非线性动力学中分叉图的特性.ppt
非线性动力学中的分岔理论及应用

非线性动力学中的分岔理论及应用第一章前言非线性动力学是自然科学中一个重要的研究领域,其研究对象为非线性系统中存在的复杂现象及规律。
而分岔理论则是非线性动力学研究的重要分支,其研究的是非线性系统的稳定性及分岔现象。
分岔理论的研究及应用在自然科学及工程技术等领域都有广泛的应用,本文将重点介绍分岔理论的基本概念及其应用。
第二章分岔理论的基本概念1.稳定性稳定性是指系统从任何初始状态出发,其演化都会收敛至同一状态的性质。
当系统的某一初始状态发生微小变化时,系统最终演化的结果是否会发生变化,取决于系统的稳定性。
2.分岔点与分支分岔点是指系统参数变化时,系统稳定性产生转折的点。
在分岔点附近,系统的稳定性出现了剧烈变化,具体表现为单个平衡点变成多个平衡点或者周期解。
而这些由于参数变化引起的平衡点或周期解就称为分支。
3.双曲型分岔双曲型分岔是指当系统某一参数在达到阈值时,系统发生的非连续性质变化。
此时由单个平衡点变为两个平衡点,系统逐渐从一个平衡点吸引到另一个平衡点,这种分岔稳定性的变化称为双曲型分岔。
4.超分岔当系统参数发生变化时,如果发现有多个分支同时产生,其中一个分支继续从初始状态收敛至实际状态而其他分支则逐渐消失或变得不稳定,这种分岔称为超分岔。
第三章分岔理论在科学研究中的应用1.混沌现象及相关研究分岔理论在混沌现象及其相关研究中有很广泛的应用。
混沌系统因为其极其灵敏的初始条件,而表现出非常复杂、多样的行为。
分岔理论的模型可以帮助科学家更好地理解混沌现象的动力学特性。
2.电力系统的稳定性研究电力系统是典型的非线性系统,其稳定性对于发电、输电、配电等方面的问题都极为重要。
分岔理论可以帮助研究人员探索电力系统稳定性变化的原因,并提出相应的解决方案。
3.材料科学及工程中的应用分岔理论在材料科学及工程中也有广泛的应用。
例如合金的晶格相变、金属塑性变形等等。
分岔理论可以帮助科学家解决在材料科学及工程中的稳定性问题,提高材料的力学性能、抗拉强度等重要参数。
非线性动力学中的混沌与分岔现象

非线性动力学中的混沌与分岔现象混沌现象的介绍混沌现象是非线性动力学中一个重要的研究课题,它描述了一种似乎随机的、无规律可循的运动状态。
在混沌现象的研究中,人们发现了一些特征,如灵敏依赖于初始条件、无周期运动和封闭轨道等。
混沌现象的研究对于理解自然界中的复杂系统行为具有重要的意义。
混沌现象最早是由美国数学家Edward Lorenz于20世纪60年代发现的。
他在研究气象学中的大气运动方程时,意外地发现了不确定性的现象。
这个发现被称为“蝴蝶效应”,即当一个蝴蝶在巴西振动翅膀时,可能引发一系列的气流变化,最终导致美国得克萨斯州的一个龙卷风的形成。
这个例子说明了混沌现象中初始条件的微小变化可能引起系统运动的巨大变化。
混沌现象的数学表示混沌现象可以用一些非线性动力学方程描述。
这些方程通常包含了一些非线性项,使得系统的演化不再是简单的线性叠加。
一个经典的混沌系统方程是Lorenz方程:\\frac{{dx}}{{dt}} = \\sigma(y - x),\\frac{{dy}}{{dt}} = x(\\rho - z) - y,\\frac{{dz}}{{dt}} = xy - \\beta z其中,x、y和z是系统的状态变量,t是时间。
σ、ρ和β是一些常数,它们决定了系统的性质。
这个方程描述了一个三维空间中的运动,这种运动就是混沌现象。
分岔现象的介绍分岔现象是混沌现象的一个重要特征,它描述了系统参数发生微小变化时,系统行为的剧烈变化。
简单来说,分岔现象就是系统从一个稳定的演化状态变成多个稳定状态的过程。
分岔现象的经典例子是Logistic映射。
Logistic映射是一种常用的非线性映射,它用于描述生物种群的增长。
