2021年陕西省宝鸡市渭滨区九年级质量检测(一)数学试题
宝鸡市渭滨区九年级质量检测试题

九年级质量检测试题(二)数 学 WB2009.5本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页,第II 卷3至10页,全卷共120分。
考试时间为120分钟。
第I 卷(选择题 共30分)注意事项:1.第I 卷1至2页,共2页。
2.答第I 卷前,请你千万别忘了将自己的姓名、准考证号、考试科目,用2B 铅笔和钢笔涂写在答题卡上。
3.当你选出每小题的答案后,请用2B 铅笔把答题卡上对应题号的答案标号涂黑。
如需改动,请用橡皮擦干净后,再选涂其它答案标号。
把答案在试题卷上不能得分。
4.考试结束,本卷和答题卡一并交给监考老师收回。
一、选择题:(本大题共10小题,每小题3分,共30分,每小题只有一个选项是正确的)1. 下列各组数中,互为相反数的是( )A .2和21 B .-2和-21 C . -2和|-2| D .2和212.下列运算正确的是( )A.532a a a =+ B.532a a a =⋅ C.532)(a a = D.10a ÷52a a =3.下列图形中,既是..轴对称图形又是..中心对称图形的是( )A. B. D.4.在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( )A .12B C D 5.一组数据3、4、5、a 、7的平均数是5,则它的方差是( ) (第4题图)A.10 B.6 C.5 D.26已知两圆的半径分别为3和4,圆心距为8,那么这两个圆的位置关系是( ) A 、内切 B 、相交 C 、外切 D 、外离7、已知反比例函数2(0)y x x=>的图像如右图,则它关于x 轴对称的图像的函数解析式为( )A .)0(2>=x x y B .2 (0)y x x =< C .2 (0)y x x =-< D .2 (0)y x x=->8. 如图,是某工件的三视图,其中圆的半径为10cm ,等腰三角形的高为30cm ,则此工件的侧面积是( )2cm . A .π150 B .π300 C. D.9.如图,△ABC 中,∠B=90°,AB=6,BC=8, 将△ABC 沿DE 折叠,使点C 落在AB 边 上的C '处,并且D C '∥BC ,则CD 的长是( )A . 940B . 950C . 415D . 42510.如图,三个大小相同的正方形拼成六边形ABCDEF ,一动点P 从点A 出发沿着A →B →C →D →E 方向匀速运动,最后到达点E .运动过程中PEF ∆的面积(s )随时间(t )变化的图象大致是A.B.D.C.E .P .(第8题图)主视 图左 视 图俯 视 图(第7题图) EC′DCB A(第9题图)九年级质量检测试题(二)第II 卷(非选择题 共90分)注意事项:1. 第II 卷3至10页,共8页。
初中数学宝鸡市渭滨区九年级数学4月质量检测考试题(一)含答案

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx 题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:﹣的相反数是()A.﹣ B. C.﹣ D.试题2:下列四个几何体中,左视图为圆的是()A. B. C. D.试题3:下列运算正确的是()A.x3+x2=x5 B.2x3•x2=2x6 C.(3x3)2=9x6 D.x6÷x3=x2试题4:如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()A.35° B.45° C.50° D.55°试题5:A.第一象限 B.第二象限 C.第三象限 D.第四象限试题6:如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.4试题7:一次函数y=x﹣b与y=x﹣1的图象之间的距离等于3,则b的值为()A.﹣2或4B.2或﹣4 C.4或﹣6 D.﹣4或6试题8:如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是()A.30 B.34 C.36 D.40试题9:如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45° B.50° C.60° D.75°试题10:如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac ﹣b2<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个试题11:分解因式:2m2﹣2= .试题12:请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个八边形的外角和是度.B.计划在楼层间修建一个坡角为35°的楼梯,若楼层间高度为2.7m,为了节省成本,现要将楼梯坡角增加11°,则楼梯的斜面长度约减少m.(用科学计算器计算,结果精确到0.01m)试题13:如图,已知双曲线y=(k>0)经过Rt△OAB的直角边AB的中点C,与斜边OB相交于点D,若OD=1,则BD= .试题14:在平面直角坐标系中,已知点A、B的坐标分别为A(6,0)、B(0,2),以AB为斜边在右上方作Rt△ABC.设点C坐标为(x,y),则(x+y)的最大值为.试题15:计算:cos60°﹣2﹣1+﹣(π﹣3)0.试题16:解分式方程:+ = 3试题17:尺规作图。
2020-2021学年陕西省宝鸡一中九年级(上)第一次月考数学试卷(附答案详解)

