人教版初中数学第26章 反比例函数专题练习(含答案)

合集下载

人教版九年级数学下册第二十六章 反比例函数练习(含答案)

人教版九年级数学下册第二十六章 反比例函数练习(含答案)

第二十六章 反比例函数一、单选题1.下列函数中,y 是x 的反比例函数的是( )A .y =2xB .y =23-x ﹣1C .y =221x --D .y =﹣x2.若点A (-2,1)在反比例函数y=k x的图像上,则k 的值是( ) A .2 B .-2 C .12 D .-123.在函数2y x=-的图象上有三点(﹣3,y 1),(1,y 2),(2,y 3)则函数值y 1,y 2,y 3的大小关系是( )A .y 2<y 3<y 1B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 1<y 2<y 3 4.关于反比例函数y=3x,下列说法不正确的是( ) A .点(3,1)在它的图象上 B .它的图象分别位于第一、三象限C .当y >﹣1时,x <﹣3D .当x >0时,y 随x 的增大而减小 5.如图,过反比例函数(0)k y x x=>的图像上一点A 作AB x ⊥轴于点B ,连接AO ,若4AOB S =△,则k 的值为( ).A .2B .4C .6D .86.点(,)a b 是反比例函数2y x=-的图象上一点,若2a <,则b 的值不可能是( )A .-2B .13- C .2 D .37.已知0ab <,一次函数y ax b =-与反比例函数a y x=在同一直角坐标系中的图象可能( ) A . B .C .D .8.如图,已知矩形OABC 面积为1003,它的对角线OB 与双曲线k y x=相交于D 且OB :OD =5:3,则k =( )A .6B .12C .24D .36 9.如图,直线1122y x =+与双曲线26y x=交于()2A m ,、()6B n -,两点,则当12y y <时,x 的取值范围是( )A .6x <-或2x >B .60x -<<或2x >C .6x <-或02x <<D .62x -<<10.如图,在x 轴的正半轴上依次截取1122320172018OA A A A A A A ====,过点12320172018A A A A A 分别作x 轴的垂线与反比例函数()20y x x =≠的图象相交于点12320172018P P P P P 、、、、、,得直角三角形11122233201720182018OP A A P A A P A A P A 、、、、,并设其面积分别为12320172018S S S S S 、、、、、,则2018S 的值为( )A .12018 B .12017 C .11009 D .22017二、填空题11.已知函数()43m y m x -=+是反比例函数,则m =______.12.反比例函数y=32009kx-图象的每一条曲线上,y随x的增大而减小,则k的取值范围是_____.13.如图,已知在平面直角坐标系xOy中,反比例函数y=kx(x>0)的图象分别交矩形OABC的边AB、BC于点D、E,且BE=2CE,若四边形ODBE的面积为7,则k的值为_____.14.如图,点P(3a,a)是反比例函kyx=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.三、解答题15.函数y=(m﹣1)21m mx--是反比例函数(1)求m的值(2)判断点(12,2)是否在这个函数的图象上.16.如图,Rt△ABO的顶点A是双曲线y=kx与直线y=﹣x+(k+1)在第四象限的交点,AB⊥x轴于点B,且S△ABO=32.(1)求这两个函数的表达式;(2)求直线与双曲线的交点A和C的坐标及△AOC的面积.(3)写出反比例函数y=kx的值大于一次函数y=﹣x+(k+1)时的x的取值范围.17.如图,在平面直角坐标系中,O 为坐标原点,点C 在x 轴的正半轴上,菱形OCBA的面积为20,周长为20,反比例函数kyx=经过点A,与BC 交于点D.(1)求点B 的坐标及k 的值(直接写出结果).(2)设直线AD 的解析式为y=ax+b,结合图象,求关于x 的不等式kax bx+<x的解集.18.制作一种产品,需先将材料加热到达60、后,再进行操作.设该材料温度为y(、),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x完成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图所示).已知该材料在操作加工前的温度为15、,加热5分钟后温度达到60、.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(写出自变量的取值范围)(2)根据工艺要求,当材料的温度低于15、时,须停止操作,那么从开始加热到停止操作,共经历了多少时间答案1.B2.B3.A4.C5.D6.B7.A8.B9.C10.A11.3.12.k >2009313.7214.y=12x15.(1) m=0;(2)点(12,2)不在这个函数图象上. 16.(1)y=3x-和y=-x -2;(2)交点A 为(1,-3),C 为(-3,1);4;(3)-3<x <0或x >1.17.(1)()8,4B ,k =12;(2)k ax b x +<的解集为03x <<或52x +> 18.(1)()91505y x x =+≤≤,300y x =(x >5);(2)20分钟。

人教版九年级下数学第二十六章 反比例函数单元练习题(含答案)

人教版九年级下数学第二十六章 反比例函数单元练习题(含答案)

