第四章 单片机C语言程序设计

合集下载

单片机原理及应用(C51版)第4章单片机C语言程序设计精品PPT课件

单片机原理及应用(C51版)第4章单片机C语言程序设计精品PPT课件
第9章 单片机C语言程序设计
4.1 Keil C简介与环境设置 4.2 C51 4.3 C51基础知识及表达式 4.4 C51控制语句 4.5 数组 4.6 指针 4.7 函数 4.8 C51开发工具使用 4.9 Keil C调试方法
一般情况下单片机常用的程序设计语言有两种:
4.2 Cx51简介
4.2.1 Cx51的扩展
Cx51编译器兼容ANSI C标准,又扩展支持了8051微处 理
器,其扩展内容如下: ① 存储区; ② 存储区类型; ③ 存储模型; ④ 存储类型说明符; ⑤ 变量数据类型说明符; ⑥ 位变量和位可寻址数据; ⑦ SFR; ⑧ 指针; ⑨ 函数属性。
部RAM地址为0x80-0xFF的128字节存储单元,这些 存储器一般用作计时器、计数器、串口、并口和外围 使用。
4. sfr16类型 sfr16类型用于声明两个连续地址的特殊功能寄
存器(地址范围为0~65 535)。 5.其它类型 C51程序中常用的数据类型还有: char(字符型) unsigned char(无符号字符型) int(整型) unsigned int(无符号整型)等类型。
4.2.2 存储区
8051单片机支持程序存储器和数据存储器的分离,存 储器根据读写情况可以分为:程序存储区(ROM)、快速 读写存储器(内部RAM)、随机读写存储器(外部RAM)。
1. 程序存储器(code)
在中程序存储器是只读存储器,其空间为64K ,在 C51中用code关键字来声明访问程序存储区中的 变量。 。
● 汇编语言:
汇编语言具有执行速度快、占存储空间少、对硬件可直 接编程等特点,因而特别适合在对实时性能要求比较高的 情况下使用。
● C语言:
C语言克服了汇编语言的不足之处,同时又增加了代码 的可读性,C语言大多数代码被翻译成目标代码后,其效 率和汇编语言相当。特别是C语言的内嵌汇编功能,使C语 言对硬件操作更加方便。

