经济学博弈论概念通用六篇

合集下载

博弈论总结报告范文(3篇)

博弈论总结报告范文(3篇)

第1篇一、引言博弈论是研究具有冲突和合作的个体或群体在有限信息和资源条件下,如何通过策略选择实现自身利益最大化的理论。

自20世纪初以来,博弈论在经济学、政治学、生物学、计算机科学等领域得到了广泛应用。

本文将对博弈论的基本概念、主要模型及其应用进行总结。

二、基本概念1. 博弈:指两个或多个参与者,在一定的规则下,根据对方的策略选择自己的策略,以实现自身利益最大化的过程。

2. 策略:指参与者在博弈中采取的行动方案。

3. 利益:指参与者追求的目标。

4. 博弈结果:指所有参与者采取策略后所达到的状态。

三、主要模型1. 零和博弈:指所有参与者的利益总和为零的博弈,即一方所得即另一方所失。

2. 非零和博弈:指所有参与者的利益总和不为零的博弈。

3. 完美信息博弈:指所有参与者对其他参与者的信息都完全了解的博弈。

4. 不完美信息博弈:指至少有一个参与者对其他参与者的信息不完全了解的博弈。

5. 静态博弈:指参与者同时或依次采取策略的博弈。

6. 动态博弈:指参与者采取策略的顺序是随机的博弈。

四、应用领域1. 经济学:博弈论在经济学中的应用主要体现在市场均衡、价格竞争、企业竞争等方面。

2. 政治学:博弈论在政治学中的应用主要体现在选举、政治决策、国际关系等方面。

3. 生物学:博弈论在生物学中的应用主要体现在物种进化、社会行为、性别选择等方面。

4. 计算机科学:博弈论在计算机科学中的应用主要体现在人工智能、网络安全、算法设计等方面。

五、结论博弈论作为一种研究个体或群体在冲突和合作中实现自身利益最大化的理论,具有广泛的应用前景。

通过对博弈论的基本概念、主要模型及其应用领域的总结,我们可以更好地理解现实生活中的竞争与合作现象,为解决实际问题提供理论指导。

然而,博弈论在应用过程中仍存在一些局限性,如信息不对称、策略复杂等问题,需要进一步研究和改进。

总之,博弈论作为一种重要的理论工具,在各个领域都发挥着重要作用。

随着博弈论研究的不断深入,其在实际应用中的价值将得到进一步体现。

博弈论总结(精选13篇)

博弈论总结(精选13篇)

博弈论总结第1篇最大化自己最坏情况下的收益。

着眼于自己的收益,保证自己收益,防止风险使得自己的收益变小。

以性别之战为例子:首先你得先得到一个关于妻子和丈夫的一个收益表 1.进行假设:妻子策略:P概率看韩剧、(1-P)概率看体育丈夫策略:Q概率看韩剧、(1-Q)概率看体育 xxx子期望收益(着眼于自己的期望收益): Uw(q,p)=2PQ + 0×P(1-Q) + 0×Q(1-P) +1×(1-P)(1-Q) = 3PQ - P -Q +1 前面的系数参考收益表(妻子收益)3.妻子的最小收益可能为Q=0或Q=1(当丈夫选择Q=0时,意味着丈夫100%想看体育,妻子的收益可能为0;当Q=1时,丈夫100%想看韩剧,如果这时妻子想看体育,收益同样最小)这里只是在讨论妻子收益最小的可能性4.妻子的最坏收益为:minUw(p,q) = min(1-P,2P)5.最大化最坏收益: max(min(1-P,2P))解的:P=1/3则妻子的maxmin策略为:1/3概率选择韩剧,2/3概率选择体育。