2020-2021学年陕西省宝鸡一中九年级(上)第一次月考数学试卷1.下列方程中,是关于x的一元二次方程的是()+x=3 B. x2+2x−3=0A. 2xC. 4x+3=xD. x2+x+1=x2−2x2.用配方法解方程x2+6x+4=0时,原方程变形为()A. (x+3)2=9B. (x+3)2=13C. (x+3)2=5D. (x+3)2=43.一元二次方程x2−6x+5=0的两根分别是x1,x2,则x1+x2的值是()A. 6B. −6C. 5D. −54.下列说法正确的是()A. 矩形对角线相互垂直平分B. 对角线相等的菱形是正方形C. 两邻边相等的四边形是菱形D. 对角线分别平分对角的四边形是平行四边形5.一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是()A. 第一次摸出的球是红球,第二次摸出的球一定是绿球B. 第一次摸出的球是红球,第二次摸出的不一定是红球C. 第一次摸出的球是红球的概率是13D. 两次摸出的球都是红球的概率是196.如果顺次连接一个四边形的各边中点所得到的四边形是矩形,那么这个四边形一定是()A. 矩形B. 菱形C. 对角线垂直的四边形D. 对角线相等的四边形7.如图,在平行四边形ABCD中,AB=5,G是边BC的一点,DG=2,F是AG上一点,且∠BFC=90°,E是边BC的中点,若EF//AB,则BC的长为()A. 5B. 6C. 7D. 88.如图,一块长方形绿地的长为100m,宽为50m,在绿地中开辟两条道路后剩余绿地面积为4704m2,则根据题意可列出方程()A. 5000−150x=4704B. 5000−150x−x2=4704C. 5000−150x+x22=4704D. (100−x)(50−x)=47049.在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.若随机摸出一个小球后不放回,再随机摸出一个小球,则两次取出小球标号的和等于5的概率为()A. 14B. 23C. 13D. 31610.如图所示,在菱形ABCD中,∠A=60°,AB=2,E,F两点分别从A,B两点同时出发,以相同的速度分别向终点B,C移动,连接EF,在移动的过程中,EF的最小值为()A. 1B. √2C. 32D. √311.若关于x的方程x2+ax+a=0有一个根为−3,则a的值是______.12.某楼盘2013年房价为每平方米8100元,经过两年连续降价后,2015年房价为7600元.设该楼盘这两年房价平均降低率为x,根据题意可列方程为______.13.如果关于x的一元二次方程k2x2−(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是______.14.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为______.15.解下列一元二次方程(1)x2+4x−8=0(2)(x−3)2=5(x−3)16.尺规作图:如图,已知△ABC,求作菱形AEDF,使点E、D和F分别在边AB、BC、AC上.(保留作图痕迹,不写作法)17.如图,正方形ABCD中,对角线BD所在的直线上有两点E、F,满足BE=DF,连接AE、AF、CE、CF,求证:△ABE≌△ADF.18.阅读下面的例题,范例:解方程x2−|x|−2=0,解:(1)当x≥0时,原方程化为x2−x−2=0,解得:x1=2,x2=−1(不合题意,舍去).(2)当x<0时,原方程化为x2+x−2=0,解得:x1=−2,x2=1(不合题意,舍去).∴原方程的根是x1=2,x2=−2请参照例题解方程x2−|x−1|−1=0.19.设△ABC的三边长为a,b,c,其中a,b是方程x2−(c+2)x+2(c+1)=0的两个实数根.(1)判断△ABC是否为直角三角形?是说明理由.(2)若△ABC是等腰三角形,求a,b,c的值.20.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.21.箱子里有4瓶果汁,其中有一瓶是苹果汁,其余三瓶都是橙汁,它们除口味不同外,其他完全相同.现从这4瓶果汁中一次性取出2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶果汁中恰好抽到苹果汁的概率.22.如图,已知一艘轮船以20海里/时的速度由西向东航行,途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20√10海里的圆形区域(包括边界)都属台风区.当轮船到A处时,测得台风中心移到位于点A正南方向B处,且AB=100海里,若这艘轮船自A处按原速度继续航行,在途中会不会遇到台风?若会,试求轮船最初遇到台风的时间;若不会,请说明理由.23.某公司设计了一款工艺品,每件的成本是40元,为了合理定价,投放市场进行试销:据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每提高1元,每天就减少售出2件,但要求销售单价不得超过65元.(1)若销售单价为每件60元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1350元,那么每件工艺品售价应为多少元?24.已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.25.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边长分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:______;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.答案和解析1.【答案】B【解析】解:A、是分式方程,不是整式方程,不是一元二次方程,故本选项不符合题意;B、是一元二次方程,故本选项符合题意;C、是一元一次方程,不是一元二次方程,故本选项不符合题意;D、是一元一次方程,不是一元二次方程,故本选项不符合题意;故选:B.根据一元二次方程的定义(只含有一个未知数,并且所含未知数的项的最高次数是2次的整式方程,叫一元二次方程)逐个判断即可.本题考查了一元二次方程的定义,能熟记一元二次方程的定义的内容是解此题的关键.2.【答案】C【解析】解:由x2+6x+4=0可得:x2+6x=−4,则x2+6x+9=−4+9,即:(x+3)2=5,故选:C.把常数项4移项后,应该在左右两边同时加上一次项系数−2的一半的平方.本题主要考查配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3.【答案】A【解析】解:根据题意得x1+x2=6.故选:A.直接利用根与系数的关系求解.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.4.【答案】B【解析】解:A.矩形的对角线相等,故A说法错误;B.对角线相等的菱形是正方形,正确;C.两组邻边分别相等的四边形是菱形,故C说法错误;D.每一条对角线平分每一组对角的四边形是菱形,也是平行四边形,故D说法错误;故选:B.根据矩形的性质可得A错误;先判定四边形是菱形,再判定是矩形就是正方形可得B 正确;此题主要考查了平行四边形,以及特殊的平行四边形的判定,关键是熟练掌握各种四边形的判定方法.5.