大学物理学复习资料

合集下载

大学物理复习资料

大学物理复习资料

大学物理复习资料一、简答题1.利用所学的物理知识解释花样滑冰运动员在双手合拢时旋转速度增大,双手展开时旋转速度减小。

答:当合外力矩等于0时物体对轴的角动量守恒,即JW=常量。

当双手合拢时旋转半径变小,J变小,旋转角速度W增大,将双手展开,J增大了,旋转角速度W又会减小。

2.“河道宽处水流缓,河道窄处水流急”,如何解释?答:由不可压缩流体的连续性方程V1△S1=V2△S2即V△S=恒量,知河流宽处△S大,V小,河流窄处△S小,V大。

3.为什么从水龙头徐徐流出的水流,下落时逐渐变细,请用所学的物理知识解释。

答;有机械能守恒定理知,从水龙头流出的水速度逐渐增大,再由不可压缩流体的连续性方程V△S=常量知,V增大时△S变小,所以水流变细。

4.请简述机械振动与机械波的区别与连续答:区别:机械振动是在某一位置附近做周期性往返运动5.用所学的物理知识总结一下静电场基本性质及基本规律。

答:性质:a.处于电场中的任何带电体都受到电场所作用的力。

b.当带电体在电场中移动时,电场力将对带电体做功。

规律:高斯定理:通过真空中的静电场中任一闭合面的电通量Φe等于包围在该闭合面内的电荷代数和∑qi的ε0分之一,而与闭合面外的电荷无关。

ΦEdSSqSε0环流定理:在静电场中,场强E的环流恒等于零。

Edl0l6.简述理想气体的微观模型。

答:①分子可以看做质点②分子作匀速直线运动③分子间的碰撞是完全弹性的7.一定质量的理想气体,当温度不变时,其压强随体积的减小而增大,当体积不变时,其压强随温度的升高而增大,请从微观上解释说明,这两种压强增大有何区别。

答:当温度不变时,体积减小,分子的平均动能不变,但单位体积内的气体分子数增加,故而压强增大;当体积不变时,温度升高,单位体积内的气体分子数不变,但分子的平均动能增加,故压强增大。

这两种压强增大是不同的,一个是通过增加分子数密度,一个是通过增加分子的平均平动动能来增加压强的。

9.请简述热力学第一定律的内容及数学表达式。

大学物理复习资料

大学物理复习资料

第1章(上册P40)1、某质点的运动方程分量式为x=10cos(0.5πt)m,y=10sin(0.5πt)m,则质点运动方程的矢量式为r= ,运动轨道方程为,运动轨道的形状为圆,任意时刻t的速度v= ,加速度 = ,速度的大小为,加速度的大小为,切向加速度的大小为0 ,法向加速度的大小为。

2、一质点做圆周运动的角量运动方程为θ=2+3t+4t2 (SI)。

它在2s末的角坐标为;在第3s内的角位移为,角速度为;在第2s末的角速度为,角加速度为;在第3s内的角加速度为;质点做运动。

3、某质点做直线运动规律为x= t2-4t+2(m),在(SI)单位制下,则质点在前5s内通过的平均速度和路程为( C )A、1m﹒s-1,5mB、3m﹒s-1,13mC、1m﹒s-1,13mD、3m﹒s-1,5mE、2m﹒s-1,13m4、某质点的运动规律为d v/dt=-k v2,式中k为常量,当t=0时,初速度为v0,则速率v随时间t的函数关系是(C )A、v=½k t2+ v0B、v=-½k t2+ v0C、1∕v =kt+1∕v0D、1∕v =-kt+1∕v0E、1∕v =k t2∕2- v05、已知某一质点沿X轴座直线运动,其运动方程为x=5+18t-2t2,取t=0,x=x0为坐标原点。

在国际单位制中,试求:①第1s末及第4s末的位置矢量;②第2s内的位移;③第2s内的平均速度;④第3s末的速度;⑤第3s末的加速度;⑥质点做什么类型的运动?6、一物体沿半径R=0.10m的圆周运动,其运动方程为θ=2+4t3,在国际单位制中,试问:①在t=2s时,它的切向加速度和法向加速度各是多大?②当切向加速度的大小恰好为总加速度大小的一半时,θ的值为多少?③在哪一时刻,切向加速度的大小等于法向加速度的大小?第4章(P122)1、一质量为m的质点,在OXY平面上运动,其位置矢量为r= cos wt i+b sin wt j,式中 、b、w为正的常量。