同理得丈夫的maxmin策略为:1/3概率选择体育,2/3概率选择韩剧。

minmax策略 1.最小化对手最好情况下的收益。

是着眼于对手的收益。

还是这样的一个收益表 1.进行假设:妻子策略:P概率看韩剧、(1-P)概率看体育丈夫策略:Q概率看韩剧、(1-Q)概率看体育2.丈夫期望收益(着眼于对方的期望收益):(与maxmin不同要注意!!)Uw(q,p)=PQ + 0×P(1-Q) + 0×Q(1-P) +2×(1-P)(1-Q) = 3PQ - 2P -2Q +2前面的系数参考收益表(丈夫收益)3.妻子的最小收益可能为Q=0或Q=1(当丈夫选择Q=0时,意味着丈夫100%想看体育,如果这时妻子也想看体育,丈夫收益到2;当Q=1时,丈夫100%想看韩剧,如果这时妻子想看韩剧,收益同最大1)这里只是在讨论妻子收益最小的可能性xxx夫的最大收益为:maxUw(p,q) = max(2-2P,P) 5.最小化最好收益: min(max(1-P,2P))妻子的minmax策略:2/3概率选择韩剧,1/3概率选择体育同里丈夫为的minmax为…在零和博弈中,maxmin策略和minmax策略是等价的。

经济学中的博弈理论

经济学中的博弈理论

经济学中的博弈理论导言博弈理论,作为经济学中的一个关键分支,研究了人们在决策过程中相互作用的情况下所面临的策略选择。

本文将探讨博弈理论的基本概念、应用领域以及对经济学的影响。

一、博弈理论的基本概念博弈理论涉及参与者之间的相互作用和决策过程。

下面是博弈理论中的一些关键概念:1.1 参与者在博弈理论中,参与者是指在决策过程中采取行动的个体或组织。

他们的决策将在相互作用中彼此影响。

1.2 策略策略是参与者为达到特定目标而采取的行动计划。

博弈理论通过分析不同策略的优劣势来推断参与者的最佳选择。

1.3 支付支付是参与博弈的参与者所获得或损失的效用。

博弈理论通过对支付的分析来评估参与者采取特定策略的激励和决策。

1.4 博弈形式博弈形式确定了参与者之间的规则和限制。

它定义了参与者可采取的策略集合,以及每种策略组合的结果。

1.5 均衡博弈均衡是指在博弈中参与者达到的一种稳定状态,其中没有参与者有动机单方面改变其策略。

二、博弈理论的应用领域博弈理论在许多领域中得到广泛应用,包括经济学、政治学、战略管理等。

以下是一些典型的应用领域:2.1 经济学博弈理论在经济学中的应用是最为重要和广泛的。

它研究了在市场、公司决策和资源分配等方面的决策制定过程,并分析了个体和组织之间的相互作用。

2.2 政治学政治学家运用博弈理论来研究选举、立法和国际关系等政治过程。

博弈理论的工具为研究者提供了一种分析决策制定者之间相互作用的方式。

2.3 战略管理战略管理是博弈理论的一个重要应用领域。

企业通过运用博弈理论,制定合适的竞争策略,从而在市场竞争中取得优势。

三、博弈理论对经济学的影响博弈理论对经济学产生了深远的影响,尤其是在以下方面:3.1 市场分析博弈理论提供了一种有效的工具,用于分析市场中不同参与者的策略选择和相互作用。

