【数学】1.2.2《函数的和、差、积、商的导数》推导

合集下载

函数的和、差、积、商的求导法则

函数的和、差、积、商的求导法则


(tan x ) sec 2 x .
同理可得 (cot x ) csc 2 x .
例5 求 y sec x 的导数 .

1 y (sec x ) ( ) cos x (cos x ) sin x sec x tan x . 2 2 cos x cos x
机动 目录

1
( x 3 4 cos x sin 1) x ( 3 x 2 4 sin x )
上页
下页
返回
结束
例4 求 y tan x 的导数 . 解
sin x y (tan x ) ( ) cos x
(sin x ) cos x sin x(cos x ) cos 2 x 1 cos 2 x sin2 x sec2 x cos 2 x cos 2 x
( 3) [
i 1
n
f1 ( x ) f 2 ( x ) f n ( x ) f i ( x )] f1 ( x ) f 2 ( x ) f n( x )
f i( x ) f k ( x );
i 1 k 1 k i
n
n
二、高阶导数的概念
问题: 变速直线运动的加速度.
y 2 cos x cos x ln x 2 sin x ( sin x ) ln x 1 2 sin x cos x x 1 2 cos 2 x ln x sin 2 x . x
1 例3. y (1 x ) (3 ) , x3
2
解:
x x0
x x0
二阶导函数记作
d 2 y d 2 f ( x) f ( x ), y , 2 或 . 2 dx dx

大学数学微积分公式推导

大学数学微积分公式推导

大学数学微积分公式推导微积分是数学的重要分支,运用于各个科学领域和工程学中。

微积分公式的推导过程对于研究和理解微积分的基本概念和方法非常重要。

本文将从基本的微分和积分开始,推导一些常见的微积分公式。

1. 导数公式推导1.1 基本函数的导数1.1.1 常数函数的导数推导常数函数f(x) = C的导数为f'(x) = 0。

1.1.2 幂函数的导数推导幂函数f(x) = x^n的导数为f'(x) = n * x^(n-1)。

1.1.3 指数函数的导数推导指数函数f(x) = a^x的导数为f'(x) = a^x * ln(a)。

1.1.4 对数函数的导数推导对数函数f(x) = ln(x)的导数为f'(x) = 1 / x。

1.2 导数的基本性质1.2.1 和差法则若f(x)和g(x)都可导,则(f(x) ± g(x))' = f'(x) ± g'(x)。

1.2.2 数乘法则若f(x)可导,k是常数,则(k * f(x))' = k * f'(x)。

1.2.3 乘法法则若f(x)和g(x)都可导,则(f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x)。

1.2.4 商法则若f(x)和g(x)都可导且g(x) ≠ 0,则(f(x) / g(x))' = (f'(x) * g(x) -f(x) * g'(x)) / (g(x))^2。

2. 积分公式推导2.1 基本函数的不定积分2.1.1 幂函数的不定积分推导幂函数f(x) = x^n的不定积分为F(x) = (1 / (n + 1)) * x^(n + 1) + C。

2.1.2 正弦函数的不定积分推导正弦函数f(x) = sin(x)的不定积分为F(x) = -cos(x) + C。

函数的求导法则

函数的求导法则
首页 上页 返回 下页 结束 铃
复合函数的求导法则: dy = f ′(u)⋅ g′(x) 或 dy = dy ⋅ du . dx dx du dx
求 dy . 例10 y = ln sin x, dx
解 dy =(ln sin x)′= 1 ⋅(sin x)′ = 1 ⋅cosx=cot x . dx sin x sin x dy 3 2 , 求 例11 y = 1−2x . . dx 1 dy −4x 1 (1−2x2)− 2 ⋅(1−2x2)′ = 2)3 ]′ = 解 3 =[( −2x 1 . 3 ( −2x2)2 dx 3 3 1 复合函数的求导法则可以推广到多个中间变量的情形. 例如, 设y=f(u), u=ϕ(v), v=ψ(x), 则
详细证明 首页 上页 返回 下页 结束 铃
复合函数的求导法则: dy = f ′(u)⋅ g′(x) 或 dy = dy ⋅ du . dx dx du dx 例8 y=ex3 , 求 dy . 9 dx 解 函数 y=ex3可看作是由y=e u, u=x3复合而成的, 因此
dy dy du u 2 = ⋅ =e ⋅3x =3x2ex3 . dx du dx dy 例9 y =sin 2x2 , 求 . 10 1+ x dx 解 函数 y =sin 2x 是由 y=sin u , u = 2x 复合而成的, 1+ x2 1+ x2 dy dy du 2(1+ x2) −(2x)2 2(1− x2) = ⋅ =cosu⋅ = ⋅cos 2x2 . 因此 dx du dx (1+ x2)2 (1+ x2)2 1+ x
u(x) u′(x)v(x) −u(x)v′(x) >>> [ ]′ = . 2(x) v(x) v