【答案】A【解析】解:A、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故本选项错误;B、第一次摸出的球是红球,第二次摸出的不一定是红球,故本选项正确;C、∵不透明袋子中装有1个红球,2个绿球,∴第一次摸出的球是红球的概率是13,故本选项正确;D、共用9种等情况数,分别是红红、红绿、红绿、绿红、绿绿、绿绿、绿红、绿绿、绿绿,则两次摸出的球都是红球的概率是19,故本选项正确;故选:A.根据概率公式分别对每一项进行分析即可得出答案.此题考查了概率的求法,解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.【答案】C【解析】解:AC⊥BD,E,F,G,H是AB,BC,CD,DA的中点,∵EH//BD,FG//BD,∴EH//FG,同理;EF//HG,∴四边形EFGH是平行四边形.∵AC⊥BD,∴EH⊥EF,∴四边形EFGH是矩形.所以顺次连接对角线垂直的四边形的各边中点是矩形.故选:C.有一个角是直角的平行四边形是矩形,根据此可知顺次连接对角线垂直的四边形的各边中点是矩形.本题考查矩形的判定定理和三角形的中位线的定理,并掌握根据矩形定义判定矩形的方法.7.【答案】D【解析】解:∵四边形ABCD是平行四边形,∴AB//CD,AB=CD=5,∴CG=CD−DG=5−2=3,∵E是边BC的中点,且∠BFC=90°,BC,∴EF=12∵EF//AB,AB//CG,E是边BC的中点,∴F是AG的中点,∴EF是梯形ABCG的中位线,∴2EF=AB+CG,∴BC=AB+CG=5+3=8;故选:D.BC,证出EF是梯形ABCG的中位线,依据直角三角形斜边上中线的性质,得EF=12的2EF=AB+CG,即可得出答案.本题主要考查了平行四边形的性质、直角三角形斜边上的中线性质以及梯形中位线定理;熟练掌握平行四边形的性质和梯形中位线定理是解题的关键.8.【答案】D【解析】解:依题意,得:(100−x)(50−x)=4704,故选:D.由在绿地中开辟两条道路后剩余绿地面积为4704m2,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.【答案】C【解析】解:用列表法表示所有可能出现的结果情况如下:共有12种可能出现的结果,其中“和为5”的有4种,∴P(和为5)=412=13.故选:C.用列表法表示所有可能出现的结果,从中找出两次和为5的结果数,进而求出相应的概率.考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.10.【答案】D【解析】解:连接DB,作DH⊥AB于H,如图,∵四边形ABCD为菱形,∴AD=AB=BC=CD,而∠A=60°,∴△ABD和△BCD都是等边三角形,∴∠ADB=∠DBC=60°,AD=BD,在Rt△ADH中,AH=1,AD=2,∴DH=√3,在△ADE和△BDF中{AD=BD∠A=∠FBD AE=BF,∴△ADE≌△BDF,∴∠2=∠1,DE=DF∴∠1+∠BDE=∠2+∠BDE=∠ADB=60°,∴△DEF为等边三角形,∴EF=DE,而当E点运动到H点时,DE的值最小,其最小值为√3,∴EF的最小值为√3.故选:D.连接DB,作DH⊥AB于H,如图,利用菱形的性质得AD=AB=BC=CD,则可判断△ABD和△BCD都是等边三角形,再证明△ADE≌△BDF得到∠2=∠1,DE=DF,接着判定△DEF为等边三角形,所以EF=DE,然后根据垂线段最短判断DE的最小值即可.本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.也考查了等边三角形的判定与性质.11.【答案】4.5【解析】解:把x=−3代入方程x2+ax+a=0得9−3a+a=0,解得a=4.5.故答案为:4.5.把x=−3代入方程x2+ax+a=0得9−3a+a=0,然后解关于a的方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.【答案】8100×(1−x)2=7600【解析】【分析】此题考查了一元二次方程的应用,注意第二次降价后的价格是在第一次降价后的价格的基础上进行降价的.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.该楼盘这两年房价平均降低率为x,则第一次降价后的单价是原价的1−x,第二次降价后的单价是原价的(1−x)2,根据题意列方程解答即可.【解答】解:设该楼盘这两年房价平均降低率为x,根据题意列方程得:8100×(1−x)2=7600,故答案为:8100×(1−x)2=7600.13.【答案】k>−1且k≠04【解析】【分析】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.根据一元二次方程的定义和根的判别式的意义得到k2≠0且△=(2k+1)2−4k2>0,然后求出两个不等式解的公共部分即可.【解答】解:根据题意得△=(2k+1)2−4k2>0且k2≠0,且k≠0.解得k>−14且k≠0.故答案为k>−1414.【答案】2√7【解析】解:如图,过点A和点E作AG⊥BC,EH⊥BC于点G和H,得矩形AGHE,∴GH=AE=2,∵在菱形ABCD中,AB=6,∠B=60°,∴BG=3,AG=3√3=EH,∴HC=BC−BG−GH=6−3−2=1,∵EF平分菱形面积,∴EF经过菱形的对称中心,∴FC=AE=2,∴FH=FC−HC=2−1=1,在Rt△EFH中,根据勾股定理,得EF=√EH2+FH2=√27+1=2√7.故答案为:2√7.过点A和点E作AG⊥BC,EH⊥BC于点G和H,可得矩形AGHE,再根据菱形ABCD 中,AB=6,∠B=60°,可得BG=3,AG=3√3=EH,由题意可得,FH=FC−HC= 2−1=1,进而根据勾股定理可得EF的长.本题考查了菱形的性质、含30°角的直角三角形性质、勾股定理,解决本题的关键是掌握菱形的性质.15.【答案】解:(1)∵x2+4x−8=0,∴x2+4x=8,则x2+4x+4=8+4,即(x+2)2=12,∴x+2=±2√3,∴x1=−2+2√3,x2=−2−2√3;(2)∵(x−3)2=5(x−3),∴(x−3)2−5(x−3)=0,则(x−3)(x−3−5)=0,∴x−3=0或x−8=0,解得x1=3,x2=8.【解析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.16.【答案】解:如图,菱形AEDF为所作.【解析】先作AD平分∠BAC交BC于D,再作AD的垂直平分线交AB于E,交AC于F,则可证明AD、EF互相垂直平分,则四边形AEDF满足要求.