基于博弈理论的分析,可以预测市场行为和价格的变化。

3.2 合作与竞争博弈理论研究了合作和竞争之间的相互作用。

通过博弈理论的研究,经济学家可以理解参与者之间的合作动机和竞争策略,并为政策制定者提供有关如何促进合作或竞争的建议。

经济学实训报告博弈论

经济学实训报告博弈论

一、摘要博弈论是经济学中一个重要的理论工具,它研究个体在相互作用中的决策行为。

在经济学实训中,通过实际案例分析,我们可以更深入地理解博弈论在现实经济活动中的应用。

本报告以博弈论为基础,结合经济学实训案例,分析博弈论在现实经济活动中的具体应用,并提出相关建议。

二、引言博弈论是研究具有竞争性和合作性的决策行为的数学工具。

它起源于20世纪初,经过不断发展,已成为经济学、政治学、生物学等领域的重要理论。

博弈论的核心思想是:个体在决策时,不仅要考虑自己的利益,还要考虑其他个体的决策。

因此,博弈论对于分析现实经济活动具有重要意义。

三、博弈论在经济学实训中的应用1. 实训案例一:价格战实训背景:某市有两家大型家电企业,分别为A公司和B公司。

两家公司在市场上的产品具有很高的替代性,为了争夺市场份额,两家公司决定开展价格战。

实训分析:在这个案例中,A公司和B公司构成了一个博弈关系。

两家公司在制定价格策略时,不仅要考虑自己的成本和市场需求,还要预测对方的价格策略。

如果A公司提高价格,B公司可能会降低价格以争夺市场份额;反之,如果B公司提高价格,A公司也可能降低价格。

这种情况下,两家公司陷入了价格战的困境。

实训建议:为了避免价格战,两家公司可以考虑以下策略:(1)加强沟通,寻求合作,共同制定市场规则;(2)提高产品质量和服务,提升品牌价值,降低价格战的影响;(3)通过技术创新,降低成本,提高竞争力。

2. 实训案例二:囚徒困境实训背景:两名犯罪嫌疑人被关押在两个分开的牢房中,警方分别向他们提供了以下选择:(1)如果两人都保持沉默,警方将根据其他证据给予较轻的刑罚;(2)如果其中一人背叛,即向警方提供对方犯罪证据,而对方保持沉默,背叛者将获得自由,而被背叛者将受到重罚;(3)如果两人都背叛,警方将根据证据给予较重的刑罚。

