第九章 力法(超静定结构)

合集下载

材料力学-力法求解超静定结构

材料力学-力法求解超静定结构
3 优化结构设计
力法求解超静定结构时,可以根据计算结果优化结构设计,提高结构的强度和稳定性。
结论与总结
力法是求解超静定结构的有效方法,通过合理应用材料力学基础和力法的原理,我们能够准确求解反力分布并 分析结构的应力情况。
样例分析
结构:桥梁
使用力法求解桥梁上的悬臂梁,计算主梁的支座反 力和悬臂梁的应力分布。
结构:楼房
将力法应用于楼房结构,确定楼板的支座反力并分 析楼梯的受力情况。
实用提示和技巧
1 标定自由度
在应用力法时,正确标定结构的自由度是成功求解反力的重要步骤。
2 验证计算结果
对计算得到的反力进行验证,确保结果的准确性,避免错误的设计决策。
材料力学-力法求解超静 定结构
超静定结构的定义
超静定结构是指具有不止一个不可靠支持反力的结构。它们挑战了传统的结构分析方法,需要使用力法进行求 解。
材料力学基础
材料力学研究材料的受力和变形规律,包括弹性力学、塑性力学和损伤力学。 这些基础理论为力法求解超静定结构提供了必要的工具。
力法的原理
力法是一种基于平衡原理和支座反力法则的结构分析方法。它通过对超静定结构施加虚位移,建立受力平衡方 程,求解未知反力。
超静定结构应用力法求解的步骤
1
确定结构类型
了解结构是否为超静定结构,并确定不
计算反力
2
可靠支持反力的个数。
根据力法原理,建立并求解受力平衡方
程,计算未知反力。
3
验证平衡
通过检查受力平衡方程是否满足等式的
确定应力分布
4
要求,验证计算的反力是否正确。
பைடு நூலகம்
根据已知反力和结构的几何特性,计算 并绘制应力分布图。

超静定结构的受力分析及特性

超静定结构的受力分析及特性

超静定结构的受力分析及特性一、超静定结构的特征及超静定次数超静定结构的静力特征是仅由静力平衡条件不能唯一地确定全部未知反力和内力。

结构的多余约束数或用静力平衡条件计算全部未知反力和内力时所缺少的方程数称为结构的超静定次数。

通常采用去除多余约束的方法来确定结构的超静定次数。

即去除结构的全部多余约束,使之成为无多余约束的几何不变体系,这时所去除的约束数就是结构的超静定次数。

去除约束的方法有以下几种:(一)切断一根两端铰接的直杆(或支座链杆),相当于去除一个约束。

(二)切断一根两端刚接的杆件,相当于去除三个约束。

(三)切断——个单铰(或支座固定铰),相当于去除二个约束;切断一个复铰(连接n根杆件的铰),相当于去除2(n—1)个约束。

(四)将单刚结点改为单铰节点,相当于去除一个约束;将连接n个杆件的复刚节点改为复铰节点,相当于去除n—1个约束。

去除一个超静定结构多余约束的方法可能有几种,但不管采用哪种方法,所得超静定次数一定相同。

去除图4—1a所示超静定结构的多余约束的方法之一如图4—1b所示,去除六个多余约束后,就成为静定结构,故为超静定六次。

再用其他去除多余约束的方案确定其超静定次数,结果是相同的。

二、力法的基本原理(一)力法基本结构和基本体系去除超静定结构的多余约束,代以相应的未知力Xi (i=1、2、…、n),Xi 称为多余未知力或基本未知力,其方向可以任意假定。