人教版九年级下数学第二十六章反比例函数单元练习题(含答案)一、选择题1.)函数y=(a-2)是反比例函数,则a的值是()A.1或-1B.-2C.2D.2或-22.对于反比例函数y=,当x>1时,y的取值范围是()A.y>3或y<0B.y<3C.y>3D.0<y<33.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一坐标内的图象大致为()A.B.C.D.4.对于反比例函数y=(k≠0),下列说法不正确的是()A.它的图象分布在第一、三象限B.点(k,k)在它的图象上C.它的图象关于原点对称D.在每个象限内y随x的增大而增大5.下列两个变量x、y不是反比例函数的是()A.书的单价为12元,售价y(元)与书的本数x(本)B.xy=7C.当k=-1时,式子y=(k-1)中的y与xD.小亮上学用的时间x(分钟)与速度y(米/分钟)6.已知反比例函数y=的图象如图所示,则一次函数y=kx+b的图象可能是()A.B.C.D.7.一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.8.给出的六个关系式:①x(y+1);②y=;③y=;④y=-;⑤y=;⑥y=;其中y是x的反比例函数是()A.①②③④⑥B.③⑤⑥C.①②④D.④⑥9.如图,正比例函数y=k1x与反比例函数y=的图象相交于A、B两点,若点A的坐标为(2,1),则点B的坐标是()A.(1,2)B.(-2,1)C.(-1,-2)D.(-2,-1)10.下列各变量之间是反比例关系的是()A.存入银行的利息和本金B.在耕地面积一定的情况下,人均占有耕地面积与人口数C.汽车行驶的时间与速度D.电线的长度与其质量二、填空题11.长方形的面积为100,则长方形的长y与宽x间的函数关系是____________.12.某奶粉生产厂要制造一种容积为2升(1升=1立方分米)的圆柱形桶,桶的底面面积s与桶高h有怎样的函数关系式______________.13.某种大米单价是y元/千克,若购买x千克花费了 2.2元,则y与x的表达式是________________.14.已知反比例函数y=的图象过点A(-2,1),若点B(m1,n1)、C(m2,n2)也在该反比例函数图象上,且m1<m2<0,比较n1________n2(填“<”、“>”或“=”).15.小华要看一部300页的小说所需的天数y与平均每天看的页数x成______比例函数,表达式为________.16.三角形的面积一定,它的底和高成______比例.17.若点A(1,m)在反比例函数y=的图象上,则m的值为________.18.已知y=(a-1)是反比例函数,则a=__________.19.已知三角形的面积是定值S,则三角形的高h与底a的函数关系式是h=____,这时h是a的______函数.20.某工厂每月计划用煤Q吨,每天平均耗煤a吨.如果每天节约用煤x吨,那么Q吨煤可以多用y天,写出y与x的函数关系式为________________.三、解答题21.k为何值时,y=(k2+k)是反比例函数.22.已知反比例函数y=(k≠0,k是常数)的图象过点P(-3,5).(1)求此反比例函数的解析式;(2)判断点Q是否在图象上.23.如果函数y=k是反比例函数,求函数的解析式.24.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验.测得成人服药后血液中药物深度y(微克/毫升)与服药时间x小时之间的函数关系如图所示(当4≤x≤10时,y与x成反比).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式;(2)问血液中药物浓度不低于4微克/毫升的持续时间为多少小时?25.如图,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如下表:(1)猜测y与x之间的函数关系,求出函数关系式并加以验证;(2)当砝码的质量为24 g时,活动托盘B与点O的距离是多少?(3)将活动托盘B往左移动时,应往活动托盘B中添加还是减少砝码?26.湖州市菱湖镇某养鱼专业户准备挖一个面积为2 000平方米的长方形鱼塘.(1)求鱼塘的长y(米)关于宽x(米)的函数表达式;(2)由于受场地的限制,鱼塘的宽最多只能挖20米,当鱼塘的宽是20米,鱼塘的长为多少米?27.画出反比例函数y=的图象,并根据图象回答下列问题:(1)根据图象指出x=-2时y的值.(2)根据图象指出当-2<x<1时,y的取值范围.(3)根据图象指出当-3<y<2时,x的取值范围.28.下列关系式中的y是x的反比例函数吗?如果是,比例函数k是多少?(1)y=;(2)y=;(3)y=-;(4)y=-3;(5)y=;(6)y=.答案解析1.【答案】A【解析】∵函数y=(a-2)是反比例函数,∴a2-2=-1,a-2≠0.解得a=±1.故选A.2.【答案】D【解析】当x=1时,y=3,∵反比例函数y=中,k=3>0,∴在第一象限内y随x的增大而减小,∴0<y<3.故选D.3.【答案】D【解析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b,根据图象发现当x =1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.解:∵二次函数图象开口方向向上,∴a>0,∵对称轴为直线x=->0,∴b<0,∵当x=1时,y=a+b+c<0,∴y=bx+a的图象经过第二四象限,且与y轴的正半轴相交,反比例函数y=图象在第二、四象限,只有D选项图象符合.故选D.4.【答案】D【解析】A.反比例函数y=(k≠0),因为k2>0,根据反比例函数的性质它的图象分布在第一、三象限,故本选项错误;B.把点(k,k),代入反比例函数y=(k≠0)中成立,故本选项错误;C.反比例函数y=(k≠0),k2>0根据反比例函数的性质它的图象分布在第一、三象限,是关于原点对称,故本选项错误;D.反比例函数y=(k≠0),因为k2>0,根据反比例函数的性质它的图象分布在第一、三象限,在每个象限内,y随x的增大而减小,故本选项正确.故选D.5.【答案】A【解析】根据反比例函数的三种表达形式,即y=(k为常数,k≠0)、xy=k(k为常数,k≠0)、y=kx-1(k为常数,k≠0)即可判断.A.书的单价为12元,售价y(元)与书的本数x(本),此时y=12x,y与x成正比例,正确;B.y=,符合反比例函数的定义,错误;C.当k=-1时,y=-符合反比例函数的定义,错误;D.由于路程一定,则时间和速度为反比例关系,错误.故选A.6.【答案】C【解析】由反比例函数的图象可知,kb<0,当k>0,b<0时,∴直线经过一、三、四象限,当k<0,b>0时,∴直线经过一、二、四象限,故选C.7.【答案】A【解析】观察函数图象可知,a<0,b>0,c<0,∴二次函数y=ax2+bx+c的图象开口向下,对称轴x=->0,与y轴的交点在y轴负半轴.故选A.8.【答案】D【解析】①x(y+1)是整式的乘法,②y=不是反比例函数;③y=不是反比例函数,④y=-是反比例函数,⑤y=是正比例函数,⑥y=是反比例函数,故选D.9.【答案】D【解析】∵正比例函数与反比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵A的坐标为(2,1),∴B的坐标为(-2,-1).故选D.10.【答案】B【解析】A.根据题意,得y=(y是本金,x是利息,k是利率).由此看,y与x成正比例关系.故本选项错误;B.根据题意,得y=(x是人口数,y是人均占有耕地数,k是一定的耕地面积).由此看y 与x成反比例关系.故本选项正确;C.根据题意,得S=vt,而S不是定值,所以不能判定v、t间的比例关系.故本选项错误;D.电线的质量与其长度、粗细等都有关系,所以不能判定它们的比例关系.故本选项错误;故选B.11.【答案】y=【解析】根据长方形的面积公式即可求解.长方形的面积为100,则长方形的长y=,故答案是y=.12.【答案】s=(h>0)【解析】根据桶的底面面积=容积÷桶高可列出关系式,且未知数高应>0.由题意,得s=(h>0).13.【答案】y=【解析】直接利用总钱数÷总质量=单价,进而得出即可.据题意,可得y=.14.【答案】<【解析】∵反比例函数y=的图象过点A(-2,1),∴k=-2×1=-2,∵k<0,∴在每一象限内,y随x的增大而增大,而B(m1,n1)、C(m2,n2)在该反比例函数图象上,且m1<m2<0,∴n1<n2.15.【答案】反y=【解析】根据反比例关系和需要的天数等于总页数除以平均每天看的页数解答.∵总页数300一定,∴所需的天数y与平均每天看的页数x成反比例函数,表达式为y=.16.【答案】反【解析】设三角形的底为a,高为h,则S=ah,a=,∵S≠0,∴a、h成反比例.17.【答案】3【解析】∵点A(1,m)在反比例函数y=的图象上,∴m==3.18.【答案】-1【解析】根据题意,a2-2=-1,a=±1,又a≠1,所以a=-1.故答案为-1.19.【答案】反比例【解析】据等量关系“三角形的面积=×底边×底边上的高”列出函数关系式即可.由题意,得三角形的高h与底a的函数关系式是h=,由于S为定值,故h是a的反比例函数.20.【答案】y=-(0<x<a)【解析】根据“多用的天数=节约后用的天数-原计划用的天数”列式整理即可.根据题意,得每天平均耗煤a吨,可用的天数是,如果每天节约用煤x吨,可用的天数是,∴Q吨煤可以多用y天表示为y=-(0<x<a).21.【答案】解∵函数y=(k2+k)是反比例函数,∴解得k=2.故k为2时,y=(k2+k)是反比例函数.【解析】是反比例函数,让未知数的次数为-1,系数不等于0列式求值即可.22.【答案】解(1)∵将P(-3,5)代入反比例函数y=(k≠0,k是常数),得5=,解得k=-15.∴反比例函数表达式为y=-;(2)反比例函数图象经过点Q.理由:∵-×2=-15=k,∴反比例函数图象经过点Q.【解析】(1)直接把点P(-3,5)代入反比例函数y=(k≠0,k是常数),求出k的值即可;(2)把点Q代入反比例函数的解析式进行检验即可.23.【答案】解∵y=k是反比例函数,∴2k2+k-2=-1,解得k1=,k2=-1,∴函数的解析式为y=或y=-.【解析】利用反比例函数的定义得出2k2+k-2=-1,进而求出即可.24.【答案】解(1)由图象可知,当0≤x≤4时,y与x成正比例关系,设y=kx.由图象可知,当x=4时,y=8,∴4k=8,解得k=2;∴y=2x(0≤x≤4);又由题意可知:当4≤x≤10时,y与x成反比,设y=.由图象可知,当x=4时,y=8,∴m=4×8=32;∴y=(4≤x≤10);(2)血液中药物浓度不低于4微克/毫升,即y≥4 ,∴2x≥4且≥4,解得x≥2且x≤8;∴2≤x≤8,所以,持续时间为6小时.【解析】(1)根据图象利用待定系数法,抓住关键点(4,8)分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式;(2)可以令y=4也可以根据题意列不等式,现血液中药物浓度不低于4微克/毫升,即y≥4,解不等式组即可.25.【答案】解(1)由表格猜测y与x之间的函数关系为反比例函数,∴设y=(k≠0),把x=10,y=30代入,得k=300,∴y=,将其余各点代入验证均适合,∴y与x的函数关系式为y=;(2)把y=24代入y=,得x=12.5,∴当砝码的质量为24 g时,活动托盘B与点O的距离是12.5 cm.(3)根据反比例函数的增减性,即可得出,随着活动托盘B与O点的距离不断减小,砝码的示数会不断增大;∴应添加砝码.【解析】(1)观察可得:x,y的乘积为定值300,故y与x之间的函数关系为反比例函数,将数据代入用待定系数法可得反比例函数的关系式;(2)把x=24代入解析式求解,可得答案;(3)利用函数增减性即可得出,随着活动托盘B与O点的距离不断增大,砝码的示数应该不断减小.26.【答案】解(1)由长方形面积为2 000平方米,得到xy=2 000,即y=;(2)当x=20(米)时,y==100(米),则当鱼塘的宽是20米时,鱼塘的长为100米.【解析】(1)根据矩形的面积=长×宽,列出y与x的函数表达式即可;(2)把x=20代入计算求出y的值,即可得到结果.27.【答案】解根据题意,作出y=的图象,(1)根据图象,过(-2,0)作与x轴垂直的直线,与双曲线相交,过交点向y轴引垂线,易得y =-3,故当x=-2时,y的值为-3,(2)根据图象,当-2<x<1时,可得y<-3或y>6.(3)同理,当-3<y<2时,x的取值范围是x<-2或x>3.【解析】根据题意,作出y=的图象,根据所作的图象回答问题即可.28.【答案】解(1)y=不是反比例函数,(2)y=不是反比例函数,(3)y=-是反比例函数,比例函数k是-,(4)y=-3不是反比例函数,(5)y=是反比例函数,比例函数k是+1.(6)y=是反比例函数,比例函数k是-.【解析】利用反比例函数的定义(形如y=(k≠0)的函数,叫做反比例函数)判定即可.人教版九年级数学下册第二十六章反比例函数课时作业(解析版)-普通用卷一、选择题(本大题共15小题,共45.0分)1.a、b是实数,点A(2,a)、B(3,b)在反比例函数y=-的图象上,则()A. B. C. D.2.若反比例函数y=(k≠0)的图象经过点(2,-3),则k的值为()A. 5B.C. 6D.3.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1-k2的值为()A. 2B. 3C. 4D.4.如图,P(m,m)是反比例函数y=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为()A.B.C.D.5.一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B.C. D.6.若三点都在函数的图象上,则y1、y2、y3的大小关系是A. y y y1B. y y y3C. y y y2D. y y2 y17.如图,直线与双曲线交于、两点,则当时,x的取值范围是A. 或B. 或C. 或D.8.如下图,点A是反比例函数y=(x>0)图象上任意一点,AB⊥y轴于B,点C是x轴上的动点,则△ABC的面积为()A. 1B. 2C. 4D. 不能确定9.已知一次函数y1=ax+c和反比例函数y2=的图象如图所示,则二次函数y3=ax2+bx+c的大致图象是()A.B.C.D.10.如图,正方形ABCD的边长为5,点A的坐标为(-4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的表达式为()A. B. C. D.11.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A. B. C. D.12.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=-的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为()A. 2B. 3C. 4D. 513.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.B. 10C.D.14.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y 轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积()A. 