大学物理期末备考要点

大学物理期末备考要点

大学物理期末备考要点一、力学1. 牛顿运动定律a. 第一定律:惯性定律b. 第二定律:力的大小与加速度的关系c. 第三定律:作用力与反作用力2. 动能与动量a. 动能定理b. 质点系的动量定理c. 动量守恒定律3. 万有引力与重力a. 万有引力定律b. 重力加速度c. 重力势能d. 行星运动4. 平衡与静力学a. 平衡条件b. 杠杆原理c. 原则与应用5. 力学中的摩擦a. 特点与原因b. 静摩擦力与滑动摩擦力c. 摩擦力的计算与应用二、热学1. 热与温度a. 热量的传递方式b. 温标与温度转换2. 热力学第一定律a. 能量守恒定律b. 内能变化与热交换c. 等容、等压、等温过程3. 热力学第二定律a. 热机与卡诺定理b. 极限温度与热机效率c. 热力学不可逆性4. 热力学第三定律a. 绝对零度的定义与测量b. 熵及其性质c. 热力学函数及其应用5. 气体状态方程a. 状态方程的表示与转换b. 理想气体状态方程c. 一般气体状态方程三、电磁学1. 静电学a. 电荷与电场b. 电场强度c. 高斯定理d. 电势与电势能e. 电容与电容器2. 电流与电阻a. 电流的定义与测量b. 电阻与电阻器c. 欧姆定律d. 串、并联电路3. 磁场与电磁感应a. 磁场的产生与性质b. 电流产生的磁场c. 安培环路定理d. 磁感应强度e. 法拉第电磁感应定理4. 电磁波与光学a. 电磁波的性质与传播b. 光的传播与反射c. 光的折射与色散d. 几何光学5. 电磁波谱a. 可见光与光学仪器b. 红外线与微波c. 紫外线与X射线d. γ射线与辐射治疗四、量子物理1. 微观粒子的波粒二象性a. 波粒二象性的实验证据b. 普朗克常数与光子能量c. 德布罗意假设与波长2. 波函数与薛定谔方程a. 波函数的本质与物理意义b. 波函数的概率解释与测量c. 薛定谔方程及其应用3. 稳定原子结构a. 氢原子能级与能量b. 多电子原子的壳层结构c. 系统的波函数与能量4. 分子结构与化学键a. 原子、分子与化学键的关系b. 电子云模型与共价键c. 键的强度与化学键理论5. 核物理与放射性a. 原子核的组成与性质b. 放射性衰变与半衰期c. 核反应与核能的利用五、相对论与宇宙学1. 狭义相对论a. 狭义相对论的基本原理b. 时间与空间的相对性c. 相对论动力学与质能关系2. 广义相对论a. 弯曲时空与引力b. 爱因斯坦场方程c. 引力透镜效应与黑洞3. 宇宙的结构与演化a. 宇宙学原理与宇宙模型b. 宇宙的膨胀与暗能量c. 大爆炸理论与宇宙学红移以上为大学物理期末备考的要点,涵盖了力学、热学、电磁学、量子物理、相对论与宇宙学的基本知识。