实训分析:在这个案例中,两名犯罪嫌疑人构成了一个囚徒困境。

他们都会倾向于背叛对方,以期望获得自由。

然而,如果两人都选择背叛,他们都将受到重罚。

经济学中的博弈论分析

经济学中的博弈论分析

经济学中的博弈论分析引言:经济学中的博弈论是一种研究决策者之间相互作用的理论框架。

它通过分析不同决策者的策略选择和可能的结果,揭示了在不同情境下决策者之间的相互影响和决策结果。

本文将探讨博弈论在经济学中的应用,并通过几个具体案例来说明其分析的重要性和实用性。

一、博弈论的基本概念博弈论是研究决策者之间相互作用的理论框架,它主要包括博弈的参与者、策略选择和结果等基本概念。

在博弈论中,参与者可以是个人、公司、国家等,他们根据自身的利益和目标选择不同的策略,而结果则取决于各个参与者的策略选择。

二、博弈论在市场竞争中的应用1. 零和博弈:零和博弈是一种参与者利益完全相反的博弈情境。

在市场竞争中,企业之间的价格战可以被看作是一种零和博弈。

企业在制定价格策略时,需要考虑对手的反应,以及自身的利润最大化。

通过博弈论的分析,企业可以更好地理解竞争对手的行为,从而制定出更有效的策略。

2. 合作博弈:合作博弈是一种参与者通过合作达成共同利益的博弈情境。

在市场中,企业之间可以通过合作来实现资源共享、降低成本等目标。

例如,多家电信公司联合建设基础设施,共享网络资源,既能降低成本,又能提高服务质量。

博弈论的分析可以帮助企业确定最优的合作策略,实现资源的最大化利用。

三、博弈论在战略决策中的应用1. 囚徒困境:囚徒困境是博弈论中的一个经典案例。

在囚徒困境中,两名囚犯面临合作与背叛的选择。

如果两名囚犯都选择合作,则可以得到较轻的刑期;如果两名囚犯都选择背叛,则会得到较重的刑期;如果一方选择合作,而另一方选择背叛,则合作方会得到最重的刑期。

这个案例揭示了在某些情境下,个体追求自身利益可能导致最不理想的结果。

在实际生活中,囚徒困境的思考可以引导我们在战略决策中更好地平衡个体和集体利益。

2. 竞争与合作:在国际关系中,各国之间的竞争与合作也可以用博弈论的理论框架来解释。

例如,两个国家之间的贸易争端可以被看作是一种博弈。

各国在制定贸易政策时,需要权衡自身的利益和对手的反应。

经济学博弈论

经济学博弈论

经济学博弈论一、什么是博弈论?博弈论是一门研究决策者进行互动决策的数学理论。

其中的决策者称之为玩家,他们之间的互动称之为博弈。

博弈模型通常包括参与人数、规则、目标、信息等方面。

二、博弈论的应用领域博弈论有广泛的应用领域,如经济学、政治学、心理学、生物学等。

其中,经济学是博弈论的主要应用领域之一。

在经济学中,博弈论通常用于研究市场竞争、合作与冲突等问题。

三、博弈的分类博弈可以按参与者数目、信息量、回合数等多种不同方式进行分类。

按参与者数目,博弈分为两人博弈和多人博弈;按信息量,博弈分为完全信息博弈和不完全信息博弈;按回合数,博弈分为一次性博弈和多次博弈。

四、博弈论的基本元素博弈论是建立在一系列基本元素之上的。

其中,玩家、策略、收益是博弈论的重要组成部分。

玩家是指参与博弈的个体或集合体,策略是指玩家为获取最大收益而做出的行动选择,收益则是指在博弈中各个决策方案的结果对各玩家的实际利益。

五、博弈的解博弈的解是指在博弈过程中,对博弈中各方所采取的策略的一种合理性的结论。

博弈论的解通常分为纳什均衡、占优策略均衡、演化稳定策略等多种形式。

其中,纳什均衡是最常见的博弈解决方法。

六、经典案例:囚徒困境囚徒困境是博弈论中最经典的博弈之一。

它是两个囚犯招供还是保持沉默的选择问题。

如果两人都招供,各自将面临3年的刑期;如果两人都保持沉默,各自将面临1年的刑期;如果一个人招供,而另一个人保持沉默,则招供者将面临1年的刑期,而另一个人则将面临10年的刑期。