减小B. 增大C. 先减小后增大D. 先增大后减小15.如图,P为反比例函数y=(k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=-x-4的图象于点A、B.若∠AOB=135°,则k的值是()A. 2B. 4C. 6D. 8二、填空题(本大题共4小题,共12.0分)16.反比例函数y=的图象经过点(1,6)和(m,-3),则m= ______ .17.如图,点A、B是双曲线y=上的点,分别过点A、B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为______.18.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为______.19.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S=10,则k的值为______.四边形ABCD三、解答题(本大题共4小题,共32.0分)20.如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.21.为宣传2022年北京-张家口冬季奥运会,小王在网上销售一种成本为20元/件的本届冬季奥运会宣传文化衫,销售过程中的其他各种费用(不再含文化衫成本)总计40(百元),有关销售量y(百件)与销售价格x(元/件)的相关信息如下:(2)销售价格定为多少元/件时,获得的利润最大?最大利润是多少?22.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=的图象经过点D,与BC的交点为N.(1)求反比例函数和一次函数的表达式;(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P 的坐标.23.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP 面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.答案和解析1.【答案】A【解析】【分析】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质.根据反比例函数的性质可以判断a、b的大小,从而可以解答本题.【解答】解:∵y=-,∴反比例函数y=-的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数y=-的图象上,∴a<b<0,故选A.2.【答案】D【解析】【分析】直接把点(2,-3)代入反比例函数y=(k≠0)即可.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.【解答】解:∵反比例函数y=(k≠0)的图象经过点(2,-3),∴-3=,解得k=-6.故选D.3.【答案】C【解析】解:根据反比例函数k的几何意义可知:△AOP的面积为,△BOP的面积为,∴△AOB的面积为,∴=2,∴k1-k2=4,故选C.根据反比例函数k的几何意义可知:△AOP的面积为,△BOP的面积为,由题意可知△AOB的面积为.本题考查反比例函数k的几何意义,解题的关键是正确理解k的几何意义,本题属于中等题型.4.【答案】D【解析】解:作PD⊥OB,∵P(m,m)是反比例函数y=在第一象限内的图象上一点,∴m=,解得:m=3,∴PD=3,∵△ABP是等边三角形,∴BD=PD=,∴S△POB=OB•PD=(OD+BD)•PD=,故选:D.易求得点P的坐标,即可求得点B坐标,即可解题.本题考查了等边三角形的性质,考查了反比例函数点坐标的特性,本题中求得m5.【答案】C【解析】解:A、由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a-b>0,∴反比例函数y=的图象过一、三象限,所以此选项不正确;B、由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a-b<0,∴反比例函数y=的图象过二、四象限,所以此选项不正确;C、由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a-b>0,∴反比例函数y=的图象过一、三象限,所以此选项正确;D、由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选:C.根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.本题考查了一次函数与反比例函数图象与系数的关系,熟练掌握两个函数的图6.【答案】C【解析】【分析】本题考查了反比例函数图象上点的坐标特征有关知识,将M(,y1)、N(,y2)、P(,y3)三点分别代入函数(k>0),求得y1、y2、y3的值,然后再来比较它们的大小.【解答】解:∵M(,y1)、N(,y2)、P(,y3)三点都在函数(k>0)的图象上,∴M(,y1)、N(,y2)、P(,y3)三点都满足函数关系式(k>0),∴y1=-2k,y2=-4k,y3=2k;∵k>0,∴-4k<-2k<2k,即y3>y1>y2.故选C.7.【答案】C【解析】【分析】当y1<y2时,x的取值范围就是求当y1的图象在y2的图象下边时对应的x的范围.本题考查了反比例函数与一次函数图象的交点问题,理解当y1<y2时,求x 的取值范围就是求当y1的图象在y2的图象下边时对应的x的范围,解答此题时,采用了“数形结合”的数学思想.【解答】解:根据图象可得当y1<y2时,x的取值范围是:x<-6或0<x<2.故选C.8.【答案】A【解析】【分析】本题主要考查了反比例函数的系数k的几何意义,△ABC的面积=|k|,本知识点是中考的重要考点,应高度关注.可以设出A的坐标,△ABC的面积即可利用A 的坐标表示,据此即可求解.【解答】解:设A的坐标是(m,n),则mn=2,则AB=m,△ABC的AB边上的高等于n,则△ABC的面积=mn=1.故选A.9.【答案】B【解析】解:∵一次函数y1=ax+c图象过第一、二、四象限,∴a<0,c>0,∴二次函数y3=ax2+bx+c开口向下,与y轴交点在x轴上方;∵反比例函数y2=的图象在第二、四象限,∴b<0,∴-<0,∴二次函数y3=ax2+bx+c对称轴在y轴左侧.满足上述条件的函数图象只有B选项.故选B.根据一次函数与反比例函数图象找出a、b、c的正负,再根据抛物线的对称轴为x=-,找出二次函数对称轴在y轴左侧,比对四个选项的函数图象即可得出结论.本题考查了一次函数的图象、反比例函数的图象以及二次函数的图象,解题的关键是根据一次函数与反比例函数的图象找出a、b、c的正负.本题属于基础题,难度不大,熟悉函数图象与系数的关系是解题的关键.【解析】解:如图,过点C作CE⊥y轴于E,在正方形ABCD中,AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠OAB+∠ABO=90°,∴∠OAB=∠CBE,∵点A的坐标为(-4,0),∴OA=4,∵AB=5,∴OB==3,在△ABO和△BCE中,,∴△ABO≌△BCE(AAS),∴OA=BE=4,CE=OB=3,∴OE=BE-OB=4-3=1,∴点C的坐标为(3,1),∵反比例函数y=(k≠0)的图象过点C,∴k=xy=3×1=3,∴反比例函数的表达式为y=.故选:A.过点C作CE⊥y轴于E,根据正方形的性质可得AB=BC,∠ABC=90°,再根据同角的余角相等求出∠OAB=∠CBE,然后利用“角角边”证明△ABO和△BCE全等,根据全等三角形对应边相等可得OA=BE=4,CE=OB=3,再求出OE,然后写出点C 的坐标,再把点C的坐标代入反比例函数解析式计算即可求出k的值.本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点D的坐标是解题的关键.【解析】【分析】本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,经过点C时k最大,据此可得出结论,属于基础题.【解析】解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选C.12.【答案】D【解析】【分析】设A的纵坐标是b,则B的纵坐标也是b,即可求得A、B的横坐标,则AB的长度即可求得,然后利用平行四边形的面积公式即可求解.【解答】解:设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=得,b=,则x=,即A的横坐标是,;同理可得:B的横坐标是:-.则AB=-(-)=.则S□ABCD=×b=5.故选D.13.【答案】C【解析】解:∵正方形OABC的边长是6,∴点M的横坐标和点N的纵坐标为6,∴M(6,),N(,6),∴BN=6-,BM=6-,∵△OMN的面积为10,∴6×6-×6×-6×-×(6-)2=10,∴k=24,∴M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,∵AM=AM′=4,∴BM′=10,BN=2,∴NM′===2,故选:C.由正方形OABC的边长是6,得到点M的横坐标和点N的纵坐标为6,求得M(6,),N(,6),根据三角形的面积列方程得到M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,根据勾股定理即可得到结论.本题考查了反比例函数的系数k的几何意义,轴对称-最小距离问题,勾股定理,正方形的性质,正确的作出图形是解题的关键.14.【答案】B【解析】解:AC=m-1,CQ=n,=AC•CQ=(m-1)n=mn-n.则S四边形ACQE∵P(1,4)、Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).∴S=AC•CQ=4-n,四边形ACQE∵当m>1时,n随m的增大而减小,∴S=4-n随m的增大而增大.四边形ACQE故选:B.首先利用m和n表示出AC和CQ的长,则四边形ACQE的面积即可利用m、n 表示,然后根据函数的性质判断.本题考查了反比例函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.15.【答案】D【解析】解:作BF⊥x轴,OE⊥AB,CQ⊥AP;设P点坐标(n,),∵直线AB函数式为y=-x-4,PB⊥y轴,PA⊥x轴,∴∠PBA=∠PAB=45°,∴PA=PB,∵P点坐标(n,),∴OD=CQ=n,∴AD=AQ+DQ=n+4;∵当x=0时,y=-x-4=-4,∴OC=DQ=4,GE=OE=OC=;同理可证:BG=BF=PD=,∴BE=BG+EG=+;∵∠AOB=135°,∴∠OBE+∠OAE=45°,∵∠DAO+∠OAE=45°,∴∠DAO=∠OBE,∵在△BOE和△AOD中,,∴△BOE∽△AOD;∴=,即=;整理得:nk+2n2=8n+2n2,化简得:k=8;故选D.作BF⊥x轴,OE⊥AB,CQ⊥AP,易证△BOE∽△AOD,根据相似三角形对应边比例相等的性质即可求出k的值.本题主要考查了相似三角形的判定与性质及反比例函数图象上点的坐标特征,解题的关键是正确作出辅助线,构造相似三角形.16.【答案】-2【解析】解:∵反比例函数y=的图象经过点(1,6),∴6=,解得k=6,∴反比例函数的解析式为y=.∵点(m,-3)在此函数图象上上,∴-3=,解得m=-2.故答案为:-2.先把点(1,6)代入反比例函数y=,求出k的值,进而可得出反比例函数的解析式,再把点(m,-3)代入即可得出m的值.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17.【答案】8【解析】【分析】此题考查了反比例函数系数k的几何意义有关知识,由A,B为双曲线上的两点,利用反比例系数k的几何意义,求出矩形ACOG与矩形BEOF面积,再由阴影DGOF面积求出空白面积之和即可.【解答】解:如图,∵点A、B是双曲线y=上的点,∴S矩形ACOG =S矩形BEOF=6,∵S阴影DGOF=2,∴S矩形ACFD +S矩形BDGE=6+6-2-2=8,故答案为8.18.【答案】4【解析】解:设D(x,y),∵反比例函数y=的图象经过点D,∴xy=2,∵D为AB的中点,∴B(x,2y),∴OA=x,OC=2y,∴S矩形OABC=OA•OC=x•2y=2xy=2×2=4,故答案为:4.可设D点坐标为(x,y),则可表示出B点坐标,从而可表示出矩形OABC的面积,利用xy=2可求得答案.本题主要考查反比例函数k的几何意义,利用条件用D点坐标表示出B点坐标是解题的关键.19.【答案】-16【解析】解:∵OD=2AD,∴=,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴===,∴=()2=,∵S=10,四边形ABCD∴S△ODC=8,∴OC×CD=8,OC×CD=16,∵双曲线在第二象限,∴k=-16,故答案为:-16.证△DCO∽△ABO,推出===,求出=()2=,求出S△ODC=8,根据三角形面积公式得出OC×CD=8,求出OC×CD=16即可.本题考查了反比例函数图象上点的坐标特征,相似三角形的性质和判定的应用,解此题的关键是求出△ODC的面积.20.【答案】解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE=,∵OA=4,∴C点的坐标为:(,2),∵点C在的图象上,∴k=5,(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m-,2).∵点C,D都在的图象上,∴m=2(m-),∴m=6,∴C点的坐标为:(,2),作CF⊥x轴,垂足为F,∴OF=,CF=2,在Rt△OFC中,OC2=OF2+CF2,∴OC=.【解析】(1)利用等腰三角形的性质得出AE,BE的长,再利用勾股定理得出OA的长,得出C点坐标即可得出答案;(2)首先表示出D,C点坐标进而利用反比例函数图象上的性质求出C点坐标,再利用勾股定理得出CO的长.此题主要考查了等腰三角形的性质以及勾股定理和反比例函数图象上的性质,正确得出C点坐标是解题关键.21.【答案】解:(1)当30≤x≤50时,w=(x-20)(-0.1x+8)-40=-0.1x2+10x-200;当50<x≤60时,w=(x-20)•-40=-+80;(2)当30≤x≤50时,w=-0.1x2+10x-200=-0.1(x-50)2+50,∴当x=50时,w取得最大值50(百元);当50<x≤60时,w=-+80,∵-2400<0,∴w随x的增大而增大,当x=60时,w最大=40(百元),答:销售价格定为50元/件时,获得的利润最大,最大利润是50百元.【解析】(1)根据x的范围分类讨论,由“总利润=单件利润×销售量”可得函数解析式;(2)结合(1)中两个函数解析式,分别依据二次函数的性质和反比例函数的性质求其最值即可.本题主要考查二次函数和反比例函数的应用,理解题意依据相等关系列出函数解析式,并熟练掌握二次函数和反比例函数的性质是解题的关键.22.【答案】解:(1)∵正方形OABC的顶点C(0,3),∴OA=AB=BC=OC=3,∠OAB=∠B=∠BCO=90°,∵AD=2DB,∴AD=AB=2,∴D(-3,2),把D坐标代入y=得:m=-6,。