去除多余约束后的结构称为力法基本结构。

力法基本结构在各多余未知力、外荷载(有时还有温度变化、支座位移等)共同作用下的体系称为力法基本体系,它是用力法计算超静定结构的基础。

选取力法基本结构应注意下面两点:1.基本结构一般为静定结构,即无多余约束的几何不变体系。

有时当简单超静定结构的解为已知时,也可以将它作为复杂超静定结构的基本结构,以简化计算。

2.选取的基本结构应使力法典型方程中的系数和自由项的计算尽可能简便,并尽量使较多的副系数和自由项等于零。

力法求解超静定结构的步骤

力法求解超静定结构的步骤

力法求解超静定结构的步骤:
1、先判定其超静定次数,(含多余联系数),去掉原结构的所有多余联系,用相应的多余力代替,得一静定的基本结构(形式可能很多,尽量简单);
2、根据基本结构在原荷载及所有多余力共同作用下,在每一个去掉的多余联系处位移和原结构相应位置的已知位移相同,建立力法典型方程;
3、求方程所有系数和自由项,(静定结构的位移计算)积分法或图乘法,写出基本结构X i∑=在单位力及原荷载分别单独作用下的内力表达式或作出内力图;
4、解方程,求出所有多余力;
5、作最后内力图(静定结构的计算问题)梁、刚架:M N P 组合结构:
6、校核,两方面:平衡条件(截取结构中+ X i N i ∑=M P →Q→N 桁架:N +M i M=0 )∑Y=0 ∑ X=0 ∑刚结点、杆件或某一部分,应满足;变形协调条件(多余约束处位移是否与已知位移相等)
注:选取基本结构的原则:
(1)基本结构为静定结构;
(2)选取的基本结构应使力法方程中系数和自由项的计算尽可能方便,并尽量使较多的副系数和自由项为0
(3)较易绘M 图及MP 图。

力法

力法

力法例题:
1、用力法求解,画 M 图。其中 I1 kI 2 k 10
解:一、分析:该体系几何不变,有一次超静定。
二、选取基本结构
三、列力法方程: 11 X 1 1P 0
M P 图,求 11、1P 四、画 M 1、
11
y
i
i
EI

1 1 2 2 1 1 l l l l l l EI 1 2 3 3 EI 2 2
步骤中的难点,重点。) 第五步:求解未知力 X n 。 第六步:求杆端弯矩: M M 1 X 1 M P (一次超静定)
M M1 X1 M 2 X 2 M i X i M n X n M P ( n 次 超 静
定) 第七步:求跨中弯矩(针对于集中力作用在跨中处以及均布荷载 作用情况),作 M 图, Q 图(注意:弯矩,剪力的正负号规定)
y
i
i
EI

2 1 1 l l l l l l 3 2 EI l3 l3 6 EI EI 7l 3 6 EI 1 2 EI
1P

EI
i
yi

1 3 ql 2 l l 2 2 1 3 ql 4 ql 4 EI 4 12 1 EI
M中 AB 0 ql 2 2 2 88 ql 21ql 2 8 176
2、用力法求解,画 M 图。
解:一、分析:该体系几何不变,有一次超静定。 二、选取基本结构
三、列力法方程: 11 X 1 1P 0
M P 图,求 11、1P 四、画 M 1、
11
y
讨论:针对图乘法中需要注意的问题。 (1)必须是等截面直杆段