七、结语博弈论的应用领域越来越广泛,以经济学为例,它为我们提供了在市场竞争中作出更优决策的理论依据。

通过博弈论的理论研究,我们可以更深入地理解人类博弈行为的规律性和本质,也可以借助博弈的模型为人类社会做出更好的改变。

经济博弈论概述

经济博弈论概述

经济博弈论概述引言经济博弈论是研究经济参与者在有限理性条件下进行决策的一门学科。

它主要研究经济参与者之间的互动和策略选择,以及这些互动和策略选择对经济系统的影响。

博弈论广泛应用于经济学、政治学、社会学、生物学等学科中,被认为是解决复杂社会问题和分析个体行为的重要工具之一。

博弈论基本概念参与者在博弈论中,参与者是指在一个特定博弈中进行决策的个体或组织。

参与者可以是个人、企业、国家等等。

每个参与者根据自身的利益和目标来制定策略。

策略策略是参与者为了达到自身目标而采取的行动。

在博弈论中,每个参与者可以选择不同的策略,这些策略可能直接或间接地影响其他参与者的决策。

支付支付是参与者根据自己的策略选择和博弈的结果而获得或损失的利益或成本。

支付可以是金钱或其他形式的效用。

每个参与者都希望通过制定有效的策略来最大化自己的支付。

博弈形式博弈形式是指博弈过程中参与者选择策略的规则和限制。

常见的博弈形式包括完全信息博弈和不完全信息博弈。

在完全信息博弈中,每个参与者都了解其他参与者的策略和支付函数,而在不完全信息博弈中,参与者可能只了解部分信息。

不同的博弈形式会对参与者的策略选择和结果产生不同的影响。

均衡概念在博弈论中,均衡是指在一组给定的策略下,参与者没有动机改变他们的决策,因为任何单个个体的策略改变都不会提高他们的支付。

常见的均衡概念包括纳什均衡、帕累托最优、占优策略和等身份均衡等。

经济博弈论的应用市场竞争经济博弈论在市场竞争的分析中起着重要的作用。

在一个市场中,不同的企业之间会进行价格竞争和市场份额争夺等博弈策略。

通过博弈论的分析,我们可以理解不同策略对企业利润和市场格局的影响,从而指导企业制定最优的竞争策略。

合作与冲突博弈论也可以应用于合作与冲突的研究中。

在合作关系中,参与者可以通过博弈论的分析来确定最优的合作策略,以实现共同的利益。

而在冲突情境中,博弈论可以帮助我们理解参与者之间的战略选择和策略优化,从而指导冲突的解决和决策的制定。

经济学 博弈论

经济学 博弈论

经济学博弈论
经济学是研究资源分配和决策制定的学科。

博弈论是经济学中的一个重要分支,研究人们在决策过程中的相互关系和策略选择。

博弈论以一种类似游戏的方式描述人们之间的决策行为。

在博弈论中,参与者根据其他参与者的行为和可能的结果来制定自己的策略。

博弈论通过数学模型和分析来研究参与者的最佳决策策略以及可能的结果。

在博弈论中,常见的博弈模型包括零和博弈、合作博弈和非合作博弈。

零和博弈是一种互相对抗的模型,参与者之间的利益完全相反。

在零和博弈中,一方的收益就是另一方的损失。

合作博弈是一种参与者之间可以合作的模型,参与者可以通过合作来实现共同的利益。

非合作博弈是一种参与者之间不能合作的模型,每个参与者都追求自己的最大利益。

博弈论在经济学中的应用广泛。

在价格竞争中,企业之间会进行非合作博弈,每个企业都会制定自己的定价策略以追求市场份额和利润最大化。

在拍卖市场中,卖方和买方之间也会进行博弈,卖方希望以最高的价格卖出商品,而买方则希望以最低的价格购买商品。

博弈论还可以应用于战略决策、合作关系、资源分配等领域。

通过对参与者行为和策略的建模和分析,可以帮助人们更好地理解经济行为和市场运作。

博弈论的研究成果也可以为决策者提供指导,帮助他们做出最佳的决策。

经济学博弈论是一门重要的学科,它研究人们在决策过程中的相互关系和策略选择。

通过建立数学模型和分析,博弈论可以帮助我们更好地理解经济行为和市场运作,并为决策者提供决策支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经济学博弈论概念通用六篇
经济学博弈论概念范文1
【关键词】博弈论;进展脉络;理论体系
博弈论是讨论在利益相互影响的局势中,参加人如何选择自己的策略才能使自身的收益最大化的均衡问题,是讨论聪慧而又理智的决策者在冲突或合作中的策略选择理论。

无论是人类社会的进展变化、社会经济制度的变革,还是人们的日常生活,我们都会常常遇到利益相互影响的博弈问题,也会常常使用博弈去选择策略,不管是自觉的还是无意识的。

博弈论的思想极为深刻,内容非常丰富,引起了众多经济学家的极大爱好,赢得了经济理论界的广泛关注。

一、博弈论进展脉络
博弈思想在人们日常生活中早就存在,但这只是停留在阅历上,没有形成理论。

在我国,有文献记载的最早博弈思想,可以追溯到2000多年前闻名的田忌赛马的事例。

在国外,1500年前巴比伦犹太教法典中的婚姻合同问题,也包含着明显的博弈思想。

博弈论应用到经济分析中,是在19世纪中期,博弈论体系的产生、进展、富强,则是近几十年的事。

现代博弈论思想在经济上的应用可以分为以下几个阶段:
1、萌芽阶段
最早的包含博弈思想的经济学文献,是1838年法国经济学家古诺(Cournot)提出的寡头市场产量竞争模型。

而1883年法国经济学
家伯特兰德(Bertrand)提出的寡头市场价格竞争模型,把古诺模型里寡头厂商的产量竞争变成了价格竞争。

1913年策梅罗(Zermelo)提出的关于象棋博弈的定理是博弈论的第一个定理,提出的逆向归纳法是博弈论的第一种有一般意义的分析方法。

这一阶段,还有许多学者涉及了博弈论的讨论,但都是零散的讨论,没有形成体系。

2、产生阶段
一般认为,博弈论作为一种系统的理论产生的标志,是1944年冯・诺伊曼(von Neumann)和摩根斯坦(Morgenstern)合著的《博弈论和经济行为》一书的出版。