1.2.2导数公式及运算法则

1.2.2导数公式及运算法则
在复合函数中,内层函数 u=g(x)的值域必须是外层函 数 y=f(u)的定义域的子集.
2.复合函数的求导法则 复合函数对自变量的导数,等于已知函数对中间变量
的导数,乘以中间变量对自变量的导数,即 yx′= yu′·ux′,
并且在利用复数的求导法则求导数后,最后结果要把中间 变量换成自变量的函数.复合函数,可以是一个中间变量, 也可以是两个或多个中间变量,应该按照复合次序从外向 内逐层求导.
2.函数 y=21(ex+e-x)的导数是(
)
A.12(ex-e-x) B.21(ex+e-x)
C.ex-e-x D.ex+e-x 解析 y′=21ex+e-x′=12[(ex)′+(e-x)′]=
21(ex-e-x). 3.[2017·泉州高二检测]函数 f(x)=π2x2 的导数是( )
A.f′(x)=4πx B.f′(x)=2πx
C.f′(x)=2π2x D.f′(x)=2πx2+2π2x
解析 由 f(x)=π2x2 得 f′(x)=2π2x,故选 C.
loga
xf
' ( x)
x
1 ln
a
(a
0且aΒιβλιοθήκη 1)f (x) ln xf '(x) 1 x
导数可以进行四则运算吗?
探究新知 一.导数的运算法则
设两个函数分别为f(x)和g(x)
法则
[f(x)±g(x)]′=f′(x)±g′(x)
语言法叙则述 两[个f(x函)g数(x的)]'=和f('或(x差)g()x的)+导f数(x),g'等(x)于
随堂达标自测
1.下列函数不是复合函数的是( )
A.y=-x3-1x+1 C.y=ln1x

1.2.2导数运算法则1

1.2.2导数运算法则1

我们今后可以直接使用的基本初等函数的导数公式 n n 1
公式2.若f ( x) x , 则f '( x) nx ; 公式 ,则 '( xf) '( x0; 公式1. 3.若 若f f( (x x) ) c sin xf, 则 ) cos x;
n n 1 公式 2. 若 f ( x ) x , 则 f '( x ) nx ; x; 公式 4. 若 f ( x ) cos x , 则 f '( x ) sin 公式1.若f ( x) c, 则f '( x) 0; x 公式 3. 若 f ( x ) sin x, 则 f x'( x )a xcos x ; n, 则 n 1a 公式 5. 若 f ( x ) a f '( ) ln ( 公式2.若f ( x) x , 则f '( x) nx ; a 0); 公式 4.若 若f f( (x x) ) e cos x,f则 f '( x)e x x sin x; 公式6. , 则 '( x ) 3. sin x, 则f '( x) ;cos x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 1 公式 4. 若 f ( x ) cos x , 则 f '( x ) sin x;( a 0, 且a 1); 公式7.若f ( x) log x , 则 f '( x ) a 公式6.若f ( x) e xx, 则 f '( x) e xx; x ln a 公式5.若f ( x) a , 则f '( x) a ln a( a 0); 1 1 x x ln x则 ,则 f'('( x'( ) 公式7. ,则 f) ) ( a 0, 且a 1); 6.若f ( x) log e , x x e ;; a xf x x ln a 1 公式8.若f ( x) log a x, 则f '( x) 1 ( a 0, 且a 1); 公式8.若f ( x) ln x, 则f '( x) ; x ln a x 1 公式8.若f ( x) ln x, 则f '( x) ;

1.2.2 导数的运算法则(一)

1.2.2 导数的运算法则(一)