大学物理复习资料

大学物理复习资料

大学物理复习资料### 大学物理复习资料#### 一、经典力学基础1. 牛顿运动定律- 描述物体运动的基本规律- 惯性、力与加速度的关系2. 功和能量- 功的定义与计算- 动能定理和势能3. 动量守恒定律- 动量的定义- 碰撞问题的处理4. 角动量守恒定律- 角动量的概念- 旋转物体的稳定性分析5. 简谐振动- 振动的周期性- 共振现象#### 二、热力学与统计物理1. 热力学第一定律- 能量守恒- 热量与功的转换2. 热力学第二定律- 熵的概念- 热机效率3. 理想气体定律- 气体状态方程- 温度、压力、体积的关系4. 相变与相平衡- 相变的条件- 相图的解读5. 统计物理基础- 微观状态与宏观性质的联系 - 玻尔兹曼分布#### 三、电磁学1. 电场与电势- 电场强度- 电势差与电势能2. 电流与电阻- 欧姆定律- 电路的基本组成3. 磁场与磁力- 磁场的产生- 洛伦兹力4. 电磁感应- 法拉第电磁感应定律- 感应电流的产生5. 麦克斯韦方程组- 电磁场的基本方程- 电磁波的传播#### 四、量子力学简介1. 波函数与薛定谔方程- 波函数的概率解释- 量子态的演化2. 量子态的叠加与测量- 叠加原理- 测量问题3. 能级与光谱线- 原子的能级结构- 光谱线的产生4. 不确定性原理- 位置与动量的不确定性关系5. 量子纠缠与量子信息- 量子纠缠现象- 量子计算与量子通信#### 五、相对论基础1. 狭义相对论- 时间膨胀与长度收缩- 质能等价原理2. 广义相对论- 引力的几何解释- 弯曲时空的概念3. 宇宙学与黑洞- 大爆炸理论- 黑洞的物理特性#### 六、现代物理实验方法1. 粒子加速器- 加速器的工作原理- 粒子探测技术2. 量子纠缠实验- 实验设计- 纠缠态的验证3. 引力波探测- 引力波的产生与传播- 探测器的工作原理通过上述内容的复习,可以全面地掌握大学物理的核心概念和原理。