本题考查了作图−复杂作图−复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定与性质.17.【答案】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE与△ADF中{AB=AD∠ABE=∠ADF BE=DF,∴△ABE≌△ADF(SAS).【解析】根据正方形的性质得AB=AD,∠BAD=90°,由等角的补角性质得∠ABE=∠ADF,最后根据SAS证明即可.本题考查正方形的性质、全等三角形的判定和性质、等腰三角形的性质,补角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.【答案】解:x2−|x−1|−1=0,(1)当x≥1时,原方程化为x2−x=0,解得:x1=1,x2=0(不合题意,舍去).(2)当x<1时,原方程化为x2+x−2=0,解得:x1=−2,x2=1(不合题意,舍去).故原方程的根是x1=1,x2=−2.【解析】分为两种情况:(1)当x≥1时,原方程化为x2−x=0,(2)当x<1时,原方程化为x2+x−2=0,求出方程的解即可.本题考查了解一元二次方程的应用,解此题的关键是能正确去掉绝对值符号.19.【答案】解:(1)△ABC是直角三角形.理由如下:根据题意得a+b=c+2,ab=2(c+1)=2c+2,∴(a+b)2=(c+2)2,即a2+2ab+b2=c2+4c+4,∴a2+4c+4+b2=c2+4c+4,∴a2+b2=c2,∴△ABC是以c为斜边的直角三角形;(2)∵△ABC是等腰三角形,∴a=b,且c=√2a,∴a+a=√2a+2,∴a=2+√2,∴b=2+√2,c=2+2√2.【解析】(1)根据根与系数的关系得到a+b=c+2,ab=2(c+1)=2c+2,把第一个等式两边平方,整理可得到a2+b2=c2,根据勾股定理的逆定理得到△ABC是以c 为斜边的直角三角形;(2)由于△ABC是等腰直角三角形,则a=b,且c=√2a,利用a+b=c+2可计算出a,于是可得到b、c的值.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=−ba ,x1⋅x2=ca.也考查了勾股定理的逆定理和等腰直角三角形性质.20.【答案】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴AB//DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,{∠OBE=∠ODF OB=OD ∠BOE=∠DOF ,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6−x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6−x)2,解得:x=133,∵BD=√AD2+AB2=2√13,∴OB=12BD=√13,∵BD⊥EF,∴EO=√BE2−OB2=2√133,∴EF=2EO=4√133.【解析】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.21.【答案】解:(1)设这四瓶果汁分别记为A、B、C、D,其中苹果汁记为A,画树状图如图所示,共有12种等可能结果;(2)共有12种等可能结果,抽出的2瓶果汁中恰好抽到苹果汁的有6种结果,∴抽出的2瓶果汁中恰好抽到苹果汁的概率=612=12.【解析】(1)画出树状图即可;(2)共有12种等可能结果,抽出的2瓶果汁中恰好抽到苹果汁的有6种结果,由概率公式即可得出答案.此题考查了列表法与树状图法,以及概率公式,用到的知识点为:概率=所求情况数与总情况数之比.22.【答案】解:设途中会遇到台风,且最初遇到的时间为th,此时轮船位于C处,台风中心移到E处,连接CE,则AC=20t,AE=AB−BE=100−40t,AC2+AE2=EC2.∴(20t)2+(100−40t)2=(20√10)2400t2+10000−8000t+1600t2=4000t2−4t+3=0(t−1)(t−3)=0,解得t1=1,t2=3(不合题意舍去).答:最初遇到的时间为1h.【解析】设途中会遇到台风,且最初遇到台风的时间为t小时,此时轮船位于C处,台风中心移到E处,连接CE,根据勾股定理列方程求解即可.此题用到了路程公式和勾股定理.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.23.【答案】解:(1)(60−40)×[100−(60−50)×2]=1600(元).答:每天的销售利润为1600元.(2)设每件工艺品售价为x元,则每天的销售量是[100−2(x−50)]件,依题意,得:(x−40)[100−2(x−50)]=1350,整理,得:x2−140x+4675=0,解得:x1=55,x2=85(不合题意,舍去).答:每件工艺品售价应为55元.【解析】(1)根据每天的销售利润=每件的利润×每天的销售量,即可求出结论;(2)设每件工艺品售价为x元,则每天的销售量是[100−2(x−50)]件,根据每天的销售利润=每件的利润×每天的销售量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.24.【答案】(1)证明:如图1,在△BCE和△DCF中,{BC=DC∠BCE=∠DCF=90°CE=CF,∴△BCE≌△DCF(SAS);(2)证明:如图1,∵BE平分∠DBC,BD是正方形ABCD的对角线,∴∠EBC=12∠DBC=22.5°,由(1)知△BCE≌△DCF,∴∠EBC=∠FDC=22.5°(全等三角形的对应角相等);∴∠BGD=90°(三角形内角和定理),∴∠BGF=90°;在△DBG和△FBG中,{∠DBG=∠FBG BG=BG∠BGD=∠BGF,∴△DBG≌△FBG(ASA),∴BD=BF,DG=FG(全等三角形的对应边相等),∵BD =√AB 2+AD 2=√2,∴BF =√2,∴CF =BF −BC =√2−1;(3)解:如图2,∵CF =√2−1,BH =CF∴BH =√2−1,①当BH =BP 时,则BP =√2−1,∵∠PBC =45°,设P(x,x),∴2x 2=(√2−1)2,解得x =1−√22或−1+√22, ∴P(1−√22,1−√22)或(−1+√22,−1+√22); ②当BH =HP 时,则HP =PB =√2−1,∵∠ABD =45°,∴△PBH 是等腰直角三角形,∴P(√2−1,√2−1);③当PH =PB 时,∵∠ABD =45°,∴△PBH 是等腰直角三角形,∴P(√2−12,√2−12), 综上,在直线BD 上存在点P ,使得以B 、H 、P 为顶点的三角形为等腰三角形,所有符合条件的P 点坐标为(1−√22,1−√22)、(−1+√22,−1+√22)、(√2−1,√2−1)、(√2−12,√2−12).