1.2.2 导数的运算法则(一)知识要点1,两个函数的和(或差)的导数,等于这两个函数的导数的 ,即()()'u x v x ±=⎡⎤⎣⎦2,两个函数的积的导数,等于 ,加上 ,即()()'u x v x ⋅=⎡⎤⎣⎦ 。

特别地,()'cu x =⎡⎤⎣⎦ (其中c 为常数)。

3,两个函数的商的导数,等于 减去 ,再除以 。

即知识点一,直接求导例1,求下列函数的导数(1)23cos y x x x =+ (2)1x y x=+ (3)tan y x = (4)lg x y x e =-变式训练1,求下列函数的导数(1)23y x =(2)5314353y x x x =-++(2)2sin cos y x x x =+ (4)ln 1x y x =+知识点二,先变形再求导例2,求下列函数的导数(1)y =(2)cos 2sin cos x y x x =+(3))22sin cos 22x x y =- 变式训练2,求下列函数的导数 (1)2311y x x x x ⎛⎫=++ ⎪⎝⎭ (2)44sin cos 44x x y =+知识点三,导数的综合应用例3,已知函数21nx y x ⎛⎫= ⎪+⎝⎭过点11,9P ⎛⎫ ⎪⎝⎭,求函数在点P 处的切线方程。