在复习过程中,建议结合实际例题和实验操作,以加深理解和应用能力。

大学物理期末必备知识

大学物理期末必备知识

大学物理期末必备知识在物理学的学习过程中,期末考试是对学生们学习成果的一次全面检验。

为了顺利通过这一考试,学生们需要掌握一些必备的物理知识。

本文将为大家总结大学物理期末必备知识,帮助大家高效备考。

第一章:力学在力学中,学生们需要掌握以下几个重要概念:力、质量、加速度、牛顿三定律等。

1. 力:力是物体之间相互作用时产生的影响物体运动的物理量。

常见的力有重力、弹力、摩擦力等。

学生们需要了解不同力的概念、性质和计算方法。

2. 质量:质量是物体内在的特性,是衡量物体惯性的物理量。

学生们需要理解质量的基本概念和单位,并能够运用相关的公式进行计算。

3. 加速度:加速度是物体在单位时间内速度变化的量,揭示了物体运动状态的改变。

学生们需要熟悉加速度的计算方法,并能够应用到不同的物理问题中。

4. 牛顿三定律:牛顿三定律是力学的基石,描述了物体运动的基本规律。

学生们需要了解三定律的内容和适用条件,并能够应用到实际问题中解决物理计算和分析。

第二章:热学热学是物理学的一个重要分支,研究物体温度、热量传递和热力学等内容。

在期末考试中,学生们需要掌握以下几个重要概念:温度和热量、热传导、热容和热力学循环等。

1. 温度和热量:温度是物体热平衡状态下的物理量,热量是物体内部粒子运动引起的能量传递。

学生们需要理解温度和热量的概念,以及它们的计量单位和测量方法。

2. 热传导:热传导是指物质内部热量通过传导方式传递的过程。

学生们需要了解热传导的基本原理和计算方法,并能够应用到物理问题中。

3. 热容:热容是物体对热量变化的敏感性程度,用于描述物体的热状态变化。

学生们需要了解热容的概念和计算方法,并能够应用到热力学计算中。

4. 热力学循环:热力学循环是指在一定条件下,物质经历一系列热力学过程的循环。

学生们需要了解热力学循环的基本原理和性质,并能够分析和计算循环过程中的热量和功。

第三章:电磁学电磁学是物理学的另一个重要分支,研究电荷、电场、电流和电磁场等内容。

大学物理总复习

大学物理总复习

直角坐标系中 4.加速度矢量 4.加速度矢量 直角坐标系中
二. 圆周运动
圆周运动的加速度
第二章 牛顿定律
一、牛顿运动定律 二、牛顿定律的应用
受力分析是关键, 受力分析是关键,第二定律是核心
第三章 守恒定律
力作用于物体,维持一定的时间、空间, 力作用于物体,维持一定的时间、空间,物 体运动情况如何? 体运动情况如何?
4、质点系的功能原理 作用于质点系的外力和非保守内力所作的 等于系统的机械能的增量。 功,等于系统的机械能的增量。 5、机械能守恒定律 若 则
第四章 刚体的转动
角位移 一、刚体的定轴转动 角速度 1、描述刚体定轴转动的物理量 角加速度 2、匀变速转动公式
3、角量与线量关系
二、刚体的转动定律 转动惯量
2. 描述稳恒磁场的两条基本定律 (1)磁场的高斯定理 (2)安培环路定理 3.磁场对运动电荷, 3.磁场对运动电荷,载流导线和载流线圈的作用 磁场对运动电荷 (1)磁场对运动电荷的作用力 (2)磁场对载流导线的作用力
第十二章 电磁感应
感应电动势的计算
电磁感应定律Leabharlann 或M = J ⋅α
三、角动量 角动量守恒定律
M = 0, J守恒
四、刚体绕定轴转动的功能关系
刚体定轴转动的动能定理
合外力矩对绕定轴转动的刚体做的功等于 该刚体转动动能的增量。 该刚体转动动能的增量。
第五章 机械振动
简谐运动
x o v
o a o
运动学特征
(ϕ = 0)
t
t t
x = A cos(ωt + ϕ )
二、功能原理 机械能守恒定律
1、 功 重力、引力、 2、重力、引力、弹性力的功 力作功的大小只与物体始末位置有关, 力作功的大小只与物体始末位置有关, 而与所经历的路径无关, 而与所经历的路径无关,这类力称为保守力 重力,弹性力,万有引力,静电力…. 如:重力,弹性力,万有引力,静电力 . 3、势能

大学物理综合复习

大学物理综合复习
光的射
光波在传播过程中遇到障碍物时,会绕过障碍物的边缘继续传播的现象称为光的衍射。衍射现 象是光波动性的体现,在光学成像、光谱分析和量子力学等领域有重要应用。
光的偏振
光的偏振态
光波的电矢量或磁矢量在某一特定方 向上的振动状态称为光的偏振态。自 然光中,电矢量和磁矢量在各个方向 上的振动是均匀分布的。
大学物理综合复习
汇报人:
202X-01-05
目录
• 力学基础 • 电磁学 • 光学 • 量子物理 • 热力学与统计物理
01
力学基础
牛顿运动定律
01 牛顿第一定律
物体若不受外力作用,则保持静止或匀速直线运 动状态。
02 牛顿第二定律
物体加速度的大小与合外力的大小成正比,与物 体的质量成反比。
03 牛顿第三定律
熵增加原理
熵增加原理指出,在一个封闭系统中,如果没有外界的能 量交换或物质交换,系统的熵总是趋向于增加,即系统总 是趋向于更加混乱或无序的状态。
热力学第二定律的表述
热力学第二定律可以表述为“热量不可能自发地从低温物 体传到高温物体”,或者“不可能通过有限的过程将一个 物体冷却到绝对零度”。这意味着自然界的自发过程总是 向着熵增加的方向进行。
高斯定理的数学表达式为:∮E·dS = 4πρ。
高斯定理在静电场中具有广泛应用,它 可以帮助我们理解电场分布和电荷之间 的关系,以及计算电场强度。
•·
高斯定理表述为:穿过任意闭合曲面的 电场强度通量等于该闭合曲面所包围的 电荷量。
磁场与安培环路定律
安培环路定律表述为:磁场中穿
过任意闭合曲线的磁感应线数等
• · 万有引力定律:任何两个物体都相互吸引,引力的大小与两个物体的质量成正比,与它们之 间的距离的平方成反比。

大学物理学复习资料

大学物理学复习资料

大学物理学复习资料第一章 质点运动学 主要公式:1.笛卡尔直角坐标系位失r=x i +y j +z k,质点运动方程(位矢方程):k t z j t y i t x t r)()()()(++=参数方程:。

t t z z t y y t x x 得轨迹方程消去→⎪⎩⎪⎨⎧===)()()(2.速度:dt r d v =3.加速度:dt vd a =4.平均速度:trv ∆∆=5.平均加速度:t va ∆∆=6.角速度:dt d θω=7.角加速度:dtd ωα=8.线速度与角速度关系:ωR v = 9.切向加速度:ατR dtdva ==10.法向加速度:Rv R a n 22==ω11.总加速度:22n a a a +=τ第二章 牛顿定律 主要公式:1.牛顿第一定律:当0=合外F时,恒矢量=v。