单片机c语言课程设计

单片机c语言课程设计

单片机c语言课程设计一、课程目标知识目标:1. 让学生掌握单片机的基本原理和结构,理解C语言在单片机编程中的应用。

2. 培养学生运用C语言进行单片机程序设计和调试的能力。

3. 使学生了解单片机外围设备的接口技术,并能结合实际需求进行简单系统设计。

技能目标:1. 培养学生运用Keil等开发工具进行单片机C语言编程,完成程序设计、编译、下载和调试。

2. 培养学生分析问题和解决问题的能力,能够针对实际应用场景设计单片机控制系统。

3. 提高学生的动手实践能力,通过课程设计,独立完成一个具有实际应用价值的单片机控制系统。

情感态度价值观目标:1. 培养学生积极的学习态度,激发对单片机及嵌入式系统开发的兴趣。

2. 培养学生的团队合作意识,学会在项目中进行有效沟通和协作。

3. 增强学生的创新意识,鼓励他们在课程设计中勇于尝试新思路、新技术。

课程性质分析:本课程为单片机C语言课程设计,侧重于实践操作和实际应用,旨在帮助学生将所学理论知识与实际工程相结合,提高解决实际问题的能力。

学生特点分析:学生已具备一定的单片机原理和C语言基础,具有一定的编程和动手能力。

在此基础上,通过课程设计,提高学生的综合应用能力和创新能力。

教学要求:1. 结合课本内容,注重理论与实践相结合,强化学生的动手实践能力。

2. 以项目为导向,引导学生主动探索,培养学生的问题分析和解决能力。

3. 注重团队合作,培养学生的沟通能力和协作精神。

4. 关注学生的个体差异,实施差异化教学,提高全体学生的学习效果。

二、教学内容1. 单片机基础理论:回顾51单片机的结构、原理及其外围设备的工作原理,重点复习I/O口编程、定时器、中断系统等内容。

教材章节:第一章至第三章2. C语言编程基础:巩固C语言基本语法,包括数据类型、运算符、控制语句、函数等,结合单片机编程需求进行讲解。

教材章节:第四章至第六章3. 单片机C语言编程实践:学习使用Keil开发工具进行单片机C语言编程,掌握程序设计、编译、下载和调试的全过程。

单片机c语言程序设计

单片机c语言程序设计

单片机c语言程序设计
单片机C语言程序设计主要包括以下几个方面的内容:
1. 硬件初始化:包括对单片机的引脚、端口、定时器、中断等进行初始化设置。

2. 输入输出操作:对外部设备的输入输出进行控制,如读取按键、控制LED灯、驱动液晶显示屏等。

3. 时钟和定时器操作:利用单片机内部的定时器来生成精确的时间延时,进行定时操作。

4. 中断处理:单片机的中断是实现异步事件响应的重要手段。

程序中需要设置中断的触发条件,并编写对应的中断服务函数。

5. 存储器操作:包括对寄存器、变量、数组等进行读写操作,以及对外部存储器的读写操作。

6. 节能和休眠模式:单片机在待机、休眠等低功耗模式下可以通过设置进行省电操作。

7. 通信协议和接口:可以通过UART、SPI、I2C等通信协议
与其他外部设备进行数据交换。

8. 程序控制流程:包括循环、条件分支、跳转等控制结构的使用,以实现程序的逻辑控制。

以上只是单片机C语言程序设计的一些常见内容,具体的程序设计还需要根据实际需求进行设计。

可以根据单片机的型号和数据手册,选择合适的编译器和开发工具,参考相关资料和示例代码进行学习和实践。

单片机c语言程序设计

单片机c语言程序设计

单片机c语言程序设计
单片机C语言程序设计是指使用C语言编写单片机控制程序,实现各种功能和任务。

具体步骤如下:
1. 确定程序功能:首先明确单片机的控制目标和需求,确定要实现的功能。

2. 编写主函数:使用C语言编写一个主函数,作为程序的入
口点。

在主函数中,可以定义变量、调用函数、编写主要的程序逻辑。

3. 初始化设置:在主函数中,进行单片机的初始化设置,包括引脚初始化、时钟设置、模块初始化等。

4. 编写中断服务函数:根据需要,编写中断服务函数。

在中断服务函数中,处理特定的中断事件,例如定时器中断、外部中断等。

5. 编写任务函数:根据程序的需求,编写各个任务函数。

任务函数可以是循环执行的函数,或者是根据事件触发执行的函数。

6. 实现控制逻辑:在任务函数中编写具体的控制逻辑代码,根据需要使用控制语句(如if、switch)和循环语句(如for、while)。

7. 进行调试和测试:完成编写后,进行程序的调试和测试,通过仿真器或者实际连接到单片机的硬件进行测试。

8. 优化和修改:根据测试结果进行程序的优化和修改,改善程序的性能和功能。

9. 生成可执行文件:将C源文件编译成可执行文件,可以直接下载到单片机中运行。

10. 下载和运行:将生成的可执行文件通过下载器下载到目标单片机中,并进行运行测试。

以上是单片机C程序设计的一般步骤,具体的实现方法和内容会根据不同的单片机型号和功能需求而有所不同。

第4章单片机C语言1

第4章单片机C语言1

变量:在程序运行中其值可以改变的量。
定义一个变量,编译系统就会自动为它安排一个存贮区,具体的 地址值 ,用户不必在意。一个变量由变量名和变量值构成. 变量名:存贮单元地址的符号表示。 变量的值:变量所在地址单元存放的内容。
Microcontroller 单片机的C语言 05
数据类型:数据的长度。 无论哪种数据都是存放在存贮单元中的,每一个数据究竟要占用几 个单元,都要提供给编译系统,正如汇编语言中存放数据的单元要用DB、 DW、DD伪指令进行定义一样。
Microcontroller 单片机的C语言
10
4.3.2
在固定的存贮器地址进行变量参数传递是C51的一个标准特征,定 义了变量、参数传递区的存贮器模式,也就是默认了变量和参数传递 区存贮器类型、无需再对变量和参数传递区的存贮器类型进行说明。 存贮器模式决定了变量的默认存贮器类型、参数传递区和无明确存 贮区类型的说明。有三种存贮器模式:SMALL、LARGE 和 COMPACT。
Microcontroller 单片机的C语言
14
下面表格表示两种语言将m单元的内容送n单元的对照语句: 直接寻址
汇编语言 MOV n,m 传送语句 C 语言 n=m; 赋值语句 汇编语言 MOV R1,#m ; m的地址送R1 MOV n,@R1 ; m单片机的C语言
04
4.2 C51的数据类型
C51的数据有常量和变量之分。 常量:在程序运行中其值不变的量。 数值型常量:可以为十进制数、 十六进制数( 用0x表示)和字符 (用‘ ’ 引号括起)。 符号型常量:用符号表示常量,此符号需用宏定义指令(#define)对 其进行定义(相当于汇编的‚EQU‛伪指令)。 如:#define PI 3.1415那么程序中只要出现PI的地方,编译 程序都译为3.1415。

