未来的通信和航
环境影响与可持续发展
总结词
环境影响与可持续发展是微波传输线发展中必须考虑 的问题,需要采取有效措施降低对环境的影响。
详细描述
随着人们对环境保护意识的提高,微波传输线在发展 过程中必须考虑其对环境的影响。在材料选择、生产 制造、使用过程中,需要采取环保措施,减少对环境 的污染和破坏。同时,为了实现可持续发展,还需要 积极探索可再生能源的应用,如太阳能、风能等,以 降低能源消耗和碳排放量,为构建绿色、低碳的未来 做出贡献。
缺点
尺寸较大,不易实现小型化和集成化。
圆波导
结构特点
由一个金属圆筒和两个金属封盖构成 ,传输TEM模的电磁波。
应用场景
主要用于微波测量和某些特殊应用。
优点
具有低损耗、高带宽和良好的屏蔽性 能。
缺点
尺寸较大,不易实现小型化和集成化 ,且加工难度较高。
光纤
结构特点
由石英或塑料制成的纤芯和包层组成,传输 光波。
《微波传输线》PPT课件
目录
• 微波传输线概述 • 微波传输线的种类与结构 • 微波传输线的传输特性 • 微波传输线的应用场景 • 微波传输线的设计与优化 • 微波传输线的未来发展与挑战
01
微波传输线概述
定义与特点
定义
微波传输线是指用来传输微波信号的 导波结构,通常由金属导体(如铜、 铝等)构成。
06
微波传输线的未来发展 与挑战
新材料的应用
总结词
新材料的应用是微波传输线领域的重要发展 方向,有助于提高传输性能和降低成本。
详细描述
随着科技的不断发展,新型材料如碳纳米管 、石墨烯等在微波传输线中的应用逐渐受到 关注。这些新材料具有优异的电性能和机械 强度,可以替代传统的铜线材料,降低传输 损耗,提高传输速度,同时也有助于减轻线 缆重量和减小线缆尺寸,为未来的通信和航
微波技术基础第3章
8h w 59 .952 ln w 4h a Z0 119 .904 6 w w h 2.42 0.44 1 h h w
w 1 h w 1 h
(3-1-26)
1. 带状线 带状线又称三板线, 它由两块相距为b的接地板与中间宽度 为w、厚度为t的矩形截面导体构成, 接地板之间填充均匀介质 或空气, 如图 3 - 2(c)所示。
由前面分析可知, 由于带状线由同轴线演化而来, 因此与同
轴线具有相似的特性, 这主要体现在其传输主模也为TEM, 也存
在高次TE和TM模。带状线的传输特性参量主要有:
α=αc+αd
(3-1-5)
式中, α为带状线总的衰减常数;αc为导体衰减常数; αd 为介质衰减常数。
第3章 微波集成传输线
介质衰减常数由以下公式给出:
27 .3 r 1 ad GZ 0 tan dB/m 2 0
(3-1-5)
式中, G为带状线单位长漏电导,tanδ为介质材料的损耗 角正切。
第3章 微波集成传输线
1 2 2 r 1 r 1 1 12 h 0.0411 w w/ h 1 2 2 w h e 1 r 1 r 1 1 12 h 2 w/ h 1 2 2 w (3-1-27)
vp
c
e
(3-1-22)
这样, 有效介电常数εe的取值就在1与εr之间, 具体数值由 相对介电常数εr和边界条件决定。现设空气微带线的分布电容 为C0, 介质微带线的分布电容为C1, 于是有
c
vp
1 LC0