人教版数学 第二十六章 反比例函数 26.1 反比例函数 (附答案)

人教版数学  第二十六章 反比例函数 26.1 反比例函数 (附答案)

人教版数学第二十六章反比例函数 26.1 反比例函数(附答案)一、选择题1.三角形的面积一定,则它的底和高所成的函数关系是()A.正比例函数B.一次函数C.反比例函数D.不确定2.计划修建铁路l km,铺轨天数为t(d),每日铺轨量s(km/d),则在下列三个结论中,正确的是()①当l一定时,t是s的反比例函数;②当l一定时,l是s的反比例函数;③当s一定时,l是t的反比例函数.A.仅①B.仅②C.仅③D.①,②,③3.已知反比例函数y=kx ,当x=2时,y=-12,那么k等于()A. 1B.-1C.-4D.-144.若当x=3时,正比例函数y=k1x(k1≠0)与反比例函数y=k2x(k2≠0)的值相等,则k1与k2的比是()A. 9∶1B. 3∶1C. 1∶3D. 1∶95.若函数y=x2m+1为反比例函数,则m的值是()A. 1B. 0C. 0.5D.-16.下面说法正确的是()A.一个人的体重与他的年龄成正比例关系B.正方形的面积和它的边长成正比例关系C.车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系D.水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成反比例关系7.已知y=y1+y2,其中y1与1成反比例且比例系数为k1,y2与x成正比例且比例系数为k2.若x=-x1时,y=0,则k1,k2的关系为()A.k1+k2=0B.k1k2=1C.k1k2=-1D.k1=k28.函数y=m(m−3)是反比例函数,则m必须满足()xA.m≠3B.m≠0或m≠3C.m≠0D.m≠0且m≠3二、填空题9.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12 000元,首付4 000元,以后每月付y元,x个月全部付清,则y与x的关系式为________,是________函数.(2)某种灯的使用寿命为1 000小时,它的使用天数y与平均每天使用的小时数x之间的关系式________,是______函数.10.已知y与x成反比例,且当x=-3时,y=4,则当x=6时,y的值为_______..对于同一个物体,当F值保持不变时,P 11.已知压力F,压强P与受力面积S之间的关系是P=FS是S的____函数;当S=3时,P的值为180,那么当S=9时,P的值为____.三、解答题12.请判断下列问题中,哪些是反比例函数,并说明你的依据.(1)三角形的底边一定时,它的面积和这个底边上的高;(2)梯形的面积一定时,它的中位线与高;(3)当矩形的周长一定时,该矩形的长与宽.13.y是x的反比例函数,下表给出了x与y的一些值:(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.14.已知y=(k2+k)x k2−k−1中,请问:k为何值,y是x的反比例函数.15.已知变量x,y满足(x-2y)2=(x+2y)2+10,问:x,y是否成反比例函数关系?如果不是,请说明理由;如果是,请求出比例系数.答案解析1.【答案】C【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.三角形的底×高=面积×2(一定),是乘积一定,它的底和高成反比例. 故选C.2.【答案】A【解析】根据工作总量=工作效率×时间,整理为反比例函数的一般形式:y =k x (k ≠0),根据k 是常数,y 是x 的反比例函数判断正确选项即可.∵l =ts ,∴t =l s ,或s =l t, ∵反比例函数解析式的一般形式y =k x (k ≠0,k 为常数), ∴当l 一定时,t 是s 的反比例函数;只有①正确,故选A.3.【答案】B【解析】∵当x =2时,y =-12,∴-12=k 2, 解得k =-1.故选B.4.【答案】D【解析】把x =3分别代入y =k 1x (k 1≠0),和反比例函数y =k 2x (k 2≠0)得y =3k 1和y =k 23,根据题意,得3k 1=k 23,所以k 1∶k 2=1∶9.故选D.5.【答案】D【解析】根据反比例函数的定义.即y =k x (k ≠0),只需令2m +1=-1即可.根据题意,得2m +1=-1,解得m =-1.故选D.6.【答案】C【解析】A.一个人的体重与他的年龄成正比例关系,错误;B .正方形的面积和它的边长是二次函数关系,故此选项错误;C .车辆所行驶的路程S 一定时,车轮的半径r 和车轮旋转的周数m 成反比例关系,正确;D .水管每分钟流出的水量Q 一定时,流出的总水量y 和放水的时间x 成正比例关系,故此选项错误;故选C.7.【答案】A【解析】根据y 1与1x 成反比例且比例系数为k 1,y 2与x 成正比例且比例系数为k 2,可得k 1的表示,k 2的表示,根据y =y 1+y 2,若x =-1时,y =0,可得答案.k 1=y 1·1x,y 2=k 2x , y 1=k 1x ,y =y 1+y 2,x =-1时,-k 1-k 2=0,k 1+k 2=0,故选A.8.【答案】D【解析】根据反比例函数定义:反比例函数的概念形如y =k x (k 为常数,k ≠0)的函数称为反比例函数可得m (m -3)≠0,再解即可.由题意,得m (m -3)≠0,解得m ≠0且m ≠3,故选D.9.【答案】(1)y =8000x , 反比例 (2)y =1000x 反比例【解析】(1)由题意,得y 与x 的函数关系式为y =12000−4000x =8000x , 故答案为y =8000x ,反比例;(2)由题意,得y =1000x ,故答案为y =1000x ,反比例.10.【答案】-2【解析】设反比例函数为y =k x ,当x =-3,y =4时,4=k −3,解得k =-12.反比例函数为y =−12x . 当x =6时,y =−126=-2, 故答案为-2.11.【答案】反比例 60【解析】∵压力F ,压强P 与受力面积S 之间的关系是P =F S ,∴当F 值保持不变时,P 是S 的反比例函数,∵当S =3时,P 的值为180,∴F =SP =3×180=540,当S =9时,P =5409=60.故答案为反比例,60.12.【答案】解 (1)设三角形的面积为S ,底边为a ,底边上的高为h ,则S =12ah ,当a 一定,即a =2S ℎ一定,S 是h 的正比例函数;(2)设梯形的面积为S ,它的中位线与高分别为m ,h ,S =12mh 符合y =k x,所以是反比例函数; (3)设矩形的周长C ,该矩形的长与宽分别为a ,b ,则C =2(a +b ),当矩形的周长一定时,该矩形的长与宽不成任何比例关系.【解析】根据实际问题分别列出函数关系式,然后结合反比例函数的定义得出答案. 13.【答案】解 (1)设反比例函数的表达式为y =k x ,把x =-1,y =2代入,得k =-2,所以反比例函数表达式为y =-2x .(2)将y =23代入,得x =-3; 将x =-2代入,得y =1;将x =-12代入,得y =4;将x =12代入,得y =-4,将x =1代入,得y =-2;将y =-1代入,得x =2,将x =3代入,得y =-23.【解析】(1)设反比例函数的表达式为y=kx,找出函数图象上一个点的坐标,然后代入求解即可;(2)将x或y的值代入函数解析式求得对应的y或x的值即可.14.【答案】解∵y=(k2+k)x k2−k−1中,y是x的反比例函数,∴{k2+k≠0,k2−k−1=−1,解得k=0(舍去)或k=1.∴k=1时,y是x的反比例函数.【解析】根据反比例函数的定义列出关于k的不等式组,求出k的值即可.15.【答案】解∵(x-2y)2=(x+2y)2+10,∴x2-4xy+4y2=x2+4xy+4y2+10,整理得出8xy=-10,∴y=−54x,∴x,y成反比例关系,比例系数为-54.【解析】直接去括号,进而合并同类项得出y与x的函数关系式,并根据定义判定即可.。

人教版初三数学9年级下册 第26章(反比例函数)同步训练题(含答案)

人教版初三数学9年级下册 第26章(反比例函数)同步训练题(含答案)

第26章《反比例函数》同步训练人教版九年级数学下册一、单选题1.下列图象中是反比例函数图象的是( ).A .B .C .D .2.在第一象限内各反比例函数的图像分别如图中①②③所示,则相应各反比例函数的比例系数1k ,2k ,3k 的大小关系是( )A .123k k k <<B .132k k k <<C .321k k k <<D .213k k k <<3.下列问题情景中的两个变量成反比例函数关系的是( )A .汽车沿一条公路从A 地驶往B 地所需的时间t 与平均速度v B .圆的周长l 与圆的半径r C .圆的面积s 与圆的半径rD .在电阻不变的情况下,电流强度I 与电压U4.已知y 与x 成反比例函数,且2x =时,3y =,则该函数表达式是( )A .6y x=B .16y x=C .6y x=D .61y x =-5.已知反比例函数ky x=,当2x =时,3y =-,则k =( )236.若点()111,P x y ,()222,P x y 在反比例函数(0)ky k x=>的图像上,且12x x =-,则( )A .11y y <B .12y y =C .12y y >D .12y y =-7.如图,原点为圆心的圆与反比例函数3y x=的图像交于A 、B 、C 、D 四点,已知点A 的横坐标为1-,则点C 的横坐标为( )A .4B .3C .2D .18.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压()kPa P 是气体体积()3m V 的反比例函数,其图象如图所示,当气球内的气压大于120kPa 时,气球将爆炸,为了安全起见,气球的体积应( ).A .不小于35m4B .小于35m4C .不小于34m5D .小于34m59.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气球体积V 的反比例函数,其图象如图所示,当气球内的气压大于160 kPa 时,气球将爆炸,为了安全,气球的体积应该( )A .不大于53m 3B .小于53m 3C .不小于35m 3D .小于35m 310.如图,将质量为10kg 的铁球放在不计重力的木板OB 上的A 处,木板左端O 处可自由转动,在B 处用力F 竖直向上抬着木板,使其保持水平,已知OA 的长为1m ,OB 的长为xm ,g 取10N/kg ,则F 关于x 的函数解析式为( )A .100F x=B .90F x=C .9F x=D .10F x=二、填空题11.反比例函数3y x=的图象与坐标轴有______个交点,当0x >时,y 随x 的增大而________.12.已知A 是直线2y x =与曲线1m y x-=(m 为常数)一支的交点,过点A 作x 轴的垂线,垂足为B ,且2OB =,则m 的值为________.13.如图,(1,6)A -是双曲线(0)ky x x=<上的一点,P 为y 轴正半轴上的一点,将A 点绕P 点逆时针旋转90︒,恰好落在双曲线上的另一点B ,则点B 的坐标为__________.14.如图所示,反比例函数ky x=(0k ≠,0x >)的图像经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为8,则k 的值为________.15.如图,点A 在曲线y =3x(x >0)上,过点A 作AB ⊥x 轴,垂足为B ,OA 的垂直平分线交OB 、OA 于点C 、D ,当AB =1时,△ABC 的周长为_____.三、解答题16.已知y 与2x 成反比例,并且当3x =时,4y =.(1)写出y 关于x 的函数解析式;(2)当 1.5x =时,求y 的值;(3)当6y =时,求x 的值.17.如图,OPQ △是边长为2的等边三角形,若反比例函数的图象过点P ,求它的解析式.18.某农业大学计划修建一块面积为62210m ⨯的矩形试验田.(1)试验田的长y (单位:m )关于宽x (单位:m )的函数解析式是什么?(2)如果试验田的长与宽的比为2:1,那么试验田的长与宽分别为多少?19.已知点(3,2)P 、点(2,)Q a -都在反比例函数ky x=图象上.过点P 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为1S ;过点Q 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为2S .求a ,12,S S 的值.20.如图.正方形的中心在直角坐标系的原点,正方形的边与坐标轴平行,点()3,P a a 是正方形与反比例函数图象的一个交点,已知图中阴影部分的面积等于9,求这个反比例函数的表达式.21.某空调生产厂的装配车间计划在一段时期内组装9000台空调.(1)在这段时期内,每天组装的数量m (台/天)与组装的时间t (天)之间有怎样的函数关系?(2)原计划用2个月时间(每月按30天计算)完成这一任务,但由于气温提前升高,厂家决定这批空调提前10天完成组装,那么装配车间每天至少要组装多少台空调?比原计划多多少?22.心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课的变化而变化.经过实验分析可知,学生的注意力指标数y 随时间x (分钟)的变化规律如图所示(其中AB ,BC 分别为线段,CD 为双曲线的一部分).(1)分别求出线段AB 和曲线CD 的函数关系式;(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?23.如图,点A为双曲线2yx=(0x>)上一点,//AB x轴且交直线y x=-于点B.(1)若点B的纵坐标为2,比较线段AB和OB的大小关系;(2)当点A在双曲线图像上运动时,代数式“22AB OA-”的值会发生变化吗?请你作出判断,并说明理由.参考答案1.C 2.C 3.A 4.C 5.C 6.D 7.B 8.C 9.C 10.A 11.0 减小12.913.(3,2)-或(2,3)-14.215.416.解:(1)根据题意,设y 关于x 的函数解析式2k y x =,将3x =,4y =代入,得:243k =,解得:k =36,∴y 关于x 的函数解析式为236y x =;(2)当 1.5x =时,236=16(1.5)y =;(3)当y =6时,由2366x=得:26x =,解得:x =17.解:过点P 作PD ⊥x 轴于点D ,∵△OPQ 是边长为2的等边三角形,∴OD =12OQ =12×2=1,在Rt △OPD 中,∵OP =2,OD =1,∴PD ==∴P (1,设反比例函数为:y =kx (k ≠0),因为反比例函数的图象过点P ,所以k所以所求解析式为:y 18.解:(1) 由题意得,xy = 2×106,所以y =6210x⨯∴故试验田的长y (单位:m)关于宽x (单位:m)的函数解析式是y =6210x ⨯ (2)设试验田的宽为x m ,则长为2x m 由题意得,2x ·x = 2 ×106,解得x =±103 (负值舍去),∴试验田长与宽分别为2 ×103m 、103m .19.解:∵点P (3,2)、点Q (−2,a )都在反比例函数ky x=的图象上,∴k =3×2=−2×a ,∴k =6,a =−3,∵过点P 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为S 1;过点Q 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为S 2,∴S 1=S 2=|6|=6.20.解: 反比例函数的图象关于原点对称,∴阴影部分的面积和正好为正方形面积的14,设正方形的边长为b ,则2194b =,解得6b =,正方形的中心在原点O ,∴直线AB 的解析式为:3x =, 点(3,)P a a 在直线AB 上,如下图:33a ∴=,解得1a =,(3,1)P ∴,点P 在反比例函数(0)ky k x=>的图象上,3k ∴=,∴此反比例函数的解析式为:3y x=.21.解:(1)每天组装的台数m (单位:台/天)与生产时间t (单位:天)之间的函数关系:9000m t=;(2)当50t =时,900018050m ==.所以,这批空调提前10天上市,那么原装配车间每天至少要组装180台空调,原计划用2个月时间(每月按30天计算)完成这一任务,则每天组装150台,即比原计划多:18015030-=台.22.解:(1)设线段AB 所在直线的解析式为1120y k x =+,把点(10,40)B 代入,得12k =,∴1220y x =+;设C 、D 所在双曲线的解析式为22k y x=,把点(25,40)C 代入,得21000k =,∴21000y x=;(2)当15=x 时,1252030y =⨯+=,当230x =时,21000100303y ==,∴12y y <,∴第30分钟时注意力更集中.23.解:(1)∵点B 的纵坐标为2,//AB x 轴,∴(1,2)A ,(2,2)B -,∴3AB =,OB ==∵3>∴AB OB >;(2)代数式22AB OA -不会发生变化.理由:设(,)A a b ,∵A 为双曲线2(0)y x x=>上一点,∴2ab =,∵//AB x 轴且交直线y x =-于点B ,∴点B 纵坐标为b ,∴(,)B b b -,∴()22222()24AB OA a b a b ab -=+-+==,∴代数式“22AB OA -”的值恒定不变.。