第四章 单片机C51简介

第四章 单片机C51简介

五、C51常用运算符

赋值运算符、算数运算符、关系运算符、 逻辑运算符、位运算符、条件运算符….
位运算符 位运算是按位对变量进行运算的,但并不改变参与 运算的变量的值。 C51 中位运算符只能对整数进行操作,不能对浮点 数进行操作。C51中的位运算符有: & 按位与 ︱ 按位或 ∧ 按位异或 ~ 按位取反 << 左移 >> 右移
//声明单个位
2. C51数据存储类型
存储类型 data 与存储空间的对应关系 直接寻址片内数据存储区,访问速度快(128字节) 可位寻址片内数据存储区,允许位与字节混合访问(16字 节) 间接寻址片内数据存储区,可访问片内全部RAM地址空 间(256字节) 分页寻址片外数据存储区(低256字节) 寻址片外数据存储区(64K字节) 寻址代码存储区(64K字节)
bit bdata flags;
float idata x,y,z;
unsigned int pdata dimension; unsigned char xdata vector[10][4][4];
unsigned char code a[]={0x00,0x01};
P78 例4-2、4-3(自行看书)
•sfr16 16位特殊功能寄存器
sfr16占用两个内存单元,值域为 0~65535。sfr16和sfr 一样用于操作特殊功能寄存 器,不同的是它用于操作占两 个字节的寄存器,如定时器T2。 sfr16 T2=0xCC; //定义8052定时器2,低8位地址为
// T2L=CCH,高8位T2H=CDH
指针
当定义一个指针变量时,若未指定它所指向的 对象的存储类型,则该指针变量被认为是一般 指针; 指定了它所指对象的存储类型,则该指针被认 为是基于存储器的指针。

单片机C语言的程序设计


单片机(Microcontrollers)诞生于 1971 年,经历了 SCM、MCU、SoC 三大阶段,早期的 SCM 单片机都是 8 位或 4 位的。其中最成功的是 INTEL 的 8051,此后在 8051 上发展出了 MCS51 系列 MCU 系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了 16 位单片机,但因为性价比不理想并未得到很广泛的应用。90 年代后随着消费电子产品大发展,单片机技术得到了巨大提高。随着 INTEL i960 系列特别是后 来的 ARM 系列的广泛应用,32 位单片机迅速取代 16 位单片机的高端地位,并且进入主流市场。而传统的 8 位单片机的性能也得到了飞速提高,处理能力比 起 80 年代提高了数百倍。高端的 32 位 Soc 单片机主频已经超过 300MHz,性能直追 90 年代中期的专用处理器,而普通的型号出厂价格跌落至 1 美元,最高 端的型号也只有 10 美元。当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上 电脑和手机核心处理的高端单片机甚至可以直接使用专用的 Windows 和 Linux 操作系统。
03 8 只 LED 左右来回点亮
/*
名称:8 只 LED 左右来回点亮 说明:程序利用循环移位函数_crol_和_cror_形成来回滚动的效果
*/ #include<reg51.h> #include<intrins.h> #define uchar unsigned char #define uint unsigned int //延时 void DelayMS(uint x)
01
闪烁的 LED
/*