2.牛顿第二定律:dtP d dt v d m a m F=== 3.牛顿第三定律(作用力与反作用力定律):F F '-=第三章 动量与能量守恒定律 主要公式:1.动量定理:P v v m v m dt F I t t∆=-=∆=⋅=⎰)(12212.动量守恒定律:0,0=∆=P F合外力当合外力3、 动能定理:)(21212221v v m E dx F W x x k -=∆=⋅=⎰合 4.机械能守恒定律:当只有保守内力做功时,0=∆E 第五章 机械振动 主要公式:1.)cos(ϕω+=t A x Tπω2= 弹簧振子:mk=ω,k m T π2=单摆:lg =ω,g lT π2=2.能量守恒:动能:221mv E k =势能:221kx E p =机械能:221kA E E E Pk =+= 3.两个同方向、同频率简谐振动得合成:仍为简谐振动:)cos(ϕω+=t A x 其中:⎪⎩⎪⎨⎧++=∆++=22112211212221cos cos sin sin cos 2ϕϕϕϕϕϕA A A A arctg A A A A Aa. 同相,当相位差满足:πϕk 2±=∆时,振动加强,21A A A MAX +=;b. 反相,当相位差满足:πϕ)12(+±=∆k 时,振动减弱,21A A A MIN -=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理学复习资料第一章 质点运动学 主要公式:1.笛卡尔直角坐标系位失r=x i +y j +z k ,质点运动方程(位矢方程):k t z j t y i t x t r)()()()(++=参数方程:。

t t z z t y y t x x 得轨迹方程消去→⎪⎩⎪⎨⎧===)()()(2.速度:dt rd v =3.加速度:dt vd a =4.平均速度:trv ∆∆=5.平均加速度:t va ∆∆=6.角速度:dt d θω=7.角加速度:dtd ωα=8.线速度与角速度关系:ωR v = 9.切向加速度:ατR dtdva ==10.法向加速度:Rv R a n 22==ω11.总加速度:22n a a a +=τ第二章 牛顿定律 主要公式:1.牛顿第一定律:当0=合外F时,恒矢量=v。

2.牛顿第二定律:dtP d dt v d m a m F=== 3.牛顿第三定律(作用力和反作用力定律):F F '-=第三章 动量和能量守恒定律 主要公式:1.动量定理:P v v m v m dt F I t t∆=-=∆=⋅=⎰)(12212.动量守恒定律:0,0=∆=P F合外力当合外力3. 动能定理:)(21212221v v m E dx F W x x k -=∆=⋅=⎰合4.机械能守恒定律:当只有保守内力做功时,0=∆E第五章 机械振动 主要公式:1.)cos(ϕω+=t A x Tπω2= 弹簧振子:m k =ω,km T π2= 单摆:l g =ω,gl T π2= 2.能量守恒:动能:221mv E k = 势能:221kx E p =机械能:221kA E E EP k =+=3.两个同方向、同频率简谐振动的合成:仍为简谐振动:)cos(ϕω+=t A x 其中:⎪⎩⎪⎨⎧++=∆++=22112211212221cos cos sin sin cos 2ϕϕϕϕϕϕA A A A arctg A A A A Aa. 同相,当相位差满足:πϕk 2±=∆时,振动加强,21A A A MAX +=;b. 反相,当相位差满足:πϕ)12(+±=∆k 时,振动减弱,21A A A MIN -=。

第六章 机械波 主要公式:1.波动方程:])(cos[ϕω+=u xt A y⎩⎨⎧取加号向左取负号向右,;,u u 2.相位差与波程差的关系:x ∆=∆λπϕ23.干涉波形成的条件:振动方向相同、频率相同、相位差恒定。

4.波的干涉规律:)(21212x x ---=∆λπϕϕϕa.当相位差满足:πϕk 2±=∆时,干涉加强,21A A A MAX +=;b.当相位差满足:πϕ)12(+±=∆k 时,干涉减弱,21A A A MIN -=。