变式训练3,某质点的运动规律是322s t t t =-+,求其最小速度m v水平基础题1.已知物体的运动方程是s =14t 4-4t 3+16t 2(t 表示时间,s 表示位移),则瞬时速度为0的时刻是( )A .0秒、2秒或4秒B .0秒、2秒或16秒C .2秒、8秒或16秒D .0秒、4秒或8秒2.(2010·新课标全国卷文,4)曲线y =x 3-2x +1在点(1,0)处的切线方程为( )A .y =x -1B .y =-x -1C .y =2x -2D .y =-2x -23.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( )A.π2B .0C .钝角D .锐角4.设f (x )=x 3-3x 2-9x +1,则不等式f ′(x )<0的解集为________.5.求下列函数的导数:(1)y =x (x 2+1x +1x 3);(2)y =(x +1)(1x-1); (3)y =sin 4x 4+cos 4x 4;(4)y =1+x 1-x +1-x 1+x. 水平提升题6.曲线y =x sin x 在点⎝⎛⎭⎫-π2,π2处的切线与x 轴、直线x =π所围成的三角形的面积为 ( )A.π22B .π2C .2π2 D.12(2+π)2 7.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2011(x )等于( )A .sin xB .-sin xC .cos xD .-cos x8.f (x )与g (x )是定义在R 上的两个可导函数,若f (x )、g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )-g (x )为常数C .f (x )=g (x )=0D .f (x )+g (x )为常数9.曲线y =cos x 在点P ⎝⎛⎭⎫π3,12处的切线的斜率为______.10.已知函数f (x )=ax +b e x 图象上在点P (-1,2)处的切线与直线y =-3x 平行,则函数f (x )的解析式是____________.11.已知两条曲线y =sin x 、y =cos x ,是否存有这两条曲线的一个公共点,使在这个点处,两条曲线的切线互相垂直?并说明理由.12.已知曲线C 1:y =x 2与C 2:y =-(x -2)2.直线l 与C 1、C 2都相切,求直线l 的方程. 提升拓展题13.求满足下列条件的函数f (x ):(1)f (x )是三次函数,且f (0)=3,f ′(0)=0,f ′(1)=-3,f ′(2)=0;(2)f ′(x )是一次函数,x 2f ′(x )-(2x -1)f (x )=1.14,求下列函数()f x 的导数(其中是可导函数)1(1)(2)y f y f x ⎛⎫== ⎪⎝⎭知识要点1,和(或差) ()()''u x v x ±2,第一个函数的导数乘第二个函数 第一个函数乘第二个函数的导数()()()()''u x v x u x v x ⋅+⋅ ()'cu x3,分子的导数与分母的积 分母的导数与分子的积 分母的平方()()()()()()()()()2'''0f x g x f x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦典型例题例1,答案:(1)'6cos sin y x x x x =+-(2)()21'1y x =+(3)21'cos y x=(4)1'ln10x y e x =- 变式训练1,(1)'6y x =(2)42'43y x x =-+(3)()2'21sin cos y x x x x =-+(4)()2ln 1'1x x x y x x -+=+例2,答案:(1)21y x==- ()22'1y x =-(2)cos 2cos sin sin cos x y x x x x==-+ 'sin cos y x x =--(3))212sin cos 4sin 222x x y x x =-=--1'1cos 2y x x =-- 变式训练2,(1)232'3y x x =-(2)1'sin 4y x =-例3,答案:因为1921n ⎛⎫= ⎪+⎝⎭,所以2n =,221x y x ⎛⎫= ⎪+⎝⎭()32'21x y x =+,12'|27x y == 所以切线方程为22710x y -+=变式训练3,53m v = 作业练习1.[答案] D[解析] 显然瞬时速度v =s ′=t 3-12t 2+32t =t (t 2-12t +32),令v =0可得t =0,4,8.故选D.2.[答案] A[解析] 本题考查了导数的几何意义,切线方程的求法,在解题时应首先验证点是否在曲线上,然后通过求导得出切线的斜率,题目定位于简单题.由题可知,点(1,0)在曲线y =x 3-2x +1上,求导可得y ′=3x 2-2,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得过点(1,0)的曲线y =x 3-2x +1的切线方程为y =x -1,故选A.3.[答案] C[解析] y ′|x =4=(e x sin x +e x cos x )|x =4=e 4(sin4+cos4)=2e 4sin(4+π4)<0,故倾斜角为钝角,选C.4.[答案] (-1,3)[解析] f ′(x )=3x 2-6x -9,由f ′(x )<0得3x 2-6x -9<0,∴x 2-2x -3<0,∴-1<x <3.5.[解析] (1)∵y =x ⎝⎛⎭⎫x 2+1x +1x 3=x 3+1+1x2, ∴y ′=3x 2-2x3;(3)∵y =sin 4x 4+cos 4x 4=⎝⎛⎭⎫sin 2x 4+cos 2x 42-2sin 2x 4cos 2x 4=1-12sin 2x 2=1-12·1-cos x 2=34+14cos x ,∴y ′=-14sin x ; (4)∵y =1+x 1-x +1-x 1+x=(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x-2, ∴y ′=⎝⎛⎭⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.6.[答案] A[解析] 曲线y =x sin x 在点⎝⎛⎭⎫-π2,π2处的切线方程为y =-x ,所围成的三角形的面积为π22. 7.[答案] D[解析] f 0(x )=sin x ,f 1(x )=f 0′(x )=(sin x )′=cos x ,f 2(x )=f 1′(x )=(cos x )′=-sin x ,f 3(x )=f 2′(x )=(-sin x )′=-cos x ,f 4(x )=f 3′(x )=(-cos x )′=sin x ,∴4为最小正周期,∴f 2011(x )=f 3(x )=-cos x .故选D.8.[答案] B[解析] 令F (x )=f (x )-g (x ),则F ′(x )=f ′(x )-g ′(x )=0,∴F (x )为常数.9.[答案] -32[解析] ∵y ′=(cos x )′=-sin x ,∴切线斜率k =y ′|x =π3=-sin π3=-32. 10.[答案] f (x )=-52x -12e x +1 [解析] 由题意可知,f ′(x )|x =-1=-3,∴a +b e -1=-3,又f (-1)=2,∴-a +b e -1=2,解之得a =-52,b =-12e , 故f (x )=-52x -12e x +1. 11.[解析] 因为y =sin x 、y =cos x ,设两条曲线的一个公共点为P (x 0,y 0), ∴两条曲线在P (x 0,y 0)处的斜率分别为若使两条切线互相垂直,必须cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin2x 0=2,这是不可能的,∴两条曲线不存有公共点,使在这个点处的两条切线互相垂直.12.[解析] 设l 与C 1相切于点P (x 1,x 21),与C 2相切于点Q (x 2,-(x 2-2)2).对于C 1:y ′=2x ,则与C 1相切于点P 的切线方程为y -x 21=2x 1(x -x 1),即y =2x 1x -x 21.①对于C 2:y ′=-2(x -2),与C 2相切于点Q 的切线方程为y +(x 2-2)2=-2(x 2-2)(x -x 2), 即y =-2(x 2-2)x +x 22-4.② ∵两切线重合,∴2x 1=-2(x 2-2)且-x 21=x 22-4,解得x 1=0,x 2=2或x 1=2,x 2=0.∴直线l 的方程为y =0或y =4x -4.13.则f ′(x )=3ax 2+2bx +c由f (0)=3,可知d =3,由f ′(0)=0可知c =0,由f ′(1)=-3,f ′(2)=0可建立方程组⎩⎪⎨⎪⎧ f ′(1)=3a +2b =-3f ′(2)=12a +4b =0, 解得⎩⎪⎨⎪⎧a =1b =-3, 所以f (x )=x 3-3x 2+3.(2)由f ′(x )是一次函数可知f (x )是二次函数,则可设f (x )=ax 2+bx +c (a ≠0)f ′(x )=2ax +b ,把f (x )和f ′(x )代入方程,得x 2(2ax +b )-(2x -1)(ax 2+bx +c )=1整理得(a -b )x 2+(b -2c )x +c =1若想对任意x 方程都成立,则需⎩⎪⎨⎪⎧ a -b =0b -2c =0c =1解得⎩⎪⎨⎪⎧ a =2b =2c =1, 所以f (x )=2x 2+2x +1.14,()()()2112222211111(1)'''''(2)''''11'11''1222'y f f f x x x x x y f f f x x f x x f --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫==•=-• ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤==•⎢⎥⎣⎦=•++=•+•=解:。