该书在总结以往博弈讨论成果的基础上,给出了博弈论讨论的一般框架、概念术语和表述方法,提出了较系统的博弈理论。

在此阶段,还涌现出很多闻名的博弈理论家,提出了一系列重要概念和理论。

例如,1950年纳什(Nash)提出了均衡点的概念,1950年塔克(Tucker)介绍了“囚徒逆境”博弈,1953年夏普里(Shapley)提出了合作博弈里闻名的“夏普里值”,这些概念和理论共同构成了现代博弈论体系的核心。

3、进展阶段
从20世纪60年月开头,博弈论进入一个进展和完善的阶段。

1965年泽尔腾(Selten)提出了子博弈完善纳什均衡的概念,1967-1968年海萨尼(Harsanyi)建立了不完全信息博弈理论,1974年奥曼(Aumann)提出了相关均衡的概念,1975年泽尔腾又提出了颤抖的手均衡的概念,1982年克里普斯(Kreps)和威尔逊(Wilson)提出了序贯均衡的概念,1991年弗登博格(Fudenberg)和梯若尔(Tirole)
提出了完善贝叶斯均衡的概念,这些都进一步进展和完善了博弈的理论。

4、富强阶段
20世纪90年月以来,博弈论开头受到经济学家真正广泛的重视,并被看作重要的经济理论和经济学的核心分析方法,开头贯穿几乎整个微观经济学、产业组织理论,在宏观、金融、环境、劳动、福利、国际经济学等学科中也开头占有越来越重要的地位,大有以博弈论为基础重构经济学大厦的趋势。

尤其是1994年纳什、海萨尼、泽尔腾这三位博弈论学者共同获得诺贝尔经济学奖,使博弈论作为重要经济学分支学科的地位和作用得到了权威性的确定,也表明白博弈论已在主流经济学中占据重要地位。

二、博弈论理论体系
博弈论涵盖的内容许多,从总体上可以分为合作博弈和非合作博弈两大类。

假如博弈中存在有约束力的协议,就是合作博弈;相反,假如博弈中不存在有约束力的协议,就是非合作博弈。

合作博弈主要讨论的是在有约束力的协议作用下,参加人实行符合集体理性的行动达到博弈均衡后,各参加人的收益安排问题。

而经济问题中遇到的多是在个体理性基础上的决策,这使得基于个体理性的非合作博弈在经济讨论中广泛应用。

对非合作博弈的分类,主要涉及博弈的过程和博弈的信息结构两个方面:
1、博弈的过程
从博弈的过程来分,博弈论可以分为静态博弈和动态博弈两类。

假如全部参加人同时选择策略,或者决策虽有先有后,但后行动者并不知道先行动者的选择,这样的博弈称为静态博弈;假如参加人的行动有先后挨次,而且行动在后者可以观看到行动在先者的选择,并据此做出相应的选择,这样的博弈称为动态博弈。

2、博弈的信息结构
博弈的信息结构又分为关于收益的信息和关于博弈过程的信息两方面。

在关于收益的信息方面,假如各参加人完全了解全部参加人各种状况下的收益,称为完全信息;而至少部分参加人不完全了解其他参加人的收益,称为不完全信息。

在关于博弈过程的信息方面,假如轮到行动的参加人全部能够看到在他行动之前行动的全部参加人的行动,就是完善信息;而至少部分轮到行动的参加人不能全部看到在他行动之前行动的某些参加人的行动,就是不完善信息。

这里,我们可以看到,完善信息和不完善信息实际上是只针对动态博弈的,而静态博弈中全部参加人可看作同时选择策略,所以不存在完善信息和不完善信息的问题。

这样,依据上述博弈的过程和博弈的信息结构两个方面,我们可以将非合作博弈分为完全信息静态博弈、不完全信息静态博弈、完全且完善信息动态博弈、完全不完善信息动态博弈、不完全信息动态博弈等类型。

把握了博弈的分类状况,针对每一个详细的博弈问题,我们就可以将其归于某一特定类型,依据这一类型的分析思路来解决这个博弈问题。

相关文档
最新文档