Logistic映射的公式为:x_{n+1} = r \\cdot x_n \\cdot (1 - x_n)其中,x_n是第n个时刻的种群密度,x_{n+1}是下一个时刻的种群密度,r是系统的参数,它决定了种群的增长速度。
非线性动力学导论讲义(分岔理论)

非线性动力学导论之四:分岔基本理论简介北京理工大学宇航学院力学系岳宝增第三章非线性动力学系统分岔基本理论一.一般系统平衡解的稳定性(1)二.平衡解的稳定流形与不稳定流形于平面摆的例子可以用来很清楚地解释全局稳定(不稳定)流形的概念;平面摆作为二阶动力学系统和谐振子极为相似。
其动力学方程为:l其中M代表质量,表示摆长,g为重力加速度,c为阻尼系数。
对时间进行尺度变换d可以得到系统的简化方程:d因为是从铅锤位置开始的角度位移,因此该变量具有周期2π;由此可知该系统的相空间为圆柱面。
我们也可以假设,从而从相图上可以观测到系统关于X的周期特性。
为了分析系统的动力学特性,首先确定系统的平衡点并研究其稳定性。
可求出系统的平衡点为:及求出系统的雅可比矩阵为:对应于平衡点有:其特征值为:如果d=0则得到特征值±i;对于较小的d值系统有共轭复根。
对应于平衡点(2kπ+π,0)系统的雅可比矩阵为:其特征值一对符号相反的实数:根据以上讨论可知:平衡点(2kπ+π,0)为鞍点,当d=0时,其对应的特征向量为:及对于较小的的d>0,平衡点(2kπ,0)为吸引子-螺旋旋线);d=0时该类平衡点所对应的是非双曲点。
由于此时系统不受摩擦(阻尼)影响,单摆将做周期运动。
因此,在平衡点附近,系统的动力学特性为:无阻尼d=0 阻尼d>0d=0时,所对应的一类周期运动是单摆做上下摆动;另一类周期运动是单摆由稳定及不稳定流形通过倒立位置位置的运动。
如果单摆几乎刚好处于倒立位置时(不稳定),它将倒回并再次回摆到几乎刚好倒立的位置。
这意味着稳定流形与不稳定流形将有如下图所示的联接:单摆沿逆时针方向穿越倒立位置。
单摆没有穿越倒立位置。
单摆沿顺时针方向穿越倒立位置。
在有阻尼的情形下,实际上所有的初始条件所确定的运动将趋于下垂平衡位置。
例外情形是稳定流形所对应的运动,由趋于倒立位置的所有点组成。
所有初始条件将终止于平衡点三.分岔的基本概念对于一个非线性方程,由于其中参量取值不同,解的形式可能完全不同,即参量取值在某一临界值两侧,解的性质发生本质变化(例如平衡状态或周期运动的数目和稳定性等发生突然变化)。
非线性系统的分叉问题

概念:如果某个动力系统是结构不稳定的,则系统任 概念 意小的扰动都会使系统的拓扑结构发生突然的变化, 我们称这种变化为分叉(bifurcation)。
对于含有参数的动力学系统
dx = f ( x, µ ) dt
其中,x是状态变量,µ是分叉参数,当参数µ连续变化 时,若系统的拓扑结构在µ0处发生突然变化,则称系 统在µ=µ0µ<0时,系统有唯一的奇点x=0,其导算子的特征 值是µ,该奇点是渐进稳定的。 当µ>0时,系统有三个平衡点, x1 = 0, x2,3 = ± µ ,其中 x=0是不稳定的,x= ± µ 是渐近稳定的。
x
x= µ
0
µ
x=- µ
图2. 叉形分叉
Hopf分叉 例2 考虑平面系统
• 2 2 x = − y + x[ µ − ( x + y )] • y = x + y[ µ − ( x 2 + y 2 )]
dx = f ( x, µ ) dt
从导算子的特征值的角度看,随着µ的变化,出现 Reλ=0的情况有三种。
Reλ
Reλ
Reλ
0 Imλ
0 Imλ
0 Imλ
图1.1叉形分叉
图1.2 Hopf分叉
图1.3 鞍结分叉
叉形分叉 例1 考虑一维系统
dx = µx − x 3 dt
2 其导算子 Dx f ( x, µ ) = µ − 3 x
µ 1 -1 µ
该体统只有一个奇点(0,0),其导算子 的特征根 为 µ ± i ,显然µ由负变正时,奇点 (0,0)有稳定的焦 点变为不稳定焦点。