【解析】本题是四边形的综合题,考查了正方形的性质,三角形全等的判定和性质,等腰三角形的判定,熟练掌握性质定理是解题的关键.(1)利用正方形的性质,由全等三角形的判定定理SAS 即可证得△BCE≌△DCF ;(2)通过△DBG≌△FBG 的对应边相等知BD =BF =√2;然后由CF =BF −BC =即可求得;(3)分三种情况分别讨论即可求得.25.【答案】(1)AH =AB(2)数量关系成立.如图②,延长CB 至E ,使BE =DN .∵ABCD 是正方形,∴AB =AD ,∠D =∠ABE =90°,在Rt △AEB 和Rt △AND 中,{AB =AD∠ABE =∠ADN BE =DN,∴Rt △AEB≌Rt △AND ,∴AE =AN ,∠EAB =∠NAD ,∴∠EAM =∠NAM =45°,在△AEM 和△ANM 中,{AE =AN∠EAM =∠NAM AM =AM,∴△AEM≌△ANM ,∴S △AEM =S △ANM ,EM =MN ,∵AB 、AH 是△AEM 和△ANM 对应边上的高,∴AB =AH ;(3)如图③分别沿AM 、AN 翻折△AMH 和△ANH ,得到△ABM 和△AND ,∴BM =2,DN =3,∠B =∠D =∠BAD =90°,分别延长BM 和DN 交于点C ,得正方形ABCD ,由(2)可知,AH =AB =BC =CD =AD ,设AH =x ,则MC =x −2,NC =x −3,在Rt △MCN 中,由勾股定理,得MN 2=MC 2+NC 2,∴52=(x −2)2+(x −3)2,解得x 1=6,x 2=−1(不符合题意,舍去)∴AH =6.【解析】解:(1)如图①AH =AB ,∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠D =90°,在△ABM 与△ADN 中,{AB =AD∠B =∠D BM =DN,∴△ABM≌△ADN ,∴∠BAM =∠DAN ,AM =AN ,∵AH ⊥MN ,∴∠MAH =12MAN =22.5°,∵∠BAM +∠DAN =45°,∴∠BAM =22.5°,在△ABM 与△AHM 中,{∠BAM =∠HAM∠B =∠AHM =90°AM =AM,∴△ABM≌△AHM ,∴AB =AH ;故答案为:AH =AB ;(2)见答案(3)见答案【分析】(1)由三角形全等可以证明AH =AB ,(2)延长CB 至E ,使BE =DN ,证明△AEM≌△ANM ,能得到AH =AB ,(3)分别沿AM 、AN 翻折△AMH 和△ANH ,得到△ABM 和△AND ,然后分别延长BM 和DN 交于点C ,得正方形ABCE ,设AH =x ,则MC =x −2,NC =x −3,在Rt △MCN 中,由勾股定理,解得x .本题考查了正方形的性质,全等三角形的性质和判定,勾股定理,翻折的性质,此题比较典型,具有一定的代表性,且证明过程类似,同时通过做此题培养了学生的猜想能力和类比推理能力.。
宝鸡市2021版中考数学试卷(I)卷

宝鸡市2021版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·盂县模拟) 下列计算中,正确的是()A . a0=1B . a﹣1=﹣aC . a3•a2=a5D . 2a2+3a3=5a52. (2分)等边三角形、平行四边形、菱形、等腰梯形、正方形和圆六种图形中,既是轴对称又是中心对称图形的是()A . 1个B . 2个C . 3个D . 4个3. (2分)如图,有4张形状、大小、质地均相同的卡片,正面分别写有一个实数,背面完全相同.现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出卡片正面的实数是无理数的概率是()A .B .C .D . 14. (2分) (2019八上·北京期中) 壮丽七十载,奋进新时代. 2019 年 10 月 1 日上午庆祝中华人民共和国成立 70 周年大会在北京天安门广场隆重举行,超 20 万军民以盛大的阅兵仪式和群众游行欢庆共和国 70 华诞,其中 20 万用科学计数法表示为()A . 20×10B . 2×10C . 2×10D . 0.2×105. (2分) (2020八下·杭州期末) 测试五位学生的“立定跳远”成绩,得到5个互不相同的数据,在统计时出现一处错误,将最低成绩写得更低了,计算不受影响的是()A . 方差B . 标准差C . 平均数D . 中位数6. (2分)(2012·绍兴) 下列运算正确的是()A . x+x=x2B . x6÷x2=x3C . x•x3=x4D . (2x2)3=6x57. (2分) (2018八上·南安期中) 如图,数轴上点A表示的数可能是()A . 3的算术平方根B . 4的算术平方根C . 7的算术平方根D . 9的算术平方根8. (2分)如图,从A点出发的光线,经C点反射后垂直地射到B点,然后按原路返回A点.若∠AOC=33°,OC=1,则光线所走的总路线约为()A . 3.8B . 2.4C . 1.9D . 1.29. (2分)如图是一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是()A . 8B . 10C . 12D . 1410. (2分)(2017·邢台模拟) 下列几何体中,正视图是矩形的是()A .B .C .D .11. (2分) (2017九上·抚宁期末) 粮仓顶部是圆锥形,这个圆锥的底面直径为4m,母线长为3m,为防雨需在仓顶部铺上油毡,这块油毡面积是()A . 6m2B . 6πm2C . 12m2D . 12πm212. (2分)(2020·永康模拟) 公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ+cosθ)2=()A .B .C .D .二、填空题 (共6题;共8分)13. (1分)比较大小: ________2.14. (1分) (2017九下·莒县开学考) 方程的解是________.15. (2分)(2016·重庆B) 某学校组建了书法、音乐、美术、舞蹈、演讲五个社团,全校1600名学生每人都参加且只参加了其中一个社团的活动.校团委从这1600名学生中随机选取部分学生进行了参加活动情况的调查,并将调查结果制成了如图不完整的统计图.