结构力学课后解答:第9章__超静定结构的实用计算方法与概念分析

结构力学课后解答:第9章__超静定结构的实用计算方法与概念分析

习 题9-2解:设EI=6,则5.1,1==BC AB i i 53.05.13145.1347.05.131414=⨯+⨯⨯==⨯+⨯⨯=BC BA μμ结点 A BC 杆端 AB BA BC 分配系数 固端 0.47 0.53 绞支 固端弯矩 -60 60 -30 0 分配传递 -7.05 -14.1 -15.9 0 最后弯矩-67.0545.9-45.9()()()逆时针方向215.216005.6721609.4522131m KN EI EI m M m M i AB AB BA BA B ⋅-=⎥⎦⎤⎢⎣⎡+---=⎥⎦⎤⎢⎣⎡---=θ(b)解:设EI=9,则3,31,1====BE BD BC AB i i i i12.0141333331316.0141333331436.01413333333=⨯+⨯+⨯+⨯⨯==⨯+⨯+⨯+⨯⨯==⨯+⨯+⨯+⨯⨯==BC BA BE BD μμμμ结点 A BC杆端 AB BA BC BD BE 分配系数 固端 0.16 0.12 0.36 0.36 绞支 固端弯矩0 45 -90 0 分配传递 3.6 7.2 5.4 16.216.20 最后弯矩 3.6 7.25.461.2 -73.8()()()顺时针方向22.1606.32102.732131m KN EI EI m M m M i AB AB BA BA B ⋅=⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡---=θ9-3 (a) 解:B为角位移节点设EI=8,则1==BC AB i i ,5.0==BC BA μμ 固端弯矩()m KN l b l Pab M BA ⋅=⨯⨯⨯⨯=+=4882124432222 m KN l M BC ⋅-=⋅+-=582621892 结点力偶直接分配时不变号结点 A BC 杆端 AB BA BC 分配系数 铰接 0.5 0.5 固端弯矩 0 48 -58 12 分配传递0 50 50 5 5 12 最后弯矩103-312(b) 解:存在B 、C 角位移结点设EI=6,则1===CD BC AB i i i73741413145.0141414==⨯+⨯⨯==⨯+⨯⨯==BC CB BC BA μμμμ固端弯矩:mKN M M M m KN M m KN M CDCB BC BA AB ⋅-=⨯+⨯-===⋅-=⋅-=14021808640080802结点 A BC杆端 AB BA BC CB CD 分配系数 固结 0.5 0.5 4/7 3/7 固端弯矩-80 80 0 0 -140 分配传递-20 -40 -40 -2047.5 91.4 68.6 -11.4 -22.8 -22.8 -11.4 3.25 6.5 4.9 -0.82-1.63-1.63-0.820.6 0.45 最后弯矩-112.2215.57-15.4866.28-66.05(c) 解:B 、C 为角位移结点51411,5441454414,51411=+==+==+==+=CD CBBC BA μμμμ固端弯矩:mKN M mKN M mKN M mKN M mKN M mKN M DC CD CB BC BA AB ⋅-=⨯-=⋅-=⨯-=⋅=⨯=⋅-=⨯-=⋅=⨯=⋅=⨯=10065242003524501252450125241283424646424222222结点 A BCD 杆端 AB BA BC CB CD 滑动 分配系数 滑动 0.2 0.8 0.8 0.2 -100固端弯矩64 128 -50 50 -200 分配传递15.6 -15.6 -62.4 -31.272.48 144.96 36.24 -36.24 14.5 -14.5 -58 -29 11.6 23.2 5.8 -5.8 2.32-2.32-9.28-4.643.7 0.93 -0.93 最后弯矩96.4295.58-95.6157.02-157.03-142.9796.42(d) 解:11313141413114131414145.0141414=⨯+⨯+⨯⨯===⨯+⨯+⨯⨯===⨯+⨯⨯=DBDE DCCD CA μμμμμ 固端弯矩:mKN M mKN M ED DE ⋅=⋅-=⨯-=383812422 结点 A CD E 杆端 AC CA CD DC DB DE ED 分配系数 固结 0.5 0.5 4/11 3/11 4/11 固结 固端弯矩0 0 0 0 0 -2.67 2.67 分配传递-5 -10 -10 -546/33 92/33 69/33 92/33 46/33 -0.35 - 23/33- 23/33-0.35 0.127 0.096 0.127 0.064 最后弯矩-5.35-10.7-9.3-2.442.190.254.12(e) 解:当D 发生单位转角时:()()2414-=⨯⨯=m EI K Y C 则())假设12(441==⨯=-m EI EIM DC73,74,3716,379,371216,12,16,9,12=====∴=====∴EB ED DE DA DC DE EB DE DA DC S S S S S μμμμμ 结点D EB 杆端 DC DA DE ED EB BE 分配系数 12/37 9/37 16/37 4/7 3/7 固结 固端弯矩0 0 -9 9 0 0 分配传递-2.57 -5.14 -3.86 -1.93 3.75 2.81 5 -2.5 -0.72 -1.43 -1.07 -0.54 0.230.18 0.31 0.16 最后弯矩3.982.99-6.985-5-2.47(f) 解:截取对称结构为研究对象。