人教版 九年级数学 第26章 反比例函数 综合训练(含答案)

人教版 九年级数学 第26章 反比例函数 综合训练(含答案)

人教版 九年级数学 第26章 反比例函数 综合训练一、选择题(本大题共10道小题)1. 点(2,-4)在反比例函数y =kx 的图象上,则下列各点在此函数图象上的是( )A. (2,4)B. (-1,-8)C. (-2,-4)D. (4,-2)2. (2019•安徽)已知点A (1,–3)关于x 轴的对称点A'在反比例函数y =kx的图象上,则实数k 的值为 A .3B .13C .–3D .–133. 已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数y =kx(k <0)的图象上,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A .y 2>y 1>y 3B .y 3>y 2>y 1C .y 1>y 2>y 3D .y 3>y 1>y 24. (2020·苏州)如图,平行四边形OABC 的顶点A 在x 轴的正半轴上,点()3,2D在对角线OB 上,反比例函数()0,0ky k x x=>>的图像经过C 、D 两点.已知平行四边形OABC 的面积是152,则点B 的坐标为( )A.84,3⎛⎫ ⎪⎝⎭B.9,32⎛⎫ ⎪⎝⎭C.105,3⎛⎫ ⎪⎝⎭D.2416,55⎛⎫ ⎪⎝⎭5. (2019·江苏无锡)如图,已知A 为反比例函数y =kx(x <0)的图象上一点,过点A 作AB ⊥y 轴,垂足为B .若△OAB 的面积为2,则k 的值为A .2B .﹣2C .4D .﹣46. (2019•广西)若点(1,y 1),(2,y 2),(3,y 3)在反比例函数y =kx(k <0)的图象上,则y 1,y 2,y 3的大小关系是 A .y 1>y 2>y 3 B .y 3>y 2>y 1C .y 1>y 3>y 2D .y 2>y 3>y 17. (2020·娄底)如图,平行于y 轴的直线分别交1k yx =与2ky x=的图像(部分)于点,A B ,点C 是y 轴上的动点,则ABC ∆的面积为( )A .12k k -B .121()2k k -C .21k k -D .211()2k k -8. 如图,在同一直角坐标系中,函数y =kx与y =kx +k 2的大致图象是( )9. (2019·湖北咸宁)在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O 重合,顶点A ,B 恰好分别落在函数y =﹣1x (x <0),y =4x(x >0)的图象上,则sin ∠ABO 的值为A .13B 3C 5D 510. (2019•河北)如图,函数y=1 (0)1(0)xxxx⎧>⎪⎪⎨⎪-<⎪⎩的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q二、填空题(本大题共7道小题)11. 我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y =-3x的图象上有一些整点,请写出其中一个整点的坐标________.12. 如图,点A,B是双曲线y=6x上的点,分别过点A,B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和.为________.13. 如图,直线y=-2x+4与双曲线y=kx交于A、B两点,与x轴交于点C,若AB=2BC,则k=________.14. (2019·黑龙江齐齐哈尔)如图,矩形ABOC 的顶点B 、C 分别在x 轴,y轴上,顶点A 在第二象限,点B 的坐标为(﹣2,0).将线段OC 绕点O 逆时针旋转60°至线段OD ,若反比例函数y =kx(k ≠0)的图象经过A 、D 两点,则k 值为__________.15. 如图,点A 在函数y =4x (x >0)的图象上,且OA =4,过点A 作AB ⊥x 轴于点B ,则△ABO 的周长为________.16. (2019•北京)在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线y =1k x 上,点A 关于x 轴的对称点B 在双曲线y =2kx,则k 1+k 2的值为__________.17. (2019•福建)如图,菱形ABCD 顶点A 在函数y =3x(x >0)的图象上,函数y =kx(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠BAD =30°,则k =__________.三、解答题(本大题共4道小题)18. 如图,在平面直角坐标系中,点O 为坐标原点,菱形OABC 的顶点A 在x 轴的正半轴上,顶点C 的坐标为(1,3). (1)求图象过点B 的反比例函数的解析式; (2)求图象过点A 、B 的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x 的取值范围.19. (2019•广东)如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(–1,4),点B 的坐标为(4,n ). (1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.20. 如图,一次函数y=kx+b的图象分别与反比例函数y=ax的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=ax的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC.求此时点M的坐标.21. (2019•河南)模具厂计划生产面积为4,周长为m的矩形模具.对于m的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下: (1)建立函数模型设矩形相邻两边的长分别为x ,y ,由矩形的面积为4,得xy =4,即y =4x;由周长为m ,得2(x +y )=m ,即y =–x +2m.满足要求的(x ,y )应是两个函数图象在第__________象限内交点的坐标.(2)画出函数图象函数y =4x (x >0)的图象如图所示,而函数y =–x +2m的图象可由直线y =–x 平移得到.请在同一直角坐标系中直接画出直线y =–x .(3)平移直线y =–x ,观察函数图象 ①当直线平移到与函数y =4x(x >0)的图象有唯一交点(2,2)时,周长m 的值为__________;②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m 的取值范围. (4)得出结论若能生产出面积为4的矩形模具,则周长m 的取值范围为__________.人教版九年级数学第26章反比例函数综合训练-答案一、选择题(本大题共10道小题)1. 【答案】D【解析】由题知,A(2,-4)在反比例函数图象上,则k=2×(-4)=-8,所以只需要某个点的横纵坐标的乘积等于-8,该点就在这个反比例函数图象上.不难得到,只有D选项中2×(-4)=-8.2. 【答案】A【解析】点A(1,-3)关于x轴的对称点A'的坐标为(1,3),把A'(1,3)代入y=kx得k=1×3=3.故选A.3. 【答案】A【解析】本题考查反比例函数的性质.由y=kx(k<0),得图象位于二、四象限,在各个象限内,随的增大而增大,故选A.4. 【答案】B【解析】本题考查了,因为点D(3,2)在反比例函数图象上,所以反比例函数解析式为y=6x,因为点C在反比例函数y=6x的图象上,设点C(m,6m),因为点D在直线OB上,所以点B坐标为(9m,6m),所以S平行四边形OABC=BC·y C=(9m-m)·6m=152,解得m=2或-2(舍去),所以点B坐标为9,32⎛⎫⎪⎝⎭,故选B.5. 【答案】D【解析】∵AB ⊥y 轴,∴S △OAB =12|k |,∴12|k |=2,∵k <0,∴k =﹣4.故选D .6. 【答案】C【解析】∵k <0,∴在每个象限内,y 随x 值的增大而增大,∴当x =–1时,y 1>0,∵2<3,∴y 2<y 3<y 1,故选C .7. 【答案】B【解析】本题考查了反比例函数和三角形的面积,设A 的坐标为(x ,1k x),B 的坐标为(x ,2k x),∴S △ABC =1212k k x x x ⎛⎫- ⎪⎝⎭=()1212k k -,因此本题选B .8. 【答案】C【解析】当k >0时,反比例函数y =kx 图象的两个分支分别位于第一、三象限,直线y =kx +k 2经过第一、二、三象限,没有符合题意的选项;当k <0时,反比例函数y =kx 图象的两个分支分别位于第二、四象限,直线y =kx +k 2经过第一、二、四象限,只有C 符合题意.9. 【答案】D【解析】如图,过点A ,B 分别作AD ⊥x 轴,BE ⊥x 轴,垂足为D ,E ,∵点A 在反比例函数y =﹣1x (x <0)上,点B 在y =4x(x >0)上, ∴S △AOD =1,S △BOE =4,又∵∠AOB =90°∴∠AOD =∠OBE ,∴△AOD ∽△OBE ,∴(AO OB )2=14AOD OBE S S =,∴12AO OB =. 设OA =m ,则OB =2m ,AB=,在Rt △AOB 中,sin ∠ABO=OA AB ==,故选D .10. 【答案】A【解析】由已知可知函数y =1(0)1(0)x x x x⎧>⎪⎪⎨⎪-<⎪⎩关于y 轴对称,所以点M 是原点;故选A .二、填空题(本大题共7道小题)11. 【答案】(1,-3)(答案不唯一,合理即可) 【解析】对于y =-3x ,依题意,说明只要x 是3的约数即可,如(1,-3),(-1,3).12. 【答案】8 【解析】设两个空白矩形面积为S 1、S 2,则根据反比例函数的几何意义得:S 1+2=S 2+2=6,∴S 1=S 2=4,∴两个空白矩形的面积和为:S 1+S 2=8.13. 【答案】32 【解析】设A(x 1,k x 1),B(x 2,k x 2),∵直线y =-2x +4与y =k x交于A ,B 两点,∴-2x +4=k x ,即-2x 2+4x -k =0,∴x 1+ x 2=2,x 1x 2=k 2,如解图,过点A 作AQ ⊥x 轴于点Q ,BP ⊥AQ 于点P ,则PB ∥QC ,∴AP PQ =AB BC =2,即k x1-kx2kx2=2,∴x2=3x1,∴x1=12,x2 =32,∴k=2x1x2=32.14. 【答案】163【解析】过点D作DE⊥x轴于点E,∵点B的坐标为(﹣2,0),∴AB=﹣2k,∴OC=﹣2k,由旋转性质知OD=OC=﹣2k,∠COD=60°,∴∠DOE=30°,∴DE=12OD=﹣14k,OE=OD cos30°3(﹣2k)=3k,即D(3,﹣14k),∵反比例函数y=kx(k≠0)的图象经过D点,∴k=(﹣3)(﹣14k)=32,解得:k=0(舍)或k=16316315. 【答案】26+4 【解析】设点A 的坐标为(x ,y),根据反比例函数的性质得,xy =4,在Rt △ABO 中,由勾股定理得,OB 2+AB 2=OA 2,∴x 2+y 2=16,∵(x +y)2=x 2+y 2+2xy =16+8=24,又∵x +y>0,∴x +y =26,∴△ABC 的周长=26+4.16. 【答案】0【解析】∵点A (a ,b )(a >0,b >0)在双曲线y =1k x 上,∴k 1=ab ; 又∵点A 与点B 关于x 轴对称,∴B (a ,–b ),∵点B 在双曲线y =2k x上,∴k 2=–ab ;∴k 1+k 2=ab +(–ab )=0; 故答案为:0.17. 【答案】3【解析】连接OC ,AC ,过A 作AE ⊥x 轴于点E ,延长DA 与x 轴交于点F ,过点D 作DG ⊥x 轴于点G ,∵函数y =k x(k >3,x >0)的图象关于直线AC 对称, ∴O 、A 、C 三点在同直线上,且∠COE =45°,∴OE =AE ,不妨设OE =AE =a ,则A (a ,a ),∵点A 在反比例函数y =3x(x >0)的图象上, ∴a 2=3,∴a 3,∴AE =OE 3∵∠BAD =30°,∴∠OAF =∠CAD =12∠BAD =15°, ∵∠OAE =∠AOE =45°,∴∠EAF =30°,∴AF =cos30AE =2,EF =AE tan30°=1, ∵AB =AD =2,∴AF =AD =2,又∵AE ∥DG ,∴EF =EG =1,DG =2AE 3, ∴OG =OE +EG 3,∴D 3,3k 33+1)3 故答案为:3.三、解答题(本大题共4道小题)18. 【答案】(1)如解图,过点C 作CD ⊥OA 于点D ,则OD =1,CD =3,在Rt △OCD 中,由勾股定理得OC =OD 2+CD 2=2,∵四边形OABC 为菱形,∴BC =AB =OA =OC =2,则点B 的坐标为(3,3),设反比例函数的解析式为y =k x (k ≠0),∵其图象经过点B ,∴将B (3,3)代入,得3=k 3,解得k =33,∴该反比例函数的解析式为y =33x ;(2)∵OA =2,∴点A 的坐标为(2,0),由(1)得B (3,3),设图象经过点A 、B 的一次函数的解析式为y =k ′x +b (k ′≠0),将A (2,0),B (3,3)分别代入,得⎩⎨⎧2k ′+b =03k ′+b =3,解得⎩⎨⎧k ′=3b =-23, ∴该一次函数的解析式为y =3x -23;(3)由图象可得,满足条件的自变量x 的取值范围是2<x <3.19. 【答案】(1)由图象可得:k 1x +b >2kx 的x 的取值范围是x <–1或0<x <4; (2)直线解析式y =–x +3,反比例函数的解析式为y =–4x ; (3)P (23,73). 【解析】(1)∵点A 的坐标为(–1,4),点B 的坐标为(4,n ).由图象可得:k 1x +b >2k x的x 的取值范围是x <–1或0<x <4; (2)∵反比例函数y =2k x 的图象过点A (–1,4),B (4,n ), ∴k 2=–1×4=–4,k 2=4n ,∴n =–1,∴B (4,–1),∵一次函数y =k 1x +b 的图象过点A ,点B ,∴11441k b k b -+=+=-⎧⎨⎩, 解得k =–1,b =3,∴直线解析式y =–x +3,反比例函数的解析式为y =–4x; (3)设直线AB 与y 轴的交点为C ,∴C (0,3),∵S △AOC =12×3×1=32, ∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=152, ∵S △AOP :S △BOP =1:2,∴S △AOP =152×13=52, ∴S △COP =52–32=1,∴12×3x P =1,∴x P =23, ∵点P 在线段AB 上,∴y =–23+3=73,∴P (23,73).20. 【答案】 (1)【思路分析】由点A 的坐标和OA =OB 可得点B 的坐标,用待定系数法即可求出一次函数的解析式;将点A 的坐标代入反比例函数解析式中即可求出反比例函数的解析式.解:∵点A(4,3),∴OA =42+32=5,∴OB =OA =5,∴B(0,-5),将点A(4, 3),点B(0, -5)代入函数y =kx +b 得,⎩⎨⎧4k +b =3b =-5,解得⎩⎨⎧k =2b =-5,(2分) ∴一次函数的解析式为y =2x -5,将点A(4, 3)代入y =a x 得,3=a 4,∴a =12,∴反比例函数的解析式为y =12x ,∴所求函数表达式分别为y =2x -5和y =12x .(4分)(2)【思路分析】由题意可知,使MB =MC 的点在线段BC 的垂直平分线上,故求出线段BC 的垂直平分线和一次函数的交点即可.解:如解图,∵点B 的坐标为(0, -5),点C 的坐标为(0, 5),解图∴x 轴是线段BC 的垂直平分线,∵MB =MC ,∴点M 在x 轴上,又∵点M 在一次函数图象上,∴点M 为一次函数的图象与x 轴的交点,如解图所示,令2x -5=0,解得x =52,(6分)∴此时点M 的坐标为(52, 0).(8分)21. 【答案】(1)一;(2)见解析;(3)m ≥8.【解析】(1)x ,y 都是边长,因此,都是正数,故点(x ,y )在第一象限,答案为:一;(2)图象如下所示:(3)①把点(2,2)代入y =–x +2m 得: 2=–2+2m ,解得:m =8; ②在直线平移过程中,交点个数有:0个、1个、2个三种情况, 联立y =4x 和y =–x +2m 并整理得:x 2–12mx +4=0, △=14m 2–4×4≥0时,两个函数有交点, 解得m ≥8,即:0个交点时,m <8;1个交点时,m =8;2个交点时,m >8. (4)由(3)得:m ≥8.。