第二节函数的和、差、积、商的求导法则

第二节函数的和、差、积、商的求导法则

(loga
x)
1 (a y )
1 a y ln a
1. x ln a
特别地
(ln x) 1 . x
10/21
三、常数和基本初等函数的导数公式
(1) (C ) 0;
(2) ( x ) x 1 ( 0);
(3) (sinx) cos x;
(4) (cos x) sin x;
(5) (tan x) sec2 x;
v( x0 x) v( x0 ) x
lim
u( x0
x) x
u( x0 )
v( x0 )
u( x0 )
v( x0
x) x
v( x0 )
x 0
v( x0 x) v( x0 )
u( x0 )
v( x0 ) u( x0 ) [v( x0 )]2
v( x0 )
f ( x) 在 x0 处可导且(3)成立.
(1) [u( x) v( x)] / x x0 u( x0 ) v( x0 );
(2) [u( x) v( x)] / x x0 u( x0 ) v( x0 ) u( x0 ) v( x0 );
(
3)
[
u( v(
x) x)
]
/
x
x
0
u( x0 ) v( x0 ) u( x0 ) v( x0 ) v2( x0 )
8/21
例5 求 y arcsin x 的导数.

y sin x 在
Ix
(
2
,
2
)
内单调、可导
,
且 (sin x) cos x 0, 在 I y (1,1) 内有
(arcsin y) 1 (sin x)

高中数学同步教学课件 函数的和差积商求导法则

高中数学同步教学课件 函数的和差积商求导法则

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
∵f(x)=14x2+sinπ2+x=14x2+cos x, ∴f′(x)=12x-sin x. 易知 f′(x)=12x-sin x 是奇函数,其图象关于原点对称,故排除 B,D. 由 f′π6=1π2-12<0,排除 C,故选 A.
A项中,(ax2+bx+c)′=a(x2)′+b(x)′,故正确;
B项中,(sin x-2x2)′=(sin x)′-2(x2)′,故错误;
C
项中,sixn2
x′=sin
x′x2-sin x22
xx2′ ,故错误;
D项中,(cos xsin x)′=(cos x)′sin x+cos x·(sin x)′,故正确.

随堂演练
1.已知 f(x)=ax3+3x2+2,若 f′(-1)=4,则 a 的值为
19
16
A. 3
B. 3
13 C. 3
√D.130
∵f′(x)=3ax2+6x, ∴f′(-1)=3a-6=4, ∴a=130.
1234
2.设函数y=-2exsin x,则y′等于
A.-2excos x
B.-2exsin x
推广式:(f1(x)±f2(x)±…±fn(x))′ =f′1 (x)±f′2 (x)±…±f′n (x). 注意点:


