数学分析PPT电子课件教案第十八章 极值与条件极值
函数的极值与最值PPT课件

(2)由(1)的结论,问题转化为y=f(x)和y=a的
图象有3个不同的交点,利用数形结合的方法求 解.
【解】 (1)f′(x)=3x2-6,令 f′(x)=0, 解得 x1=- 2,x2= 2. 因为当 x> 2或 x<- 2时,f′(x)>0; 当- 2<x< 2时,f′(x)<0. 所以 f(x)的单调递增区间为(-∞,- 2)和( 2, +∞);单调递减区间为(- 2, 2). 当 x=- 2时,f(x)有极大值 5+4 2;
16000.
2
由题意可知,当x过小(接近0)或过大(接近60)时,箱子 的容积很小,因此,16000是最大值.
答:当x=40cm时,箱子容积最大,最大容积是16000cm3.
说明
1、设出变量找出函数关系式;确定出定义域; 所得结果符合问题的实际意义
2、若函数 f ( x )在定义域内只有一个极值点x0 , 则不需与端点比较, f ( x0 )即是所求的最大值或 最小值.
所有极值连同端点函数值进行比较, 最大的为最大值,最小的为最小值
※典型例题6
求 函 数 f ( x ) 6 1 2 x x 3 在 3 , 3 上 的 最 值 .
解:f ' x123x2 x3,3 1、求出所有导数为0的点;
令f ' x 0,解得:x2或x2 2、计算;
又f (2) 22,f (2) 10,f (3) 15, f (3) 3
【解】 (1)f′(x)=3x2+2ax+b,令 f′(x)=0. 由题设,知 x1=1 与 x2=-23为 f′(x)=0 的解. ∴-23a=1-23,b3=1×(-23). ∴a=-12,b=-2. (2)由(1)知 f(x)=x3-12x2-2x+c,
《函数的极值和导数》课件

Part
05
导数的计算方法
导数的四则运算规则
01
加法法则
$(uv)' = u'v + uv'$
02
减法法则
$(u-v)' = u'-v'$
03
乘法法则
$(uv)' = u'v + uv'$
04
除法法则
$left(frac{u}{v}right)' = frac{u'v-uv'}{v^2}$
复合函数的导数计算
最小成本问题
总结词
利用极值理论寻找最小成本
详细描述
在生产和经营活动中,也常常需要寻求最小成本。通过建立数学模型,利用函数的极值和 导数,可以找到使得成本最小的生产量、原材料采购量等决策变量。
实例
某公司需要采购原材料,每次采购的成本包括固定成本5万元和变动成本与采购量的比例 系数0.1万元/单位。求该公司的最小总成本。通过建立函数并求导,可以找到使得总成本 最小的采购量。
Part
03
极值在实际问题中的应用
最大利润问题
01
总结词
利用极值理论寻找最大利润
02 03
详细描述
在生产和经营活动中,常常需要寻求最大利润。通过建立数学模型,利 用函数的极值和导数,可以找到使得利润最大的生产量、价格等决策变 量。
实例
某公司生产一种产品,其固定成本为100万元,每生产一个单位的产品 ,成本为2万元,售价为5万元。求该公司的最大利润。通过建立函数并 求导,可以找到使得利润最大的产量。
Part
04
导数的几何意义
导数在平面上的表示
切线斜率
数学分析18.4隐函数定理及其应用之条件极值

第十八章 隐函数定理及其定理4条件极值引例:设计一个容量为V, 而表面积最小的长方形开口水箱. 设水箱的长、宽、高分别为x,y,z ,则表面积为S(x,y,z)=2(xz+yz)+xy. 即面积函数的自变量要符合定义域的要求(x>0,y>0,z>0),且须满足 xyz=V, 这类附有约束条件的极值问题称为条件极值问题.一般形式:在条件组φk (x 1,…,x n )=0, k=1,2,…,m (m<n)的限制下,求 目标函数y=( x 1,…,x n )的极值.解法:1、消元法,如引例中的条件可化为z=xyV,代入函数S 得: F(x,y)=S(x,y,xy V)=2V(x 1+y1)+xy. 由(F x ,F y )=(0,0)求得稳定点(32V ,32V ), 可求得最小面积S=3324V .2、拉格朗日乘数法:欲求函数z=f(x,y)的极值,限制条件为C: φ(x,y)=0. 把C 看作(x,y)的曲线方程,设C 上一点P 0(x 0,y 0)为f 满足条件的极值点, 且在点P 0的某邻域上φ(x,y)=0能惟一确定可微的隐函数y=g(x), 则 x=x 0必为z=f(x,g(x))=h(x)的极值点. 