超静定结构及力学原理和方程重难点分析

超静定结构及力学原理和方程重难点分析

超静定结构及力学原理和方程重难点分析一、超静定结构的概念:超静定结构:从几何组成分析来说具有几何不变性而又有多余约束的结构。

超静定结构与静定结构相比较,主要有三个方面的优点:1从几何组成看,超静定结构未没有联系的几何不变体系,而超静定结构是具有多余联系的几何不变体系;2从静力特征看,静定结构仅凭静力平衡条件便可以完全确定它的反力和内力,而超静定结构仅凭静力平衡条件还不能确定全部反力和内力,必须建立附加方程式才能求解;3 当无外荷载作用时,超静定结构有产生内力的可能性超静定杆件结构的分类:超静定梁、刚架、桁架、拱以及组合结构。

二、超静定次数的确定1、超静定次数的概念超静定次数:结构中多余约束的数目2、方法去掉多余联系的常用方法如下:(1)去掉一根支杆或切断一根链杆,相当于去掉一个联系; (2)去掉一个单铰,相当于去掉二个约束;(3)切断一根弯杆或去掉一个固定支座,相当于去掉三个联系(4)将固定支座改成不动铰支座或将受弯杆切断改铰结,各相当去掉一个联系 3、举例例如图1所示的单跨静定梁,若去掉B 支座的支杆,代以多未知力B X ,则原梁变为静定的简支梁(即为基本结构),如图1(b )所示;若将固定端A 支座加一个单铰,代以多余未知力A X ,则原梁变为静定的简支梁(即为基本结构),如图1(c )所示,所有原结构一次超静定结构.同理,如图2所示的刚架,可将A 、B 两固定改成铰支座,代以多余力A X 、B X ,则得如图2(b )所示的静定三铰刚架;或者去掉铰C ,代以多余力1X 、2X ,则得如图2(c )所示的两各静定悬臂刚架;或者去掉铰C ,故原结构为二次超静定结构。

三、力法原理和力法方程1.力法的基本原理:将超静定结构转化为含多余力的静定结构 (一)一次超静定结构 (1)确定超静定次数:n=1次 (2)选基本结构⎩⎨⎧)几何不变体系(静定结构b a )((3)位移条件: 01=∆ (a) 根据叠加原理 :p1111∆+∆=∆ (b )11111x δ=∆ (c)(4)力法方程(一次):将(c )代入(b )式得:01111=∆+px δ…………(6-1)式中:--11δ系数(单位多余力1=X 作用时,B 点沿1x 方向的位移)--∆p1自由项(荷载单独作用时B 点沿1x 方向的位移)1x --基本未知量(多余未知力或多余力)系数(11δ) 和自由项(p1∆)都是基本结构(静定结构)在已知外力作用下的位移,可用上一章讲的单位荷载法或图乘法求得,代入(6-1)式后可求出多余未知力1x ,求得1x 之后其余的计算(支座反力和内力)同静定结构。