请根据统计图完成下列问题:参加本次调查有________名学生,根据调查数据分析,全校约有________名学生参加了音乐社团;请你补全条形统计图.16. (1分) (2019七下·九江期中) 如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A'、D'对应.若∠1=65°,则∠2=________°.17. (2分)二次函数y=2x2﹣4x﹣1的图象是由y=2x2+bx+c的图象向左平移1个单位,再向下平移2个单位得到的,则b=________,c=________.18. (1分) (2018九上·通州期末) ⊙ 的半径为1,其内接的边,则的度数为________.三、解答题 (共8题;共86分)19. (10分)(2017·市北区模拟) 综合题化简及计算(1)化简:﹣(2)关于x的一元二次方程kx2﹣2x+3=0有两个不相等的实数根.求:k的取值范围.20. (9分) (2020七上·兴安盟期末) 观察下列每一列数,按规律填空(1) ________,________,……(2) ________,________,……(3) ________,________,……(4)在(1)列数中第100个数是________,在(2)列数中第200个数是________,在(3)列数中第199个数是________。
陕西省宝鸡市2021版中考数学一模试卷D卷

陕西省宝鸡市2021版中考数学一模试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七下·昭平期中) 下列各组数的大小比较正确的是()A . ﹣>﹣B . >C . 5.3>D . >﹣3.12. (2分)(2017·临泽模拟) 下列运算正确的是()A .B . (m2)3=m5C . a2•a3=a5D . (x+y)2=x2+y23. (2分)(2019·邹平模拟) 如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD 的度数为()A . 110°B . 120°C . 125°D . 135°4. (2分) (2019七下·松滋期末) 如图,将直角三角形ABC沿斜边BC所在直线向右平移一定的长度得到三角形DEF,DE交AC于G,连接AE和AD.有下列结论:①AC∥DF;②AD∥BE,AD=BE;③∠B=∠DEF;④ED⊥AC.其中正确的结论有()A . 4个B . 3个C . 2个D . 1个5. (2分) (2017七下·长春期末) 已知等腰三角形的两边的长分别为3和6,则它的周长为()A . 9B . 12C . 15D . 12或156. (2分)如图,已知E、F是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与⊙O交于点P,点B与点O重合;将三角形ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x°,则x的取值范围是()A . 30≤x≤60B . 30≤x≤90C . 30≤x≤120D . 60≤x≤1207. (2分) (2019九上·鄞州月考) 已知在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinB的值是()A .B .C .D .8. (2分)下列说法正确的是()A . 中位数就是一组数据中最中间的一个数B . 7,8,8,9,9,10这组数据的众数是8C . 一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数是3.5,中位数是3D . 一组数据的方差是这组数据的极差的平方9. (2分) (2019八上·滦南期中) 如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A .B .C .D .10. (2分)(2019·通州模拟) 如图,将矩形ABCD沿对角线AC折叠,使点B翻折到点E处,若,则的值为()A .B .C .D .11. (2分) (2015九下·嘉峪关期中) 某学校准备修建一个面积为20m2的矩形花圃,它的长比宽多10m.设花圃的宽为xm,则可列方程为()A . x(x﹣10)=20B . 2x+2(x﹣10)=20C . x(x+10)=20D . 2x+2(x+10)=2012. (2分)如图,在Rt△ABC中,∠ABC=90°,tan ∠BAC=2,A(0,a),B(b,0),点C在第二象限,BC 与y轴交于点D(0,c),若y轴平分∠BAC,则点C的坐标不能表示为()A . (b+2a,2b)B . (-b-2c,2b)C . (-b-c,-2a-2c)D . (a-c,-2a-2c)二、填空题 (共6题;共6分)13. (1分) (2020九下·常州月考) 二次函数在3≤ ≤5范围内的最小值为________.14. (1分)(2020·温州模拟) 一组数据2,x,1,3,5,4,若这组数据的中位数是3,则这组数据的方差是________ 。
2021年陕西省宝鸡市凤翔县九年级学业水平中考模拟一数学试题

7.若一次函数 ( 为常数,且 )的图象经过点 , ,则不等式 的解为( )
A. B. C. D.
8.如图,在矩形 中,点 在 上,连接 则 的周长等于()
A. .B. C. D.
9.已知 , 是圆 的半径,点 , 在圆 上,且 ,若 ,则 的度数为()
A. B. C. D.
故选:B.
【点睛】
本题考查了绝对值和实数大小的比较.解题的关键是掌握绝对值的定义和实数大小的比较方法.
2.A
【分析】
根据俯视图是指从几何体的上面观察得出的图形作答.
【详解】
解:这个几何体的俯视图为:
故选:A.
【点睛】
本题考查了简单几何体的三视图,能理解三视图的定义是解此题的关键.
3.C
【分析】
根据平行线的性质可得 ,由垂线的性质和直角三角形的两个锐角互余即可解答.
14.如图,菱形 的边长为 ,点 是 上一动点(不与 重合),点 是 上一动点, 则 面积的最小值为____.
三、解答题
15.计算: .
16.解方程: .
17.如图,已知△ABC中,D为AB的中点,请在边AC作点E,使得DE= BC(保留作图痕迹,不要求写作法)
18.如图,AB=AC, , 求证:BD=CE.
(1)求抛物线 的函数表达式;
(2)已知点 的坐标为 ,将抛物线 向上平移得到抛物线 ,抛物线 与 轴分别交于点 (点 在点 的左侧),如果 与 相似,求所有符合条件的抛物线 的函数表达式.