人教版初三数学9年级下册 第26章(反比例函数)单元综合性练习 (含答案)

人教版初三数学9年级下册 第26章(反比例函数)单元综合性练习 (含答案)

人教版九年级 第二十六章 反比例函数 单元综合性练习一、选择题(共10小题)1. 下列函数:① y =x−2,② y =3x ,③ y =x −1,④ y =2x +1,其中,y 是 x 的反比例函数的个数是( )A. 0B. 1C. 2D. 32. 已知反比例函数的图象经过点 (1,3),则这个反比例函数的表达式为 ( )A. y =−3xB. y =3xC. y =13xD. y =−13x3. 对于反比例函数 y =3x ,下列判断正确的是 ( )A. 图象经过点 (−1,3)B. 图象在第二、四象限C. 不论 x 为何值,y >0D. 图象所在的每一个象限内 y 随 x 的增大而减小4. 关于反比例函数 y =−3x ,下列说法正确的是 ( )A. y 随 x 的增大而减小B. y 随 x 的增大而增大C. 在每个象限内,y 随 x 的增大而减小D. 在每个象限内,y 随 x 的增大而增大5. 若点 (2,y 1),(4,y 2) 都在函数 y =−3x 的图象上,则 y 1 与 y 2 的大小关系是 ( )A. y 1>y 2B. y 1<y 2C. y 1=y 2D. 无法确定6. 反比例函数 y =kx (k >0) 的部分图象如图示,A ,B 是图象上两点,AC ⊥x 轴 于点 C ,BD ⊥x 轴 于点 D ,若 △AOC 的面积为 S 1,△BOD 的面积为 S 2,则 S 1 和 S 2 的大小关系为 ( )A. S 1>S 2B. S 1=S 2C. S 1<S 2D. 无法确定7. 已知甲、乙两地相距 20 千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间 t (单位:小时)关于行驶速度 v (单位:千米/时)的函数关系式是 ( )A. t =20vB. t =20vC. t =v20D. t =10v8. 在同一坐标系中,函数 y =kx (k 为常数,k ≠0)和 y =−kx +3 的大致图象可能是 ( )A. B.C. D.9. 某闭合电路中,电源的电压为定值,电流 I (A) 与电阻 R (Ω) 成反比例.图表示的是该电路中电流 I 与电阻 R 之间函数关系的图象,则用电阻 R 表示电流 I 的函数解析式为 ( )A. I =2R B. I =3R C. I =6R D. I =−6R10. 函数 y =2x +1 的图象不经过 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(共7小题)11. 已知反比例函数 y =2x ,当 y =6 时,x = .12. 对于函数 y =3x ,当 x >0 时,y 0,这部分图象在第 象限.13. 下列函数中,是反比例函数的有 (填序号).① y =−x2;② y =15x +1;③ y =−3x ;④ y =3−12x 2;⑤ y =−23x;⑥ xy =15;⑦ y =7x 2;⑧y =x−2;⑨ yx =2;⑩ y =kx (k 为常数,k ≠0).14. 直线 y =2x 与双曲线 y =2x 有 个交点,分别是 .15. 如图,已知一次函数 y =ax +b 和反比例函数 y =kx 的图象相交于 A (−2,y 1),B (1,y 2) 两点,则不等式 ax +b <kx 的解集为 .16. 如图,一次函数y=2x与反比例函数y=k(k>0)的图象交于点A,B,点P在以C(−2,0)为圆x,则k的值为.心,1为半径的⊙C上,Q是AP的中点,若OQ长的最大值为32的图象经过点A(m,3),则m的值是.17. 若反比例函数y=−6x三、解答题(共8小题)18. 判断点A(4,−2),B(3,−3)是否在双曲线y=−8上?x19. 一次函数y=kx+b的图象经过点A(2,−3),B(−2,5),求这个一次函数解析式..20. 已知y=y1+y2,y1与x+1成正比例,y2与x成反比例,且当x=4时,y=9;当x=1时,y=0,求y与x的函数关系式.21. 如图所示,在反比例函数图象上有一点A,AB⊥x轴,三角形AOB的面积为10,求反比例函数的解析式.22. 已知y是x的一次函数,当x=1时,y=1;当x=−2时,y=−5,求这个一次函数的解析式.23. 已知一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k,b的值;(2)若一次函数y=kx+b的图象与x轴的交点为A(a,0),求a的值.24. 如图,菱形ABCD的顶点A,顶点B均在x轴的正半轴上,AB=4,DAB=60∘,将菱形ABCD沿AD翻折,得到菱形AEFD,若双曲线y=k(x>0)恰好经过点C和F,求k的值.x25. 已知y是x的反比例函数,且x=3时,y=8.(1)写出y与x之间的函数关系式;(2)如果自变量x的取值范围为3≤x≤4,求y的取值范围.答案1. C【解析】②③是反比例函数.2. B【解析】设该反比例函数的解析式为:y=k(k≠0).x把(1,3)代入,得3=k,1解得k=3..则该函数解析式为:y=3x故选:B.3. D,因为k=3>0,图象在第一、三象限,不经过(−1,3),在每个象限内,y随x的增大【解析】y=3x而减小.4. D中,−3<0,【解析】∵反比例函数y=−3x∴该函数的图象在第二、四象限,且在每个象限内,y随x的增大而增大,∴说法正确的是D,故选D.5. B6. B7. B8. D中k>0,根据一次函数图象可得−k>0,则k<0,A,B选【解析】由反比例函数图象得函数y=kx项错误;中k<0,根据一次函数图象可得−k<0,则k>0,C选项错误;由反比例函数图象得函数y=kx中k>0,根据一次函数图象可得−k<0,则k>0,D选项正确.由反比例函数图象得函数y=kx9. C【解析】设I=k,那么点(3,2)适合这个函数解析式,则k=3×2=6,R.所以I=6R10. D【解析】因为k=2>0,图象过一三象限,b=1>0,图象过第二象限,所以直线y=2x+1经过一、二、三象限,不经过第四象限.故选:D.11. 1312. >,一13. ③⑤⑥⑩14. 两,(1,2),(−1,−2)15. −2<x <0 或 x >1【解析】观察函数图象,发现:当 −2<x <0 或 x >1 时,一次函数图象在反比例函数图象的下方,则不等式 ax +b <kx 的解集是 −2<x <0 或 x >1.故答案为:−2<x <0 或 x >1.16. 3225【解析】连接 BP ,由对称性得:OA =OB , ∵Q 是 AP 的中点, ∴OQ =12BP ,∵OQ 长的最大值为 32, ∴BP 长的最大值为 32×2=3,如图,当 BP 过圆心 C 时,BP 最长,过 B 作 BD ⊥x 轴于 D , ∵CP =1, ∴BC =2,∵B 在直线 y =2x 上,设 B (t,2t ),则 CD =t−(−2)=t +2,BD =−2t ,在 Rt △BCD 中,由勾股定理得:BC 2=CD 2+BD 2, ∴22=(t +2)2+(−2t )2, t =0(舍)或−45,∴B −45∵ 点 B 在反比例函数 y =kx (k >0) 的图象上,∴k =−45×−=3225;故答案为:3225.17. −2【解析】把 A (m,3) 代入 y =−6x ,得 3=−6m ,解得 m =−2.18. A 点在,点 B 不在19. y =−2x +120. y =2x−4x +221. y =−20x .22. y =2x−1.23. (1) 把 M (0,2) 代入 y =kx +b ,得 b =2,把 N (1,3) 代入 y =kx +2,得 k =1.(2) 由(1)得 y =x +2,当 y =0 时,x =−2,即 a =−2.24. 连接 AC ,AF ,过点 C 作 CM ⊥x 轴 于点 M ,则 CM =23,AC =43,则 AF =AC =43,可知 FA ⊥x 轴,设 F (a,43),则 C (a +6,23),则 43a =23(a +6),则 a =6,则 k =43a =243.25. (1) 设反比例函数的关系式是 y =kx (k ≠0),当 x =3 时,y =8,代入可得 k =24. ∴y =24x. (2) 当 x =3 时,y =8,当 x =4 时,y =6. ∴ 当自变量 x 的取值范围为 3≤x ≤4 时, y 的取值范围为 6≤y ≤8.。