结构力学 力法计算超静定结构

结构力学 力法计算超静定结构
项目三 超静定结构的内力计算
子项目一 力法计算超静定结构
情景一 超静定结构的基本特征
学习能力目标
1. 能够解释力法的基本概念。 2. 能够确定超静定的次数,得到静定的基本结构。 3. 了解超静定结构的特点。
项目表述
试分析如图 3 – 1 所示超静定结构,确定它的超静定次数。
情景一 超静定结构的基本特征 学习进程
情景一 超静定结构的基本特征 知识链接
② 去掉一个固定铰支座(图 3 – 6a)或拆去一个单铰相当于去掉两个约束(图 3 – 6b),可用两个多余未知力代替。
情景一 超静定结构的基本特征 知识链接
③ 去掉一个固定支座(图 3 – 7b)或切断一刚性杆(图 3 – 7c),相当于去掉 三链接
③ 超静定结构的内力和各杆的刚度比有关,而静定结构则不然。在计算超静定 结构时,除了用静力平衡条件外,还要用到结构的变形条件建立补充方程。而 结构的变形条件与各杆的刚度有关,在各杆的刚度比值发生变化时,结构各部 分的变形也相应变化,从而影响各杆的内力重新分布。利用在超静定结构中, 刚度大的部分将产生较大的内力,刚度较小的部分内力也较小的特点,可以通 过改变杆件刚度的方法来达到调整内力数值的目的。 ④ 在局部荷载作用下,超静定结构与静定结构相比,具有内力分布范围大,内 力分布较均匀,峰值小,且变形小、刚度大的特点。如图 3 – 9a 所示是三跨连 续梁在荷载 F 作用下的弯矩图和变形曲线,由于梁的连续性,两边跨也产生内 力和变形,最大弯矩在跨中为 0.175Fl。图 3 – 9b 所示是多跨静定梁在荷载 F 作用下的弯矩图和变形曲线,由于铰的作用,两边跨不产生内力和变形,最大 弯矩在跨中为 0.25Fl,约为前者的 1.4 倍。
情景一 超静定结构的基本特征 知识链接

用力法计算超静定结构在支座移动和温变化时的内力

用力法计算超静定结构在支座移动和温变化时的内力

l
M1 图
X1=1

l3 3EI
X 1 q l a
由此求得
X1
3EI l2
(q
a) l
弯矩叠加公式为:
M M1X1
3EI (q a )
l
l
M图
X1
q
A
C q
B a
l/2
l/2
l
q
q
X1 a
基本体系之一
q
q
D1c
FRA 1
l
M1 图
X1=1
(2)第二种解法
取支座A的反力偶作为多余未知力X1, 其力法方程为
计算支座移动引起n次超静定结构的内力时,力法程中 第 i个方程的一般形式可写为
n
ij X j Δic Ci
j 1
ij为柔度系数
Ci,表示原结构在Xi方向的实际位移
Dic,表示基本结构在支座移动作用下在Xi方向的位移
【例7-9】图示单跨超静定梁AB,已知EI为常数,左端支座转动角度为q ,
右端支座下沉位移为a,试求在梁中引起的自内力。
)
10
(
1 2
1
l
)
2.5
(1 l
l)
10
(
2 l
l)
100 22.5 77.5
代入典型方程,可得
77.5EI/l
A
B
X1
Δ1t
11
77.5EI
l
()
最后弯矩图M M1 X1 ,如图所示。
77.5EI/l 77.5EI/l
C
D
77.5EI/l
M图
由计算结果可知,在温度变化时,超静定结构的内力与反力与各 杆件刚度的绝对值成正比。因此,加大截面尺寸并不是改善自内 力状态的有效途径。另外,对于钢筋混凝土梁,要特别注意因降 温可能出现裂缝的情况(对超静定梁而言,其低温一侧受拉而高 温一侧受压)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6)叠加最后弯矩图 144X X1=36 , 2-3726=0 1+108X M = Mi Xi M P 108X X2=- 13.5 2=0 1+288X
103.5
M kN.m 135
1Hale Waihona Puke 8西华大学土木工程学院 舒志乐讲授
EI 3Pl/16 P M 5Pl/32 l/2 3Pl/16 X1
2kN/m
↓↓↓↓↓↓↓↓
1
MP
qa2/8
3 2 2 2a a qa qa qa X , XX =0 1 2 = X = 1 2 3EI 6 EI 2460 EI 15 a 2a Mi XX =0 MX =1 2 M i P 6 EI 3EI
西华大学土木工程学院 舒志乐讲授
P
l X2
I 2 I =k I 2 1
I2
d11 =
288k 144 kEI1 D X 1 = - 1P
超静定结构由荷载产 ↓↓↓↓↓↓↓↓↓↓↓↓ 生的内力与各杆刚度的相 对比值有关,与各杆刚度 的绝对值无关。 基本体系
X1
6 6
M
q=20kN/m
8m
↓↓↓↓↓↓↓↓↓↓↓↓
d11
320k =92k 1
8.9 80 +
- -
X =0 Y = 0