由f 在P 0可微, g 在x 0可微, 可得 h ’(x 0)=f x (x 0,y 0)+f y (x 0,y 0)g ’(x 0)=0, 且当φ满足隐函数定理条件时,有 g ’(x 0)=-),(),(0000y x y x y x ϕϕ, 代入上式得:f x (P 0)φy (P 0)-f y (P 0)φx (P 0)=0. 几何意义上,上式表示曲面z=f(x,y)的等高线f(x,y)=f(P 0)与曲线C 在P 0有公共切线.从而存在某常数λ0, 使得在P 0处满足:⎪⎭⎪⎬⎫==+=+0)(0)()(0)()(0000000P P P f P P f y y x x ϕϕλϕλ,引入辅助变量λ和辅助函数L(x,y,λ)=f(x,y)+ λφ(x,y), 可得⎪⎭⎪⎬⎫===+==+=0)(),,(0)()(),,(0)()(),,(0000000000000000P y x L P P f y x L P P f y x L y y y x x x ϕλϕλλϕλλλ, 即将条件极值问题转化为L 的无条件极值问题,称为拉格朗日乘数法, 其中函数L 称为拉格朗日函数,辅助变量λ称为拉格朗日乘数.注:一般条件极值问题的拉格朗日函数:(λ1,…,λn 为拉格朗日乘数) L(x 1,…,x n ,λ1,…,λm )=f(x 1,…,x n )+∑=⋯mk n k x x 11k ),,(ϕλ.定理18.6:设在条件φk (x 1,…,x n )=0, k=1,2,…,m (m<n)的限制下,求 函数y=( x 1,…,x n )的极值问题, 其中f 与φk 在区域D 上有连续的一阶偏导数.若D 的内点P 0(01x ,…,0.n x )是上述问题的极值点,且雅可比矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂⋯∂∂⋯⋯∂∂⋯∂∂n mm n x x x x ϕϕϕϕ1111的秩为m, 则存在m 个常数01λ,…,0.m λ,使得 (01x ,…,0.n x ,01λ,…,0.m λ)为拉格朗日函数L(x 1,…,x n ,λ1,…,λn )=f(x 1,…,x n )+∑=⋯mk n k x x 11k ),,(ϕλ的稳定点, 即(01x ,…,0.n x ,01λ,…,0.m λ)为n+m 个方程⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋯=⋯⋯=⋯==∂∂+∂∂⋯⋯=∂∂+∂∂∑∑==0),,(0),,(011111111111n m n mk n k k nx mk k k x x x L x x L x x f L x x f L m n ϕϕϕλϕλλλ的解.例1:用拉格朗日乘数法重新求本节开头提到的水箱设计问题. 解:所求问题的拉格朗日函数为L(x,y,z,λ)=2(xz+yz)+xy+λ(V-xyz),列方程组得:⎪⎪⎩⎪⎪⎨⎧=-==-+==-+==-+=00220202xyz V L xy y x L xz x z L yz y z L z yx λλλλ,解得:x=y=2z=32V ,λ=324V .∴水箱表面积最小值为:23333)2()22(222V V V V ++=3324V .注:由例1可得不等式:2(xz+yz)+xy ≥3324V =32)(4xyz , x>0,y>0,z>0.例2:抛物面x 2+y 2=z 被平面x+y+z=1截成一个椭圆. 求这个椭圆到原点的最长与最短距离.解:实质为求f(x,y,z)=x 2+y 2+z 2在条件x 2+y 2-z=0及x+y+z-1=0下的最值. 令L(x,y,z,λ,μ)=x 2+y 2+z 2+λ(x 2+y 2-z)+μ(x+y+z-1), 列方程组有:⎪⎪⎪⎩⎪⎪⎪⎨⎧=-++==-+==+-==++==++=0100202202222z y x L z y x L z L y y L x x L z y x μλμλμλμλ, 解得:λ=-3±35,μ=-7±311,x=y=231±-,z=2∓3.又f(231±-,231±-,z=2∓3)=9∓53. ∴椭圆到原点的最长距离为39+, 最短距离39-.例3:求f(x,y,z)=xyz 在条件x 1+y 1+z 1=r1,(x>0, y>0, z>0, r>0)下的极小值,并证明不等式3(a 1+b 1+c1)-1≤3abc , 其中a,b,c 为任意正实数. 