第七章、第八章 气体动理论 热力学基础 主要公式:1.)(为摩尔数n 或:)(222111常数nR T V P T V P == 2102.8),(31.8),(-⨯==R atm P R pa P 大气压强帕mmHgpa atm 76010013.115=⨯=2.大纲热力学第一定律:(1)内容:热力学系统从平衡状态1向平衡状态2的变化中,A '(外界对系统做功)和Q 外界传给系统的热量二者之和是恒定的,等于系统内能的改变12E E -。

(或:第一类永动机是不可能制成的。

)(2)表达式:A E E Q +-=12(系统对外界做功) 3.等容过程:2211T P T P = )(A 00(做功为= ⎩⎨⎧=-=∆=0)(12A T T nC E Q v 4. 等压过程:2211T V T V =⎪⎪⎩⎪⎪⎨⎧-==-=∆-=⎰)()()(12121221T T nR PdV A T T nC E T T nC Q V V v p 5. 等温过程:2211V P V P = )E 00(内能改变为=∆ ⎪⎩⎪⎨⎧=∆==0ln 12E V V nRT A Q 6. 绝热过程:γγ2211V P V P = )Q 00(热量传递为= ⎩⎨⎧=--=∆-=0)(12Q T T nC E A v 注:i 为自由度R i C R i C P v 22,2+==单原子分子(Ne ):R C R C i p v 25,23,3===自由度 双原子分子(22,O N ):R C R C i p v 27,25,5===自由度7.泊松比:ii C C v P 2+==γ 8. 效率:吸放吸吸Q Q Q Q A-==η (Q 均用正值代入) 9. 制冷系数:212T T T Q Q Q A Q -=-==放吸放放ω放热吸热00<>Q Q10.热力学第二定律:(1)内容:一切与热现象有关的实际宏观过程是不可逆的。

(2)表达式:一切孤立系统,熵的增量0>∆S 。

(Ω=ln k S ) 11.每个分子平均平动动能与温度T 成正比:kT t 23=ε 12.每个分子平均总动能与温度T 和自由度i 均有关:kT i 2=ε(23231038.11002.631.8-⨯=⨯==mol N R k ,称玻尔兹曼常数)第九、十章 静电场(是保守力场) 主要公式: 一、 电场强度1.点电荷场强:r e r q E204πε=2.点电荷系场强:n E E E E+⋅⋅⋅++=21(矢量和)3.连续带电体场强:r e r dq E d E⎰⎰==204πε(五步走积分法)(建立坐标系、取电荷元、写E d、分解、积分)4.对称性带电体场强:(用高斯定理求解)0εφ∑⎰=⋅=q S d E se二、电势1.点电荷电势:rq V 04πε=2.点电荷系电势:n V V V V +⋅⋅⋅++=21(代数和) 3.连续带电体电势:⎰⎰==rdqdV V 04πε(四步走积分法)(建立坐标系、取电荷元、写dV 、积分)4.已知场强分布求电势:⎰⎰⋅=⋅=lv pdr E l d E V 0三、电势差:⎰⋅=∆BAAB l d E U四、电场力做功:⎰⋅=∆=2100l l l d E q U q A五、基本定理(1) 静电场高斯定理: 表达式:0εφ∑⎰=⋅=q S d E se物理意义:表明静电场中,通过任意闭合曲面的电通量(电场强度沿任意闭合曲面的面积分),等于该曲面内包围的电荷代数和除以0ε。

(3)静电场安培环路定理:表达式:0=⋅⎰ll d E物理意义:表明静电场中,电场强度沿任意闭合路径的线积分为0。

第十一章 恒定磁场(非保守力场) 主要公式:1.毕奥-萨伐尔定律表达式:204re l Id B d r⨯=πμ 1)有限长载流直导线,垂直距离r 处磁感应强度:)cos (cos 4210θθπμ-=rIB (其中。