单片机第4章汇编语言程序设计

将汇编语言程序汇编成目标程序后,还要进行 调试,排除程序中的错误。只有通过上机调试并得 出正确结果的程序,才能认为是正确的程序。
4.2 伪指令
伪指令是在机器汇编中告诉汇编程序 如何汇编、对汇编过程进行控制的命令。 伪指令与汇编语言指令不同,只在源程序 中出现,不产生任何机器代码,在程序的 运行过程中不起作用,故称为“伪指令”。
处理 判断 连接
2.绘制程序流程图 简单的问题可由文字说明, 当问题复杂时,将文字说明的步骤以图形符号表示, 称流程图。
3.编写源程序 用汇编语言把流程图所表明的 步骤描述出来,实现流程图中每一框内的要求,从 而编制出一个有序的指令流,即汇编语言源程序。
4.汇编、调试 汇编语言是用指令助记符代替机 器码的编程语言,所编写的程序是不能在计算机上 直接执行的,因此利用它所编写的汇编语言程序必 须转换为单片机能执行的机器码形式的目标程序才 能运行,我们把这一过程称为汇编,进行汇编的程 序称为汇编程序。
4. 定义字伪指令DW
[标号:] DW 16位字数据表
该指令的功能与DB相似, 区别仅在于从指定地
址开始存放的是指令中的16位数据, 而不是字节串。
每个16位数据要占两个存储单元, 高8 位先存(低位
地址), 低 8 位后存(高位地址)。
1403H 3CH
ORG 1400H DATA1:DW 324AH,3CH
散转程序是分支程序的一种, 它可根据运算结果或输入数 据将程序转入不同的分支。MCS - 51 指令系统中有一条跳转指 令JMP@A+DPTR,用它可以很容易地实现散转功能。该指令 把累加器的8位无符号数与16位数据指针的内容相加, 并把相加 的结果装入程序计数器PC,控制程序转向目标地址去执行。

单片机的C语言程序设计

C51是专门用于MCS51系列单片机的C语言,与电脑上的C语言类似,但针对单片机的特性进行了优化。使用C51进行单片机编程,相较于汇编语言,具有更高的编程效率和更好的可读性。例如,给P1口传送数据54,汇编语言需要复杂的指令,而C51只需简单的赋值操作。同时,C51的“if”语句比汇编语言的条件判断更加直观易懂。虽然C51编好的程序在运行效率上可能不如汇编语言,但其编程效率高、语言简洁、使用方便灵活、表达能力强,且开发资源丰富,应用广泛。此外,C51还有多种版本可供选择,如Franklin C51和Keil C51等,它们都采用ANSI标准的C语言。以Keil C51为例,一个简单的串行口发送程序展示了C51程序的基本结构,包括预处理命令、函数定义和主函数等。通过Keil C51,我们可以方便地初始化串行口,发送数据,实现单片机的各种功能。