解:令L(x,y,z,λ)=xyz+λ(x 1+y 1+z 1-r1), 列方程组有:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-++==-==-==-=01111000222r z y x L zxy L y xz L xyz L z y x λλλλ,解得:x=y=z=3r, λ=(3r)4.把x 1+y1+z 1=r1看作隐函数z=z(x,y) (满足隐函数定理条件), 记F(x,y)=xyz(x,y)=f(x,y,z), 它是f 与z=z(x,y)的复合函数. 则有z x =-21x -/21z -=-22x z , z y =-22yz ; F x =yz+xyz x =yz-x yz 2, F y =xz-y xz 2; F xx =yz x +yz x +xyz xx =332x yz , F yy =332yxz , F xy =z+yz y +xz x +xyz xy =z-y z 2-x z 2+xy z 32;∵(F xx F yy -F xy 2)(3r,3r,3r)=27r 2>0, ∴f(3r,3r,3r)=(3r)3极小值, 也是最小值. 即有xyz ≥(3r)3, (x>0, y>0, z>0, 且x1+y1+z 1=r1).令x=a,y=b,x=c, 则r=(a 1+b 1+c 1)-1, 即有abc ≥[3(a 1+b 1+c 1)-1]3,或3(a 1+b 1+c1)-1≤3abc (a>0, b>0, c>0).习题1、应用拉格朗日乘数法,求下列函数的条件极值: (1)f(x,y)=x 2+y 2, 若x+y-1=0;(2)f(x,y,z,t)=x+y+z+t, 若xyzt=c 4 (其中x,y,z,t>0, c>0); (3)f(x,y,z)=xyz, 若x 2+y 2+z 2=1, x+y+z=0.解:(1)令L(x,y,λ)=x 2+y 2+λ(x+y-1), 列方程组:⎪⎩⎪⎨⎧=-+==+==+=010202y x L y L x L y x λλλ,解得:λ=-1, x=y=21. 又当x →∞, y →∞时,f →∞, ∴函数在唯一的稳定点取得极小值f(21,21)=21. (2)f(x,y,z,t)=x+y+z+t, 若xyzt=c 4 (其中x,y,z,t>0, c>0);令L(x,y,z,t,λ)=x+y+z+t+λ(xyzt-c 4), 有⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==+==+==+==+=0010101014c xyzt L xyz L xyt L xzt L yzt L tz y x λλλλλ, 解得:x=y=z=t=c.又当n 个正数的积一定时,其和必有最小值,∴函数在唯一的稳定点取得最小值也是极小值f(c,c,c,c)=4c.(3)令L(x,y,z,λ,μ)=xyz+λ(x 2+y 2+z 2-1)+μ(x+y+z), 有⎪⎪⎪⎩⎪⎪⎪⎨⎧=++==-++==++==++==++=001020202222z y x L z y x L z xy L y xz L x yz L zy x μλμλμλμλ, 解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===626161z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==616162z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==616261z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=626161z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=616162z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=616261z y x . ∵f 在有界集{(x,y,y)|x 2+y 2+z 2=1, x+y+z=0}上连续,∴存在最值.