N CD = -8.9kN N CA = -80kN
8.9 80
NCA
80

80
160
8.9
8.9
Q图(kN)

N图(kN)

西华大学土木工程学院 舒志乐讲授
53.33
160
M图(kN.m)
由M图画出变形曲线草图
§9.3力法方程的典型形式 1、超静定结构计算的总原则: 欲求超静定结构先取一个基本体系,然 后让基本体系在受力方面和变形方面与原 结构完全一样。
M图(kN.m)
西华大学土木工程学院 舒志乐讲授
由已知的弯矩求剪力求轴力
160 53.33
53.33 QCD C
20kN/m
↓↓↓↓↓↓↓↓↓↓↓↓
53.33
D
8m
M
M图(kN.m)
D
= 53.33 20 8 4 - 53.33 - QCD 8 = 0
80
QCD = 80kN
NCD
力 超 静 法 定 结 计 构 算 的 位 校 移 计 核 算
支 座 移 动 和 温 度 改 变 作 用
超 对 超 静 静 称 定 桁 定 结 架 、 拱 构 组 的 的 合 结 计 计 构 和 算 算 拱
超 静 定 梁 、 刚 架 和 排 架
力 超 法
静 定
基 次 本 数 的 概 确 念 定
西华大学土木工程学院 舒志乐讲授
D 1P =

M 1M P
dx
ql2/8
X1=-Δ1P / δ11
=3ql/8
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ M图
或按: M = MX1 M P 叠加
3ql/8
西华大学土木工程学院 舒志乐讲授
d 11 X 1 D1P = 0
D1P 512 = EI1
↓↓↓↓↓↓↓↓↓↓↓↓
q=20kN/m I1
21
δ11
ΔBH=Δ 1 =0 主系数恒为正,付系数、自由项可正可负可为零。主系数、 ×X1 = ΔBV=Δ2=0 δ = + 12 付系数与外因无关,与基本体系的选取有关,自由项与外因有关。
A δ22
2
1
1
↓↓↓↓↓↓↓↓
Δ2P
Δ1=Δ11+Δ12+Δ1P=0 δ11X1+ δ12X2+Δ1P=0 δ21X1+ δ22X2 +Δ2P=0
(A)
西华大学土木工程学院 舒志乐讲授
q=23kN/m
q=23kN/m
C EI A
EI
EI 6m B
D 6m
X1
X2
X1
X1
X1 =1
↑↑↑↑↑↑↑
↑↑↑↑↑↑↑
例题: 力法解图 示刚架。
X2 基本体系
M1 6 6
δ11X1+ δ12X2+Δ1P=0
X2 M2
6
δ21X1+ δ22X2 +Δ2P=0
例题:用力法 解图示刚架。 EI=常数。
P E D
Pl/2 C
l/2
l/2 X1
l/2
P
l/2
EI=常数 l d 11 = EI l d 22 = 3EI
1
1 1
X1=1
M1 M2
P
d 12 = d 21 =
D1P
l 6 EI
Pl 2 = , D2P = 0 16EI
6 Pl 88 3Pl X2 = 88 X1 = -
MP
Pl/4
西华大学土木工程学院 舒志乐讲授
力法的特点: 基本未知量——多余未知力 基本体系——静定结构 基本方程——位移条件 (变形协调条件) 由基本体系与原结构变形 一致达到受力一致
位移法的特点: 基本未知量—— 基本体系—— 基本方程——
西华大学土木工程学院 舒志乐讲授
↓↓↓↓↓↓↓↓ M i2 MiM k B 0 MiM P δ 0 d iiq = ds 0,d ik = ds = 0 ,D iP = ds = 0 ↓↓↓↓↓↓↓↓ 基本体系 EI B EI X X EIX =1 0 0
西华大学土木工程学院 舒志乐讲授
Force Method