事实上,系统不只发生了奇点分叉,而且产生了 闭轨分叉。
令 x = r cos θ , y = r sin θ 原方程组写为
非线性动力分析方法课件

反馈线性化控制
优点
能够处理非线性问题,提高系统的控制精度 和稳定性。
缺点
实现较为复杂,需要精确的系统模型和参数。
自适应控制
通过不断调整控制参数,以适应系统参数的变化。
优点:能够适应系统参数的变化,提高系统的鲁 棒性和适应性。
自适应控制是一种能够自动调整控制参数,以适 应系统参数变化的控制方法。这种方法通过实时 测量系统参数的变化,不断更新控制参数,以保 证系统性能的稳定性和最优性。
机构运动
在机构运动中,非线性动 力系统可以用于描述机构 的运动规律,如连杆机构、 凸轮机构等。
弹性力学
非线性动力系统在弹性力 学中可以用于描述材料的 非线性行为,如材料的弹 塑性、断裂等。
电力系统中的应用实例
电力系统的稳定性分析
非线性动力系统可以用于分析电力系统的稳定性,如电压波动、 频率稳定等。
谱方法的基本思想是将原问题转化为求解特征值或特征向量 的问题,通过选取适当的正交变换,将原问题转化为易于求 解的数值问题。该方法广泛应用于数值计算、流体动力学等 领域。
边界元法
边界元法是一种只对边界进行离散化 的数值方法,通过求解边界上的离散 方程来近似求解原问题的数值方法。
边界元法的基本思想是将问题只离散 化边界上的点,通过求解边界上的离 散方程来近似求解原问题的数值方法。 该方法广泛应用于流体动力学、电磁 学等领域。
缺点:可能会产生抖振现象, 需要精确的系统模型和参数。
05
非性力系的
欧拉方法
总结词
欧拉方法是数值计算中最基础的方法 之一,适用于求解初值问题。
详细描述
欧拉方法基于差分思想,通过已知的 初值和微分方程,逐步计算出未知的 函数值。该方法简单易懂,但精度较 低,适用于求解简单问题。
非线性物理3-1(倍周期分岔到混沌、阵发性混沌)

3.杜芬方程的倍周期分岔
杜芬方程的倍周期分岔
杜芬方程:
d2x dt 2
dx dt
x
x3
=
F
cos
t
设γ=0.4,κ=1,ζ=4, F=0.115,从小到大改变驱动频率。
计算表明,在 ≥0.8时,杜芬方程的解是反对称的极限环,极限环呈 椭圆形状;
当 <0.8时,极限环的反对称性虽然仍存在,但椭圆形状已明显变 形。
1. 阵发性混沌现象
阵发现象(洛论兹方程)
洛论兹方程 y 分量 rc 附近的 四个参数:一个 r<rc, 三个 r>rc 计算结果
b=8/3,s=10 时
临界值rc=166.07
x -对流的翻动速率, y -比例于上流与下流液体之 间的温差 z-是垂直方向的温度梯度,
r -相对瑞利数 r = R/RC。
f 3(x)有四个不动点,一个由f (x)带来 的不稳定不动点,另外三个与迭代线 相切。切点处f 3(x)曲线的斜率为+1, 是稳定性条件的最大值。
2. 阵发性混沌机理
周期 3 轨道
μ稍许增大一点, mt m < 0 , f 3(x)将越过切点与迭代线相
交为两个交点,产生出六个交点。相切点斜率为+1,每对相交 的两个交点处斜率一个大于1,另一个小于1。
3
0.9212
4 0.28901376
5 0.821939226
·
·
·
·
51 0.27756908
52 0.80209438
·
·
·
·
X2=0.1000001
0.36000003 0.92160036 0.28901355 0.821938871
分岔ppt课件

2 .平方映射的不动点
<1时走向不动点 A
当参数<1时,抛物线高度较低,与迭代线只有一个交点A。这时不管
初值如何,迭代最终趋于原点,原点是唯一的不动点。图b是随迭代次 数 n 的变化曲线,这是最终衰变到零的指数衰变曲线。在生态上,虽 然初始有一定的种群数量,但受到环境的制约最终走向了灭绝。
2 .平方映射的不动点