第26章反比例函数单元测试(含答案)2024-2025学年数学人教版九年级下册

第26章反比例函数一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图是反比例函数的图象,它的函数表达式是( ).A. y=5xB. y=2x C. y=−1xD. y=−2x2.对于反比例函数y=−5x,下列说法错误的是( )A. 图象经过点(1,−5)B. 图象位于第二、四象限C. 当x<0时,y随x的增大而减小D. 当x>0时,y随x的增大而增大3.如图,点A在双曲线y=kx上,B在y轴上,且AO=AB.若△ABO的面积为6,则k的值为 ( )A. 6B. −6C. 12D. −124.如图,直线y1=kx+1与反比例函数y2=2x的图象在第一象限交于点P(1,t),与x轴、y轴分别交于A,B 两点,则下列结论错误的是 ( )A. t=2B. △AOB是等腰直角三角形C. k=1D. 当x>1时,y2>y15.当x<0时,函数y=(k−1)x与y=2−k的y值都随x的增大而增大,则k的取值范围是( ).3xA. k>1B. 1<k<2C. k>2D. k<16.函数y=k和y=−kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是( )xA. B.C. D.7.若点A(−3,y1),B(−1,y2),C(2,y3)都在反比例函数y=k(k<0)的图象上,则y1,y2,y3的大小关系是( )xA. y3<y1<y2B. y2<y1<y3C. y1<y2<y3D. y3<y2<y18.在大棚中栽培新品种的蘑菇,在18℃的条件下生长最快,因此用装有恒温系统的大棚栽培,如图是某天恒温系统从开启升温到保持恒温及关闭,大棚内温度y(℃)随时间x(时)变化的函数图象,其中BC段是函数(k>0)图象的一部分.若该蘑菇适宜生长的温度不低于12℃,则这y=kx天该品种蘑菇适宜生长的时间为( )A. 18小时B. 17.5小时C. 12小时D. 10小时9.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是( ).A. ①②B. ①④C. ②③D. ③④10.如图,点P、Q是反比例函数y=k(k≠0)图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥xx轴于点M,QB⊥y轴于点B,连接PB、QM.记SΔABP=S1,SΔQMN=S2,则S1与S2的大小关系为 ( )A. S1>S2B. S1<S2C. S1=S2D. 无法判断二、填空题:本题共6小题,每小题3分,共18分。

人教版初中数学九年级下册第26章《反比例函数》测试题(含答案)

人教版初中数学九年级下册第26章《反比例函数》测试题(含答案)一、选择题1、有下列四个函数,其中不属于反比例函数的是( )A B y=xCD xy=k (k ≠0)2y x=1y x -=2、如图,某反比例函数的图像过点M (-2,1),则此反比例函数表达式为( )A y=x2B y=-x 2 C y=x 21 D y=-x 213、在下图中,反比例函数xy k 12+=的图象大致是( )4、若反比例函数的图像在第二、四象限,则m 的值是( ).22(21)my m x -=-A 1-B 小于21的任意实数 C 1-或1 D 不能确定5、某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( )A (-3,2)B (3,2)C (-2,-3)D. (6,1)6、在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,其图象如图所示,当310m V =时,气体的密度是( )A 5kg/m 3B 2kg/m 3C 100kg/m 3D 1kg/m 37、在反比例函数的图象中,阴影部分面积不为1的是( ).8、市一小数学课外兴趣小组的同学每人制作一个面积为200cm 2的矩形学具进行展示. 设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形长y (cm )与宽x (cm )之间的函数关系的图象大致是 ( )9、若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为()A b c =B b c>C b c <D 无法判断10、已知,对于反比例函数,下列说法不正确的是( )22(1)0k a -+-=ky x=A 点(-2,-a )在它的图象上B 它的图象在第一、三象限C .当x >0时,y 随x 的增大而减小D .两个分支关于x 轴成轴对称二、填空题11、请你写出反比例函数图象上一个点的坐标是______6y x=12、已知反比例函数的图象经过点P (a+1,4),则a 的值为_____.8y x=13、有一个面积为120的梯形,其上底是下底长的,若上底长为x ,高为y ,则y 与x 的23函数关系式为________;当高为10时x=________14、已知反比例函数的图象分布在第二、四象限,则在一次函数中,xky =b kx y +=随的增大而(填“增大”或“减小”或“不变”).y x 15、老师给出了一个反比例函数,甲、乙、丙三位学生分别指出了这个函数的一个性质.甲:第一象限内有它的图象;乙:第三象限内有它的图象;丙:在每个象限内,y 随x 的增大而减小.请你写一个满足上述性质的反比例函数的解析式为________16、在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示,P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是______米.17、若正比例函数y=2x 的图象与反比例函数的图象没有交点,则实数k 的取值范围ky x=是______18、已知一次函数y 1=ax+b 与反比例函数y 2=在同一直角坐标系中的图象如图所示,则kx当y 1<y 2时,x 的取值范围是______19、已知y 1与x 成正比例(比例系数为k 1),y 2与x 成反比例(比例系数为k 2),若函数y=y 1+y 2的图象经过点(1,2),(2,),则8k 1+5k 2的值为____1220、两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在ky x=的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P 在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;其中一定正确的是______三、解答题21、在某一电路中,保持电压不变,电流I (安培)与电阻R (欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.(1)求I 与R 之间的函数关系式;(2)当电流I=0.5安培时,求电阻R 的值.22、如图,平面直角坐标系中,直线与轴交于点A ,与双曲线在第一1122y x =+x k y x =象限内交于点B ,BC ⊥轴于点C ,OC=2AO ,求双曲线的解析式.x23、已知图中的曲线是反比例函数(m 为常数)图象的一支.5m y x-=(1)求常数m 的取值范围;(2)若该函数的图象与正比例函数2y x =的图象在第一象限的交点为A (2,n),求点A的坐标及反比例函数的解析式.24、已知y =y 1+y 2, y 1与成正比例,y 2与x 2成反比例.当x =1时,y =-12;当x x =4时,y =7.(1)求y 与x 的函数关系式和x 的取范围;(2)当x =时,求y 41的值。

人教版初三数学9年级下册 第26章(反比例函数)26.1 反比例函数 同步练习(含答案)

反比例函数练习一、选择题1.点(−1,4)在反比例函数y =kx 的图象上,则下列各点在此函数图象上的是( )A. (4,−1)B. (−14,1)C. (−4,−1)D. (14,2)2.在同一平面直角坐标系中,函数y =−x +k 与y =kx (k 为常数,且k ≠0)的图象大致是( )A. B. C. D.3.如图,在平面直角坐标系上,△ABC 的顶点A 和C 分别在x 轴、y 轴的正半轴上,且AB//y 轴,点B(1,3),将△ABC 以点B 为旋转中心顺时针方向旋转90°得到△DBE ,恰好有一反比例函数y =kx 图象恰好过点D ,则k 的值为( )A. 6B. −6C. 9D. −94.如图,正方形ABCD 的边长为10,点A 的坐标为(0,−8),点B 在x 轴上,若反比例函数y =kx (k ≠0)的图象过点C ,则该反比例函数的表达式为( )A. y =6xB. y =−12x C. y =10xD. y =−10x5.如图,点A在双曲线y=kx的图象上,AB⊥x轴于点B,且△AOB的面积为2,则k的值为()A. 4B. −4C. 2D. −26.若点A(−1,y1),B(2,y2),C(3,y3)在反比例函数y=6x的图象上,则y1,y2,y3的大小关系是( )A. y3<y2<y1B. y2<y1<y3C. y1<y3<y2D. y1<y2<y37.如下图,点A,P在函数y=kx(x<0)的图象上,AB⊥x轴,则▵ABO的面积为()A. 1B. 2C. 3D. 48.若点A(a,m)和点B(b,n)均在反比例函数y=7x的图象上,且a<b,则()A. m>nB. m<nC. m=nD. m,n的大小无法确定9.已知反比例函数的图象经过点(2, −1),则它的解析式是()A. y=−2xB. y=2xC. y=2x D. y=−2x10.如图,在平而直角坐标系中,一次函数y=−4x+4的图象与x轴、y轴分别交于A、B两点.正方形ABCD的项点C、D在第一象限,顶点D在反比例函数y=kx(k≠0)的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是( )A. 2B. 3C. 4.D. 511.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=6(x>0)的图象x上,则经过点B的反比例函数解析式为( )A. y=−6xB. y=−4xC. y=−2xD. y=2x(x>0)的图象位于( )12.反比例函数y=−4xA. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(k是常数,k≠1)的图象有一支在第二象限,那么k的取13.已知反比例函数y=k−1x值范围是______.在第一象限的图象如图所示,点A在其14.已知反比例函数y=6x图象上,点B为x轴正半轴上一点,连接OA,AB,且=________.AO=AB,则S△AOB的图象有一个交点P(2,m),则正比例15.已知,正比例函数y=kx与反比例函数y=6x函数y=kx的解析式为______.上,则m2+n2的值为16.已知:点P(m,n)在直线y=−x+2上,也在双曲线y=−1x______。