基本要求:
掌握力法基本体系的确定、力法 典型方程的建立、方程中系 数和自由项的计算。 熟练掌握用力法计算超静定梁和 刚架、对称性利用、超静定 结构的位移计算。 重点掌握荷载作用下的超静定结 构计算。 了解力法典型方程的物理意义、 温度改变和支座移动下的超 静定结构计算。
160
MP
6m
X1=1
X1
k=
1 2
=-
80 kN 9
160
53.33
M = M1 X1 M P
6 1 6 6 2512 6 288k 144 18 26 6 160 d = 2 = D 6 = 11 1P = EI EI 11 kEI1 2 3 31 EI kEI1
X2=1 ×X2

Δ1P
含义:基本体系在多余未知力和荷载共同作用下,产生的多余未知 力方向上的位移应等于原结构相应的位移,实质上是位移条件。 主系数δii表示基本体系由Xi=1产生的Xi方向上的位移 付系数δik表示基本体系由Xk=1产生的Xi方向上的位移 自由项ΔiP表示基本体系由荷载产生的Xi方向上的位移
2
1
M1
西华大学土木工程学院 舒志乐讲授
力法基本体系的合理选择
2 1 3 1 1 1 a 1 2 a 2 a 1 2 a qa 1 qa 力法基本体系有多种选择,但必须是几何不变体系。同时应 d d = d = == = d,22 D 2 P = 0 D12 = 2 = 11 21 = 1P EI EI 3 32 3 6EI EI EI EI 3 2 28 24 尽量使较多的付系数、自由项为零或便于计算。所选基本体系应 含较多的基本部分,使 Mi,MP尽可能分布局部。 2 qa 用力法解图示连续梁, 2kN/m ↓↓↓↓↓↓↓↓ 15 各跨EI=常数,跨度为a. 2kN/m ↓↓↓↓↓↓↓↓ 2kN/m 2a 2 X X d 11 = = d 22 1 qa ↓↓↓↓↓↓↓↓ 2 3EI 60 a d 12 = d 21 = X1=1 M1 6 EI qa3 D1P = , D2P = 0 1 24EI X2=1 M 2
西华大学土木工程学院 舒志乐讲授
对于 n 次超静定结构有n个多余未知力X1、 X2、…… Xn,力法基 本体系与原结构等价的条件是n个位移条件, Δ1=0、 Δ2=0、 ……Δn=0,将它们展开 或: i,j=1,2,……n 2 0 Mδ M M δ11X1+ X +……+ δ X + Δ =0 1P 计算刚架的位移 d ii = i 12 ds2 0,d ik = 1n i n k ds = 0, EI EI+ Δ 0 时,只考虑弯矩的影 δ21X1+ δ22X2+……+ δ2nX n 2P=0 响。但高层建筑的柱 ………………………………………… 0 MiM P δiP X + D = ds = 0 δnnXn+ Δ nP=0 要考虑轴力影响,短 n1 1 n2X2+……+ δEI 0 而粗的杆要考虑剪力 影响。 由上述,力法计算步骤可归纳如下: 1)确定超静定次数,选取力法基本体系; 2)按照位移条件,列出力法典型方程; 3)画单位弯矩图、荷载弯矩图,用(A)式求系数和自由项; 4)解方程,求多余未知力; 5)叠加最后弯矩图。 M = M i X i M P Δi=∑δijXj+ Δ iP=0
1
dx

X1=1
1 l 2 2l l 3 P=1 = l = EI 2 3 3 EI 求X1方向的位移虚拟的力状态
ql2/2
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
MP
δ11
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓B Δ1P
+
×X1
X1 =1
Δ1=δ11X1 + Δ1P=0
EI 2 1 1 ql 3 l ql 4 =l = EI 3 2 4 8 EI
q ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓B

RB
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓B 当ΔB=Δ1=0

>RB X1 < < =
δ11
相关文档
最新文档