准备:
1. 建立坐标系 x n1 ~ x n
2. 作条抛物线:
x n1 x n (1 x n )
3. 作对角线,称恒等线
x n1 x n
通过它做投影。
1.平方映射
作图计算
平方映射 x n1 x n (1 x n ) 在 x n1 ~ x n 平面上是一条抛物线, 抛物线高度由 值决定。
d 2x dt 2
k x
x3
0
由势能曲线知:
a. 在 k 时0仅有一个平衡点:
x 0
b.在 k时存0 在三个平衡点:
x0 x k
可见在参数 k = 0 处发生了一次从单解
转为三解的叉式分岔。
c.在这三个平衡点中, x , 处k
在势能极小点,是稳定的; x 处0 在势
能极大点,是不稳定的平衡点。
4 霍夫型分岔
一、从横坐标 x0 处作竖直线 与抛物线相交,这点的纵坐标 高度即为 x1;
二、从此点作水平线与对角线 相交,此交点横坐标即为x1;
三、再由此点作竖直线,得到 与抛物线相交时的高度x2,再 将x2移植到对角线上,找到横 坐标x2。从这里作竖直线与抛 物线相交得x3,如此反复······
1.平方映射
对于稳定的不动点,应有 e n+1 e n , 即: m 1
非线性动力学导论讲义(分岔理论)

非线性动力学导论之四:分岔基本理论简介北京理工大学宇航学院力学系岳宝增第三章非线性动力学系统分岔基本理论一.一般系统平衡解的稳定性(1)二.平衡解的稳定流形与不稳定流形于平面摆的例子可以用来很清楚地解释全局稳定(不稳定)流形的概念;平面摆作为二阶动力学系统和谐振子极为相似。
其动力学方程为:l其中M代表质量,表示摆长,g为重力加速度,c为阻尼系数。
对时间进行尺度变换d可以得到系统的简化方程:d因为是从铅锤位置开始的角度位移,因此该变量具有周期2π;由此可知该系统的相空间为圆柱面。
我们也可以假设,从而从相图上可以观测到系统关于X的周期特性。
为了分析系统的动力学特性,首先确定系统的平衡点并研究其稳定性。
可求出系统的平衡点为:及求出系统的雅可比矩阵为:对应于平衡点有:其特征值为:如果d=0则得到特征值±i;对于较小的d值系统有共轭复根。
对应于平衡点(2kπ+π,0)系统的雅可比矩阵为:其特征值一对符号相反的实数:根据以上讨论可知:平衡点(2kπ+π,0)为鞍点,当d=0时,其对应的特征向量为:及对于较小的的d>0,平衡点(2kπ,0)为吸引子-螺旋旋线);d=0时该类平衡点所对应的是非双曲点。
由于此时系统不受摩擦(阻尼)影响,单摆将做周期运动。
因此,在平衡点附近,系统的动力学特性为:无阻尼d=0 阻尼d>0d=0时,所对应的一类周期运动是单摆做上下摆动;另一类周期运动是单摆由稳定及不稳定流形通过倒立位置位置的运动。
如果单摆几乎刚好处于倒立位置时(不稳定),它将倒回并再次回摆到几乎刚好倒立的位置。
这意味着稳定流形与不稳定流形将有如下图所示的联接:单摆沿逆时针方向穿越倒立位置。
单摆没有穿越倒立位置。
单摆沿顺时针方向穿越倒立位置。
在有阻尼的情形下,实际上所有的初始条件所确定的运动将趋于下垂平衡位置。
例外情形是稳定流形所对应的运动,由趋于倒立位置的所有点组成。
所有初始条件将终止于平衡点三.分岔的基本概念对于一个非线性方程,由于其中参量取值不同,解的形式可能完全不同,即参量取值在某一临界值两侧,解的性质发生本质变化(例如平衡状态或周期运动的数目和稳定性等发生突然变化)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
周期2
xt1 3.52 xt (1 xt ) 周期4
xt1 4xt (1 xt ) 混沌
2019/12/29
24
两个概念 渐近(asymptotic dynamics ):
The term asymptotic dynamics refers to the dynamics as time goes to infinity.