25.问题提出:
(1)如图①在 中, 是 边 的高,点 是 上任意一点,若 则 的最小值为_;
(2)如图②,在等腰 中, 是 的垂直平分线,分别交 于点 , ,求 的周长;
2021年九年级第一次教学质量监测数学试卷答案(终稿)

12021年九年级第一次教学质量监测数学试卷参考答案 2021.02命题:数学组 联系电话 664550一. 选择题(每小题4分,共40分)二.填空题(每小题5分,共30分)11. ()()33-+n n . 12. 6≥x 13. π . 14. 甲 .15. 8或2或-2或-8 . 16. 18 .三.解答题(6小题,共46分) 17.(10分)(1) 2021-45tan -42-3++°)( 分420211-28-…………++= 分12014…………=(2) ()()a a a -41-2+ 分4-412-22……++=a a a a211a =+⋯⋯⋯⋯分18.(8分) (1) ∵AF ∥BC∴∠F=∠CBF …………1分∵∠AEF=∠BED ,AE=DE …………2分(一个条件1分) ∴△AEF ≌△DEB (AAS ) …………1分 (2) ∵△AEF ≌△DEB∴AF=BD …………2分 ∵∠ABD=∠BAD∴AF=BD=AD=6 …………2分 19. (8分)(1)40 …………2分(2)10人,图略 …………2分(求出10给1分)2(3)图略,P=32…………4分(图2分,答案2分) 20. (8分,一小题4分) (1)(2)21. (10分)(1)A (-3,-4),C (-5,0) …………6分 (2)D (0,5) …………2分4-2x y = …………2分22. (10分)(1) ∵AB ,CD 是⊙O 的直径∴AF ⊥AC ,BC ⊥AC …………2分 ∴AF //BC …………2分 ∴∠F=∠ECB …………1分 (2) ∵CF ⊥AB∴GE=CE ,∠ACF+∠BAC=∠ACF+∠F=90°∴∠F=∠BAC …………1分 令GE=CE=x∵tan ∠F =12∴AE=2x ,EF=4x∴EF=6+x=4x …………1分∴x=2 ∴设OC=r由()2244r r =-+ 得 2.5r =故直径为5 …………2分 23. (12分)(1)1368-+=x y …………5分 (2)设日均毛利润为w ()()9-1368-x x w +=1224-2088-2x x += …………2分 对称轴为132-=ab∴当13=x 时,日均毛利润达到最大. …………2分3(3)由题意,()()a x x w -9-1368-+=()a x a x 361-1224-82088-2++= …………1分对称轴a a b 21132-+= …………1分 ∴142113=+a∴2=a …………1分24. (14分)(1)①x 5-6,x 6 …………4分②∵DF ⊥DE ∴∠EDF=90°∴∠MDF=∠FDC=∠B ∴DF //AB∴△FDC ∽△ABC ∵MF //BC ∴ BDFM ∴DF=BM=x 6∵BC CD AB DF =,即65-656xx = …………2分 ∴6130=x ,61150=BD …………2分 (2)由题意得,BC CD AB DF =,CD=x 5-6 ∴()x DF 5-665= 由题意得,53cos =B ,∠B=∠MDF∴53cos =∠MDF ,且DM=BD=x 5当△MDF 为直角三角形时 分类讨论:Ⅰ)∠MDF=90°∵∠MDF+∠MDE=90°这种情况不成立 …………(这种情况讨论了给1分) Ⅱ)∠DMF=90°,如图1∴DF=x MDF MD 35cos =∠=()x 5-665,52=x …………2分 Ⅲ)∠DFM=90°,如图2 ∴DF=x MDF MD 3∠cos ==()x 5-665,4330=x …………2分 (3)1124…………2分。
宝鸡市2021版中考数学一模试卷D卷

宝鸡市2021版中考数学一模试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八上·建邺期末) 的相反数是()A .B . -C .D . -2. (2分)计算(-3a2)2的结果是()A . 3a4B . -3a4C . 9a4D . -9a43. (2分)(2016·梧州) 下列“禁止行人通行,注意危险,禁止非机动车通行,限速60”四个交通标志图中,为轴对称图形的是()A .B .C .D .4. (2分) (2016七上·揭阳期末) 如下图所示几何体的俯视图是()A .B .C .D .5. (2分)在反比例函数y=的图象上有两点A(x1 , y1),B(x2 , y2),当x1<x2<0时,有y1<y2 ,则m的取值范围是()A . m<0B . m>0C . m<D . m>6. (2分)如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=25°,则∠CAD的度数为()A . 25°B . 60°C . 65°D . 75°7. (2分)(2020·临潭模拟) 如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE∶EB=4∶1,EF⊥AC于点F,连接FB,则tan∠CFB的值等于()A .B .C .D . 58. (2分)(2020·武汉模拟) 如图,半径为R的⊙O的弦AC=BD,AC、BD交于E,F为上一点,连AF、BF、AB、AD,下列结论:①AE=BE;②若AC⊥BD,则AD= R;③在②的条件下,若,AB=,则BF+CE=1.其中正确的是()A . ①②B . ①③C . ②③D . ①②③9. (2分)如图所示的旋转对称图形旋转一定角度后与自身重合,则这个角度至少是().A .B .C .D .10. (2分) (2017七下·成安期中) 根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是()A . 男生在13岁时身高增长速度最快B . 女生在10岁以后身高增长速度放慢C . 11岁时男女生身高增长速度基本相同D . 女生身高增长的速度总比男生慢二、填空题 (共10题;共10分)11. (1分)(2019·无锡) 2019年6月29日,新建的无锡文化旅游城将盛大开业,开业后预计接待游客量约20000000人次,这个年接待课量可以用科学记数法表示为________人次.12. (1分)若分式的值是0,则x的值为________13. (1分) (2017八下·鞍山期末) 已知x+y=﹣2,xy=3,则代数式 + 的值是________.14. (1分)(2020·沈阳模拟) 分解因式6xy2-9x2y-y3 = ________.15. (1分) (2018九下·滨海开学考) 有4根细木棒,它们的长度分别是3cm,4cm,5cm,7cm,从中任取3根恰好能搭成一个三角形的概率是________.16. (1分)(2017·兰州) 如图,若抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,则Q点的坐标为________.17. (1分)(2020·中宁模拟) 某品牌的衬衣每件进价是80元,售价为120元,“五•一”期间搞活动打9折,则销售1件衬衣的利润是________元18. (1分)(2018·南宁模拟) 如图,在菱形ABCD中,,,则菱形ABCD的周长等于________.19. (1分)在Rt△ABC中,∠ACB=90°,BC=1,AB=2,CD⊥AB于D,则tan∠ACD=________.20. (1分) (2018八上·许昌期末) 如图,在Rt△ABC中, AB=AC,点D为BC中点,点E在AB边上,连接DE,过点D作DE的垂线,交AC于点F.下列结论:①△BDE≌△ADF;②AE=CF;③BE+CF=EF;④S四边形AEDF = AD2 ,其中正确的结论是________(填序号).三、解答题 (共7题;共85分)21. (10分)综合题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、解答题
15.计算:|2﹣ |+2sin45°﹣( )0.