零基础学单片机c语言程序设计

零基础学单片机c语言程序设计
1、了解单片机基本知识:包括单片机结构、单片机工作原理以及常见的单片机类型及其特点;
2、学习单片机操作系统:学习C的编程语言接口,掌握使用C语言在单片机上编写程序的标准;
3、具体实现:了解各种输入输出设备的特性,如:LCD屏、I2C、ADC等,学习使用C语言对这些设备进行控制;
4、模拟实验:学会如何使用单片机编程软件,编写C语言程序,在软件上模拟单片机系统操作,掌握应用单片机C语言编程规范;
5、调试:学习如何进行单片机调试,了解常用的调试技术,比较各种调试工具的使用;
6、系统集成:学习如何把了解的硬件及软件部件快速集成,成为可以识别的功能模块,进行系统集成;
7、实际应用:了解单片机在具体实际应用中的特点,比如电器控制、安全报警控制、机器人控制等,能够应用C程序编写上述应用程序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 单片机C语言程序设计 4.1 C语言与MCS-51系列单片机
4.1.1 C语言的特点及程序结构
一.C语言的特点 1.语言简洁、紧凑,使用方便、灵活。 2.运算符丰富。 3.数据结构丰富。具有现代化语言的各种数据结构。 4.可进行结构化程序设计。 5.可以直接对计算机硬件进行操作。 6.生成的目标代码质量高,程序执行效率高。 7.可移植性好。
4.1.2 C语言与MCS-51单片机
C语言编程要与存储结构相关联:片内数据存储器与特殊功能寄存器。 按实际地址处理端口数据。 KEIL/Franklin编译器。 4.1.3 C51程序结构
C51程序与标准的C程序在以下几个方面不一样: (1)库函数不同。 (2)数据类型也有一定的区别。 (3)存储模式不一样。 (4)C51中的输入输出是通过MCS-51串行口来完成的,输入输 出指令执行前必须要对串行口进行初始化; (5)C51中有专门的中断函数。
/* BIT Register */ /* PSW */ sbit CY = 0xD7; sbit AC = 0xD6; sbit F0 = 0xD5; sbit RS1 = 0xD4; sbit RS0 = 0xD3; sbit OV = 0xD2; sbit P = 0xD0; /* TCON */ sbit TF1 = 0x8F; sbit TR1 = 0x8E; sbit TF0 = 0x8D; sbit TR0 = 0x8C; sbit IE1 = 0x8B; sbit IT1 = 0x8A; sbit IE0 = 0x89; sbit IT0 = 0x88; /* IE */ sbit EA = 0xAF; sbit ES = 0xAC; sbit ET1 = 0xAB; sbit EX1 = 0xAA
4.2 C51的数据类型
基本数据类型和组合数据类型。 有专门针对于MCS-51单片机的特殊功能寄存器型和位类型。 一.字符型char signed char和unsigned char,默认为signed char。 长度为一个字节。 signed char,定义带符号字节数据,其字节的最高位为符号位,“0”表示正数,“1”表 示负数。 unsigned char,存放无符号数或西文字符(ASCII码)。 二.int整型 singed int和unsigned int。 长度为两个字节。
用Ri间接访问的片外RAM的低256B
用DPTR间接访问的片外RAM,允许访问全部64kb片外RAM 程序存储器ROM64kb空间
【例4-2】变量定义存储种类和存储器类型相关情况。 char data varl; /*在片内RAM低128B定义用直接寻址方式访问的字符型变量 var1*/ int idata var2; /*在片内RAM256B定义用间接寻址方式访问的整型变量var2*/ auto unsigned long data var3; /*在片内RAM128B定义用直接寻址方式访问的自动无符号长整型 变量var3*/ extern float xdata var4; /*在片外RAM64KB空间定义用间接寻址方式访问的外部实型变量 var4*/ int code var5; /*在ROM空间定义整型变量var5*/ unsign char bdata var6; /*在片内RAM位寻址区20H~2FH单元定义可字节处理和位处理的 无符号字符型变量var6*/
五.特殊功能寄存器变量 格式: sfr或sfr16 特殊功能寄存器名=地址; sfr:对MCS-51单片机中单字节的特殊功能寄存器进行定义。 sfr16:用于对双字节特殊功能寄存器进行定义。 特殊功能寄存器名一般用大写字母表示。 地址一般用直接地址形式。 【例4-3】特殊功能寄存器的定义。 sfr PSW=0xd0; sfr SCON=0x98; sfr TMOD=0x89; sfr P1=0x90; sfr16 DPTR=0x82; sfr16 T1=0X8A;
转义字符
含 义
ASCII码(十六进制数)
\o
\n \r \t \b \f \„
空字符(null)
00H
0AH 0DH 09H 08H 0CH 27H
换行符(LF) 回车符(CR)
水平制表符(HT) 退格符(BS) 换页符(FF) 单引号
\”
\\
双引号
反斜杠
22H
5CH
四.字符串型常量 双引号“”括起:如“D”、“1234”、“ABCD”等。 一个字符常量在计算机内只用一个字节存放。 一个字符串常量:双引号内的字符一个占一个字节,自动后面 加一个转义字符“\o”作为字符串结束符。