xt2 xt
R=3.3
2019/12/29
10
• 3.449 <R<3.5699 R=3.52 周期4 周期8 周期16……
周期倍增(period-doubling)
2019/12/29
11
• 3.5699 < R 4
R= 3.5699达到无穷周期 对大多数R产生混沌(chaos)
R=4
2019/12/29
12
2019/12/29
13
对初始条件敏感 xt1 4xt (1 xt ) dot: x0=0.523423, circle: x0= 0.523424
2019/12/29
14
• R>4 轨线最终逃逸(escape)到无穷。
问题2:
1. How many iterations dose it take for the trajectories to get with 0.001of the final value x=0.3333 for R=1.5?
( locally asymptotic stability) • 全局稳定性 globally stable:
If the fixed point is approached by all initial conditions, we say the fixed point is globally stable.
2019/12/29
19
1、固定点 (fixed point):
x
t
f ( xt )
xt1 xt1
Rxt ( 1 xt
xt
)
x
t
xt
0 1
1 R
2019/12/29
20
2、固定点的局部稳定性 线性系统:
固定点 xt 0
R > 1: 不稳定
R=2.9 交替逼近固定点
x*=0.655
xt 1 1/R
2019/12/29
7
2019/12/29
8
问题1:
1、 x0取不同值时,上述几种情况如何? 2、x0=0.5, R分别为1.25, 2, 2.75,
画出轨线 t- xt
2019/12/29
9
• 3<R<3.449 周期2 (period-2)
2019/12/29
18
• 局部稳定性 locally stable:
If the initial condition happens to be near a fixed point, sequent iterates approach the fixed point, we say the fixed point is locally stable.
2. What happens for R>4?
2019/12/29
15
小结: • 系统表现出的不同行为
稳定状态、周期、混沌
• 系统参数(R)的不同给系统带来的影响
• 初始状态( x0)的不同对系统的影响
2019/12/29
16
• 分叉图 ( bifurcation diagram )
2019/12/29
稳态(steady-state) R=1
2019/12/29
2
N0=100 , R<0 衰减(decay)
R=-0.9
递增(growth) R=-1.08
稳态(steady-state) R=-1
2019/12/29
3
吸引子(attractor): 随着时间的演化,系统的一种状态趋势
0<R<1: Nt 0
x
t
f ( xt )
x 0
x
1
1 R
2019/12/29
5
系统参数:R, 初始条件: x0 , 取0< x0 <1, x0 =0.1(有生态学意义) • 0<R1
xt 0 (attractor)
2019/12/29
6
• 1<R<3
R=1.5
单调逼近固定点
x*=0.333
0 < R < 1: 稳定 R=0: 稳定 R=1: 稳定
2019/12/29
21
-1 < R < 0
R < -1
R=-1 不稳定
2019/12/29
22
非线性系统:
固定点
x
t
f
(
x
t
)
m df dxt
x
m 1:
x
t
stable
0 m 1: 单调逼近固定点
1 m 0: 交替逼近固定点
17
三、稳定状态(steady state)和稳定性(stability)
研究三个问题: 1、系统是否存在固定点(fixed point)? 2、系统是否在固定点处存在局部稳定性?
局部稳定性(locally stable) 3、系统是否在固定点处存在全局稳定性?
全局稳定性(globally stable)
R>1: Nt
分叉点(bifurcation point):
以某个参数值为分界,系统进入不同的状 态
R=1
2019/12/29
4
二、非线性的有限差分方程
1、Logistic Equation: xt1 Rxt ( 1 xt )
系统参数:R 初始条件: x0 固 定 点: (fixed point)
暂态(transient): Behavior before the asymptotic dynamics is called transient
m 1:
x
t
unstable
m 1: 单调远离固定点
m 1: 交替远离固定点
2019/12/29
23
以逻辑方程为例分析: xt1 Rxt ( xt ) 固定点
xt1 2.9xt (1 xt ) xt1 3.3xt (1 xt )
第一章 有限差分方程
一、线性有限差分方程: Nt1 RNt
几个概念: •方程(线性) •系统参数:R •初始条件:N0
N1 RN0 N2 RN1 R2 N0
Nt Rt N0
2019/12/29
1
N0=100 , R>0 衰减(decay)
R=0.9
递增(growth) R=1.08