(logax)′

1 xln
a


们可






导:
(logax)′

ln ln
ax ′

1 ln a·(ln
x)′=xln1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[ f ( x) g ( x)] f ( x) g ( x).
法则2:
[Cf ( x)] Cf ( x).(C为常数)
例1. (1)求函数f ( x) x sin x的导数.
2
解:f ( x) ( x sin x)
2
( x ) (sin x) 2 x cos x
3.利用导数定义求 的导数. ( x
2
2
x) 2 x 1
g ( x) x
2
2
yx x
2
f ( x) x
4.结论:( x 2 猜想:
f ( x) g ( x) x x
x) ( x ) ( x).
[ f ( x) g ( x)] f ( x) g( x)
f ( x) f ( x) g ( x) f ( x) g ( x) [ ] 2 g ( x) g ( x)
其中g ( x) 0
t 1 例3:)求函数s (t ) (1 t 的导数.
2
( 2)求函数y t an x的导数
cos x (3 )求函数y 的导数 x
x (4)求函数f(x) x 的导数. e x
3 63 3 1 当x 3时, f (3) 2 2 (3 3) 6
2
x 6x 3 2 2 ( x 3)
2
例4:求曲线y=x3+3x-8在x=2 处的切线的方程.
解 : f ( x) ( x 3 x 8) 3 x 3
3 2
'
(7)(sinx ) cosx
'
(8)(cosx) sinx
'
2、由定义求导数(三步法)
步骤:
(1) 求增量 y f ( x x ) f ( x );
y f ( x x ) f ( x ) ( 2) 算比值 ; x x
y (3) 当x 0, 常数 x
证明猜想
证明:令
f ( x) g ( x)
y f ( x) g ( x).

f ( x) g ( x).
y f ( x x) g ( x x) f ( x) g ( x)
f ( x x) f ( x) g ( x x) g ( x)
f (2) 3 2 3 y 6 15( x 2),即 15x y 24 0
(2) f ( x) (2 x ln x) (2 x) ln x (2 x)(ln x) 2 ln x 2
3.用两种方法求y (2x
的导数
2
3)(3x 2)
2 2 解: 法一:y (2x 3)(3x 2) (2x 3)(3x 2)
加上第一个函数乘以第二个函数
的导数
[ f ( x) g ( x)] f ( x) g ( x) f ( x) g ( x).
例2:)求函数h( x) x sin x的导数. (1 (2)求函数f ( x) 2 x ln x的导数.
解 : (1)h( x) ( x sin x) x sin x x(sin x) sin x x cos x
解 : (2) f ( x) (
x x
e
) x
x
xe x(e ) e xe 1 x x x 2 2x (e ) e e
x
练 习
1.求 y 2x 3x 5x 4 的导数
3
2
解 : y (2 x 3x 5x 4)
3 2
6x 6x 5
2
3 2 (2)求函数g ( x) x x 6 x 2的导数. 2
3
3 2 解:g ( x) ( x x 6 x) 2 3 2 3 ( x ) ( x ) (6 x) 3 x 2 3 x 6 2
3
法则3:两个函数的积的导数,等于
第一个函数的导数 乘 以第二个函数
2
x 3. y 的导数 sin x
2
( x ) sin x x (sin x) 解:y 2 sin x
2 ' 2 '
'
2 x sin x x cos x 2 sin x
2
x3 4. 求 y 2 在点x 3处的导数 x 3 2 1 ( x 3) ( x 3) 2 x ' 解:y 2 2 ( x 3)
y f ( x x) f ( x) g ( x x) g ( x) x x
f ( x x) f ( x) g ( x x) g ( x)
x x
f ( x) g ( x)
法则1: 两个函数的和(或差)的 导数,等于这两个函数的导数的和 (或差),即:
4 x ( 3 x 2) ( 2 x 3) 3
2
18 x 8 x 9 3 2 法二: y (6 x 4 x 9 x 6)
2
18 x 8 x 9
2
法则4 :两个函数的商的导数,等于分
子的导数与分母的积,减去分母的导数 与分子的积,再除以分母的平方,即:
3.2.2 函数的 和、差、积、商的导数
知识回顾:
基本求导公式:
(1)C 0(C为常数)
(为常数)
(2)( x ) x
x ' x
'
1
(3)(a ) a lna(a 0, 且a 1)
1 (4)(log a x ) (a 0, 且a 1) xlna 1 ' x ' x (6)(lnx) (5)(e ) e x
相关文档
最新文档