三.long长整型 分singed long和unsigned long。 长度为四个字节。 四.float浮点型 五.* 指针型 指向另一个数据的地址。它的长度一般为1~3个字节。
六.特殊功能寄存器型 sfr和sfr16两种类型。 sfr为字节型,占一个内存单元,可以访问MCS-51内部的所有特殊功能 寄存器。 sfr16占用两个字节单元,可以访问所有两个字节的特殊功能寄存器。 在C51中对特殊功能寄存器的访问必须先用sfr或sfr16进行声明。 七.位类型 隐式转换的优先级: bitcharintlongfloat signedunsigned
功能函数
3.函数由“函数定义”和“函数体” 组成。
(1)函数定义包括函数类型、函数名、形式参数说明等。 函数名后面必须跟一个圆括号(),形式参数在()内定义。
(2)函数体,由一对花括号“{ }”组成。 包括:声明语句和执行语句。 仅有一对“{ }”,其中内部既没有声明语句,也没有执行语句。这种函数 称为空函数。 (3)每条语句后面必须以分号“;”作为结束符。 大小写字母有区别。 用“/*………*/”或“//” 作注释。 (4)输入和输出是通过输入输出函数scanf()和printf()来实现的。
四.存储器类型 存储器类型是用于指明变量所处的单片机的存储器区域情况。
存储器类型 data bdata idata
描 述 直接寻址的片内RAM低128B,访问速度快 片内RAM的可位寻址区(20H~2FH),允许字节和位混合访问 间接寻址访问的片内RAM,允许访问全部片内RAM
pdata
xdata code
4.3.2 变量 可以改变的量:变量名和变量值。 使用前必须定义:数据类型和存储模式。 格式: [存储种类] 数据类型说明符 [存储器类型] 变量名1[=初值],变量名2[=初 值]…; 一.数据类型说明符 必须通过数据类型说明符指明变量的数据类型,指明变量在存储器中占用的 字节数。 用typedef起别名,格式如下: typedef c51固有的数据类型说明符 别名; 定义别名后,就可以用别名代替数据类型说明符对变量进行定义。别名 可以用大写,也可以用小写,为了区别一般用大写字母表示。 【例4-1】 typedef的使用。 typedef unsigned int WORD; typedef unsigned char BYTE; BYTE a1=0x12; WORD a2=0x1234;
sbit P1_3=P1^3; sbit P1_4=P1^4; sbit P1_5=P1^5; sbit P1_6=P1^6; sbit P1_7=P1^7; “reg51.h”或“reg52.h”的头文件:使用预处理命令#include reg52.h>。
#ifndef __REG51_H__ #define __REG51_H__ /* BYTE Register */ sfr P0 = 0x80; sfr P1 = 0x90; sfr P2 = 0xA0; sfr P3 = 0xB0; sfr PSW = 0xD0; sfr ACC = 0xE0; sfr B = 0xF0; sfr SP = 0x81; sfr DPL = 0x82; sfr DPH = 0x83; sfr PCON = 0x87; sfr TCON = 0x88; sfr TMOD = 0x89; sfr TL0 = 0x8A; sfr TL1 = 0x8B; sfr TH0 = 0x8C; sfr TH1 = 0x8D; sfr IE = 0xA8; sfr IP = 0xB8; sfr SCON = 0x98; sfr SBUF = 0x99;
长度 1字节 1字节 2字节 2字节 4字节 4字节
取值范围 0~255 -128~+127 0~65535 -32768~+32767 0~4294967295 -2147483648~+2147483647
float
bit Sbit sfr sfr16
4字节
1位 1位 1字节 2字节
1.175494E38~3.402823E+38
0或1 0或1 0~255 0~65535
4.3.1 常量
4.Байду номын сангаас 51的运算量
常量是指在程序执行过程中其值不能改变的量。 整型常量、浮点型常量、字符型常量和字符串型常量。 一.整型常量 十进制整数。如234、-56、0等。 十六进制整数。以0x开头表示,如0x12表示十六进制数12H。 长整数。在存储器中占四个字节。 一个整数后面加一个字母L,长整型。 如123L在存储器中占四个字节。 二.浮点型常量 三.字符型常量 用单引号引起的字符,如‘a‟、‘1‟、‘F‟等。 ASCII字符或不可显示的控制字符。 不可显示的控制字符须在前面加上反斜杠“\”组成转义字符。
bit型和sbit型。 占一个二进制位,其值可以是“1”或“0”。 强制类型转换符“()” 。 bit不同的时候位地址是可变。 sbit对应的位地址是不可变。
基本数据类型 unsigned char signed char unsigned int signed int unsigned long signed long
【例4-5】sbit型变量的定义。 sbit OV=0xd2; sbit CY=oxd7; unsigned char bdata flag; sbit flag0=flag^0; sfr P1=0x90; sbit P1_0=P1^0; sbit P1_1=P1^1; sbit P1_2=P1^2;
相关文档
最新文档