人教版初三数学9年级下册 第26章(反比例函数)章节检测题(含答案)

x
三、解答题(共 55 分) 16.(6 分)已知 y (m 1)x m 3 是反比例函数,且该函数图象的两个分支分布在第二、四象限, 求 m 的值.
17.(8 分)已知点 A(4,m)在反比例函数 y= 4 的图象上.
x
(1)求 m 的值; (2)当 4<x<8 时,求 y 的取值范围.
18.(8 分)已知函数 y= k 的图象经过点(-3,4).
x
代数式表示点 B 的坐标;
n
(3)在第(2)小题的条件下,求 的值.
m
【参考答案】
一、选择题(每题 3 分,共 30 分)
题号 1
2
3
4
5
6
7
8
9
10
答案 C
D
A
A
B
C
A
B
B
C
二、填空题(每题 3 分,共 15 分)
11.>
12.m<-2
13.0
14.-3.
15.6
三、解答题(共 55 分)
16.解:∵ y (m 1)x m 3 是反比例函数,
x
点 A , B 的纵坐标分别是 y1 , y2 ,则 y1 y2 的值是________. 14.如图,P 是反比例函数 y= k 的图象上的一点,过点 P 分别作 x 轴、y 轴的垂线,得图中
x
阴影部分的面积为 3,则这个反比例函数的比例系数是_____.
15.平面直角坐标系 xOy 中,若点 P 在曲线 y= 18 上,连接 OP,则 OP 的最小值为_____.
4
11.若点 A(1,a),点 B(2,b)均在反比例函数 y= 的图象上,则 a___b(填“>”、
x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小专题(一) 反比例函数与其他函数的综合运用 题组训练一 反比例函数与其他函数的“友好会晤”类型1 反比例函数与一次函数1.(唐山路南区一模)如图,正比例函数y =kx 与反比例函数y =k -1x的图象不可能是(D )2.(长沙模拟)一次函数y =kx +1的图象如图,则反比例函数y =kx(x <0)的图象只能是(C )类型2 反比例函数与二次函数3.(广州中考)已知a ≠0,函数y =ax与y =-ax 2+a 在同一直角坐标系中的大致图象可能是(D )4.(唐山路北区二模)如图,二次函数y =x 2+bx +c 的图象过点B (0,-2).它与反比例函数y =-8x的图象交于点A (m ,4),则这个二次函数的解析式为(A )A .y =x 2-x -2B .y =x 2-x +2C .y =x 2+x -2D .y =x 2+x +25.(河北中考)如图,若抛物线y =-x 2+3与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数y =kx(x >0)的图象是(D )类型3 反比例函数、一次函数与二次函数6.(安徽中考)已知抛物线y =ax 2+bx +c 与反比例函数y =bx 的图象在第一象限有一个公共点,其横坐标为1.则一次函数y =bx +ac 的图象可能是(B )7.(菏泽中考)一次函数y =ax +b 和反比例函数y =cx 在同一个平面直角坐标系中的图象如图所示,则二次函数y =ax 2+bx +c 的图象可能是(A )8.(石家庄四十二中一模)如图1、2、3所示,阴影部分面积的大小关系正确的是(C )A .①>②>③B .③>②>①C .②>③>①D .①=②=③题组训练二 反比例函数与一次函数的综合运用类型1 求自变量的取值范围1.(自贡中考)一次函数y 1=k 1x +b 和反比例函数y 2=k 2x (k 1·k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是(D )A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <12.(宁波中考)如图,正比例函数y 1=-3x 的图象与反比例函数y 2=kx 的图象交于A 、B 两点.点C 在x 轴负半轴上,AC =AO ,△ACO 的面积为12.(1)求k 的值;(2)根据图象,当y 1>y 2时,写出x 的取值范围. 解:(1)过点A 作AD ⊥OC 于点D .∵AC =AO ,∴CD =DO . ∴S △ADO =12S △ACO =6.设A (x 0,-3x 0),则有12|x 0|·|-3x 0|=6.∴x 0=-2.∴A (-2,6).把 A (-2,6)代入反比例函数解析式,得k =-2×6=-12. (2)x <-2或0<x <2.类型2 求参数的值或取值范围3.函数y =1-kx的图象与直线y =x 没有交点,那么k 的取值范围是(A )A .k >1B .k <1C .k >-1D .k <-1 4.若正比例函数y =2kx 与反比例函数y =kx(k ≠0)的图象交于点A (m ,1),则k 的值是(B )A .2或- 2B .22或-22C .22D . 2 5.如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y =8x (x >0)和y =kx (x >0)的图象交于P 、Q 两点,若S △POQ =14,则k的值为-20.类型3 求交点问题6.(曲靖中考)如图,双曲线y =k x 与直线y =-12x 交于A 、B 两点,且点A (-2,m ),则点B的坐标是(A )A .(2,-1)B .(1,-2)C .(12,-1)D .(-1,12)7.(连云港中考)设函数y =3x 与y =-2x -6的图象的交点坐标为(a ,b ),则1a +2b的值是-2.解析:根据函数的交点(a ,b ),可代入得到ab =3,b =-2a -6,即b +2a =-6,然后通分可得1a +2b =b +2a ab =-63=-2.类型4 求图形面积8.如图,一次函数y =ax -1(a ≠0)的图象与反比例函数y =kx (k ≠0)的图象相交于A 、B 两点,且点A 的坐标为(2,1),点B 的坐标为(-1,n ).(1)分别求两个函数的解析式; (2)求△AOB 的面积.解:(1)∵一次函数y =ax -1(a ≠0)的图象与反比例函数y =kx (k ≠0)的图象相交于A 、B 两点,且点A 的坐标为(2,1),∴⎩⎪⎨⎪⎧2a -1=1,k 2=1.解得⎩⎪⎨⎪⎧a =1,k =2.∴一次函数的解析式是y =x -1,反比例函数的解析式是y =2x .(2)设AB 与y 轴交于点C ,当x =0时,y =-1,即C (0,-1). ∴S △AOB =S △AOC +S △BOC =12×|-1|×2+12×|-1|×|-1|=1+12=32.小专题(二) 反比例函数与几何图形与反比例函数相关的几个结论,在解题时可以考虑调用① ②结论:S 矩形OABC =2S △OAB =|k |. 结论:S △OCD =S 梯形ABCD .③ ④结论:AB =CD . 结论:AB =CD .1.(枣庄中考)如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(-3,4),顶点C 在x 轴的负半轴上,函数y =kx(x <0)的图象经过顶点B ,则k 的值为(C )A .-12B .-27C .-32D .-362.(河北模拟)如图,在平面直角坐标系中,直线y =2x +4与x 轴、y 轴分别交于A ,B 两点,以AB 为边在第二象限作正方形ABCD ,点D 在双曲线y =kx 上,将正方形ABCD 沿x 轴正方向平移a 个单位长度后,点C 恰好落在此双曲线上,则a 的值是(B )A .1B .2C .3D .43.(枣庄中考)如图,反比例函数y =2x的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC的面积为4.4.(潍坊中考)正比例函数y 1=mx (m >0)的图象与反比例函数y 2=kx (k ≠0)的图象交于点A (n ,4)和点B ,AM ⊥y 轴,垂足为M ,若△AMB 的面积为8,则满足y 1>y 2的实数x 的取值范围是-2<x <0或x >2.5.(绍兴中考)在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的边均平行于坐标轴,A 点的坐标为(a ,a ).如图,若曲线y =3x (x >0)与此正方形的边有交点,则a 的取值范6.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为A (2,0),C (-1,2),反比例函数y =kx(k ≠0)的图象经过点B .(1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =kx (k ≠0)的图象上,请通过计算说明理由.解:(1)∵四边形OABC 为平行四边形,∴BC ∥OA . ∵A (2,0),C (-1,2),∴B (1,2).将B (1,2)代入反比例函数解析式,得2=k1,∴k =2.(2)点C ′在反比例函数y =kx 的图象上,理由如下:∵▱OABC 沿x 轴翻折,点C 落在点C ′处, ∴C ′点坐标是(-1,-2). ∵反比例函数解析式为y =2x,当x =-1时,y =2-1=-2,∴点C ′在反比例函数y =2x 的图象上.7.(苏州中考)如图,在△ABC 中,AC =BC ,AB ⊥x 轴,垂足为A .反比例函数y =kx (x >0)的图象经过点C ,交AB 于点D .已知AB =4,BC =52.(1)若OA =4,求k 的值;(2)连接OC ,若BD =BC ,求OC 的长.解:(1)作CE ⊥AB ,垂足为E .∵AC =BC ,AB =4,∴AE =BE =2. 在Rt △BCE 中,BC =52,BE =2,∴CE =32.∵OA =4,∴点C 的坐标为(52,2).∵点C 在y =kx的图象上,∴k =5.(2)设A 点的坐标为(m ,0),∵BD =BC =52,∴AD =32.∴D ,C 两点的坐标分别为(m ,32),(m -32,2).∵点C ,D 都在y =k x 的图象上,∴32m =2(m -32).∴m =6.∴点C 的坐标为(92,2).作CF ⊥x 轴,垂足为F ,∴OF =92,CF =2.在Rt △OFC 中,OC 2=OF 2+CF 2, ∴OC =972.8.如图,四边形OABC 是面积为4的正方形,函数y =kx(x >0)的图象经过点B .(1)求k 的值;(2)将正方形OABC 分别沿直线AB ,BC 翻折,得到正方形MABC ′,NA ′BC .设线段MC ′,NA ′分别与函数y =kx(x >0)的图象交于点E ,F ,求线段EF 所在直线的解析式.解:(1)∵四边形OABC 是面积为4的正方形, ∴OA =OC =2.∴点B 坐标为(2,2).∴k =xy =2×2=4. (2)∵正方形MABC ′,NA ′BC 是由正方形OABC 翻折所得, ∴ON =OM =2OA =4.∴点E 横坐标为4,点F 纵坐标为4. ∵点E ,F 在函数y =4x的图象上,∴E (4,1),F (1,4).设直线EF 解析式为y =mx +n ,将E ,F 两点坐标代入,得⎩⎪⎨⎪⎧4m +n =1,m +n =4.解得⎩⎪⎨⎪⎧m =-1,n =5. ∴直线EF 的解析式为y =-x +5.9.如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为(4,2).过点D (0,3)和E (6,0)的直线分别与AB ,BC 交于点M ,N .(1)求直线DE 的解析式和点M 的坐标;(2)若反比例函数y =mx (x >0)的图象经过点M ,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(3)若反比例函数y =mx(x >0)的图象与△MNB 有公共点,请直接写出m 的取值范围.解:(1)设直线DE 的解析式为y =kx +b , ∵点D ,E 的坐标分别为(0,3),(6,0),∴⎩⎪⎨⎪⎧3=b ,0=6k +b.解得⎩⎪⎨⎪⎧k =-12,b =3.∴直线DE 的解析式为y =-12x +3.由题意,令2=-12x +3.∴x =2.∴M (2,2).(2)∵y =mx (x >0)经过点M (2,2),∴m =4.∴反比例函数的解析式为y =4x .当x =4时,y =-12×4+3=1.∴N (4,1).∵当x =4时,y =4x =1,∴点N 在函数y =4x 的图象上.(3)4≤m ≤8.。

相关文档
最新文档