16.先化简,再求值:(a+2﹣ )÷ ,其中a=﹣ .
A. B.2 C.5D.10
9.如图,A,B,C为⊙O上三点,∠AOB=110°,则∠ACB等于()
A.55°B.110°C.125°D.140°
10.抛物线 的部分图象如图所示,与x轴的一个交点坐标为 ,抛物线的对称轴是 下列结论中:
; ; 方程 有两个不相等的实数根; 抛物线与x轴的另一个交点坐标为 ; 若点 在该抛物线上,则 .
17.尺规作图:如图, 是直角三角形, .求作 ,使它与 相切于点 ,与 相交于点 ,保留作图痕迹,不写作法,请标明字母.
18.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.
19.为了了解某学校八年级学生每周平均体育锻炼时间的情况,随机抽查了该年级的部分学生,对其每周锻炼时间进行统计,根据统计数据绘制成图1和图2两个不完整的统计图.请你根据统计图提供的信息,回答下列问题:
21.某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.
6.如图,在 中, ,点 在边 上,且 平分 ,若 , ,则三角形 的面积为( )
A.10B.15C.20D.25
7.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为( , m),则不等式组mx﹣2<kx+1<mx的解集为( )
A.x> B. <x< C.x< D.0<x<
8.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD= ,则线段AB的长为( )
(1)随机从A组抽取一张,求抽到数字为2的概率;
(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?
23.如图,AB是 的直径,AC为弦, 的平分线交 于点D,过点D的切线交AC的延长线于点E.
其中正确的有
A.5个B.4个C.3个D.2个
二、填空题
11.若 ,则 ______.
12.如图,边长为4的正六边形 的顶点 、 分别在正方形 的边 、 上, 与 交于点 ,则 的长为______
13.已知直线y=ax(a≠0)与反比例函数y= (k≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是_____.
求证: ;
.
24.如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.
(1)求线段AD的长;
(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.
2021年陕西省宝鸡市渭滨区九年级质量检测(一)数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1. 的相反数是( )
A.1.5B. C. D.
2.如图是由4个相同的小正方体组成的立体图形,它的主视图是( )
A. B. C. D.
甲种原料(单位:千克)
乙种原料(单位:千克)
生产成本(单位:元)
A商品
3
2
120
B商品
2.5
3.5
200
设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:
(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;
(2)x取何值时,总成本y最小?
22.有A、B两组卡片共5张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,5.它们除了数字外没有任何区别,
故选A.
【点睛】
本题考查相反数的意义,正确相反数的意义是解题关键.
2.BБайду номын сангаас
【分析】
找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.
【详解】
解:从正面看易得第一层有3个正方形,第二层右上有1个正方形.
故选B.
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图
3.D
【解析】
(1)本次共抽取了学生人,并请将图1条形统计图补充完整;
(2)这组数据的中位数是,求出这组数据的平均数;
(3)若八年级有学生1800人,请你估计体育锻炼时间为3小时的学生有多少人?
20.如图,点G处有一路灯距地面 等于6.4米,身高1.6米的小方从距离灯的底部(点 )5米的 处,沿 所在的直线行走到点 时,人影由AB到CD长度增长3米.求小方行走的路程 .
25.如图,在四边形 中, , , .
(1)求 的度数;
(2)连接 ,探究 , , 三者之间的数量关系,并说明理由;
(3)若 ,点 在四边形 内部运动,且满足 ,求点 运动路径的长度.
(备用图)
参考答案
1.A
【分析】
根据相反数的意义即可得到解答.
【详解】
解:根据相反数的意义可知: 的相反数是 ,即1.5.
3.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于( )
A.112°B.110°C.108°D.106°
4.若一次函数y=2x+6与y=kx的图象的交点纵坐标为4,则k的值是( )
A.﹣4B.﹣2C.2D.4
5.下列运算正确的是()
A.x3+x5=x8B.(y+1)(y-1)=y2-1C.a10÷a2=a5D.(-a2b)3=a6b3
分析:由折叠可得:∠DGH= ∠DGE=74°,再根据AD∥BC,即可得到∠GHC=180°﹣∠DGH=106°.
详解:∵∠AGE=32°,
∴∠DGE=148°,
由折叠可得:∠DGH= ∠DGE=74°.