向之间的夹角流方向与到场点连线方分别是起点及终点的电和21θθ) 2)无限长载流直导线,垂直距离r 处磁感应强度:rIB πμ20=3)半无限长载流直导线,过端点垂线上且垂直距离r 处磁感应强度:rIB πμ40=4)圆形载流线圈,半径为R ,在圆心O 处:RIB 200μ=5)半圆形载流线圈,半径为R ,在圆心O 处:RIB 400μ=6)圆弧形载流导线,圆心角为)(弧度制θ,半径为R ,在圆心O 处:θπμRIB 400= (θ用弧度代入)2.安培力:⎰⨯=lB l Id F(方向沿B l Id⨯方向,或用左手定则判定)积分法五步走:1.建坐标系;2.取电流元l Id;3.写θsin IdlB dF =;4.分解;5.积分. 3.洛伦兹力: B v q F⨯=(磁场对运动电荷的作用力)4.磁场高斯定理:表达式:0=⋅=⎰sm S d Bφ(无源场)(因为磁场线是闭合曲线,从闭合曲面一侧穿入,必从另一侧穿出.)物理意义:表明稳恒磁场中,通过任意闭合曲面的磁通量(磁场强度沿任意闭合曲面的面积分)等于0。

5.磁场安培环路定理:∑⎰=⋅I l d B l0μ(有旋场)表达式:∑⎰=⋅I l d B l0μ物理意义:表明稳恒磁场中,磁感应强度B 沿任意闭合路径的线积分,等于该路径内包围的电流代数和的0μ倍。

0μ称真空磁导率6. 有磁介质的安培环路定理:∑⎰=⋅I l d H lμBH =第十二章 电磁感应 电磁场和电磁波 主要公式:1.法拉第电磁感应定律:dtd N mφε-= 2.磁通量:⎰⋅=Sm S d Bφ3.动生电动势()⋅=⋅⨯=⎰⎰βαεcos )sin (dl vB l d B v ll⋅⨯.;方向的夹角的方向与是的夹角与是L B v B vβα 注:感应电动势的方向沿B v⨯的方向,从低电势指向高电势。

第十四章 波动光学 主要公式:1.光程差与半波损失光程差:几何光程乘以折射率之差:2211r n r n -=δ半波损失:当入射光从折射率较小的光疏介质投射到折射率较大的光疏密介质表面时,反射光比入射光有的跃变即光程发生的相位突变2λπ,。

(若两束相干光中一束发生半波损失,而另一束没有,则附加2λ的光程差;若两有或两无,则无附加光程差。

) 3.杨氏双缝干涉:(D-缝屏距;d-双缝间距;k-级数)⎪⎪⎪⎩⎪⎪⎪⎨⎧=∆-==dDxdDkxdDkxkkλλλ:2)12(::相邻条纹间距暗纹公式明纹公式暗明条纹特征:明暗相间均匀等间距直条纹,中央为零级明纹。

条纹间距x∆与缝屏距D成正比,与入射光波长λ成正比,与双缝间距d成反比。

4.增透膜、增反膜原理:(先分析折射率关系)1)⎪⎩⎪⎨⎧+==>><<增反膜增透膜时或当反,2)12(2,2321321λλδk,kdn,nnnnnn2)⎪⎩⎪⎨⎧+=+=<>><增反膜增透膜时或当反,2)12(22,2321321λλλδk,kdn,nnnnnn5.劈尖干涉:(b-相邻条纹间距, θ--劈尖夹角,D--钢丝直径,2n-劈尖介质折射率)相邻条纹对应的薄膜厚度差:22neλ=相邻条纹间距:θλ22nb=劈尖夹角:LDbn==22λθ条纹特征:与棱边平行的等间距明暗相间直条纹,且棱边为暗纹..。

条纹间距l与与入射光波长λ成正比,与介质折射率n成反比,与劈尖夹角θ成反比。

工程测量中用于测下面工件平整度,若观察到条纹左弯..则该处下表面凹.,条纹右弯..则该处下表面凸.。

(左凹右凸)6.单缝衍射:(f-透镜焦距;a-单缝宽度;k-级数)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=∆===+=+=aflaflafkxkaafkxkakkλλλλθλλθ:2:,sin:2)12(,2)12(sin:其它条纹宽度中央明纹宽度暗纹公式明纹公式暗明1n2n3nba d +=Oaaa a a条纹特征:明暗相间直条纹,中央为零级明纹,宽度是其它条纹宽度的两倍。

相关文档
最新文档