又f(61,61,-62)=f(-62,-61,61)=f(61,-62,61)=-631,f(-61,-61,62)=f(62,-61,-61)=f(-61,62,-61)=631, ∴f 在(61,61,-62),(-62,-61,61),(61,-62,61)取得极小值-631,在(-61,-61,62),(62,-61,-61),(-61,62,-61)取得极大值631.2、(1)求表面积一定而体积最大的长方体; (2)求体积一定而表面积最小的长方体.解:设长、宽、高分别为x,y,z ,则体积V=xyz, 表面积S=2xy+2yz+2zx,(1)记L(x,y,z,λ)=xyz+λ(2xy+2yz+2zx-S), 有⎪⎪⎩⎪⎪⎨⎧=-++==++==++==++=02220)(20)(20)(2S zx yz xy L y x xy L z x xz L z y yz L z yxλλλλ,解得:x=y=z=6S, ∴体积最大的长方体必在唯一的稳定点取得,即 表面积一定的长方体为正方体时,V=36⎪⎪⎭⎫ ⎝⎛S =66SS最大. (2)记L(x,y,z,λ)=2xy+2yz+2zx+λ(xyz-V), 有⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=0022022022V xyz L xy y x L xz z x L yz z y L z yx λλλλ,解得:x=y=z=3V , ∴表面积最小的长方体必在唯一的稳定点取得,即 体积一定的长方体为正方体时,表面积S=632V 最小.3、求空间一点(x 0,y 0,z 0)到平面Ax+By+Cz+D=0的最短距离.解:由题意,相当于求f(x,y,z)=d 2=(x-x 0)2+(y-y 0)2+(z-z 0)2在条件 Ax+By+Cz+D=0下的最小值问题.由几何学知,空间定点到平面的最短距离存在,可设L(x,y,z,λ)=(x-x 0)2+(y-y 0)2+(z-z 0)2+λ( Ax+By+Cz+D), 列方程组有⎪⎪⎩⎪⎪⎨⎧=+++==+-==+-==+-=00)(20)(20)(2000D Cz By Ax L C z z L B y y L A x x L z y x λλλλ,解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧+++++=-+++++=-+++++=-222000022200002220000)()()(C B A D Cz By Ax C z z C B A D Cz By Ax B y y C B A D Cz By Ax A x x , ∴f 的最小值必在惟一的稳定点取得,即 d=202020)()()(z z y y x x -+-+-=222000||CB A D Cz By Ax +++++为所求最短距离.4、证明:在n 个正数的和为定值条件x 1+x 2+…+x n =a 下,这n 个正数的乘积x 1x 2…x n 的最大值为n nna . 并由此结果推出n 个正数的几何平均值不大于算术平均值n n x x x ⋯21≤nx x x n+⋯++21.证:记L(x 1,x 2,…,x n ,λ)=x 1x 2…x n +λ(x 1+x 2+…+x n -a), (x 1,x 2,…,x n >0)列方程组有:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-+⋯++==+⋯=⋯⋯=+⋯⋯=⋯⋯=+⋯==+⋯=-+-000002112111214313221a x x x L x x x L x x x x x L x x x x L x x x L n n x nk k x n x n x n k λλλλλ, 解得:x 1=x 2=…=x n =n a. ∴最大值必在惟一的稳定点取得,即f(n a ,n a ,…,n a )=n nna 最大.又x 1x 2…x n ≤n n n a ,∴n n x x x ⋯21≤na =n x x x n+⋯++21.5、设a 1,a 2,…,a n 为已知的n 个正数,求f(x 1,x 2,…,x n )=∑=nk k k x a 1在限制条件x 12+x 22+…+x n 2≤1下的最大值. 解:记x 12+x 22+…+x n 2=r ≤1, L(x 1,x 2,…,x n ,λ)=∑=nk k k x a 1+λ(x 12+x 22+…+x n 2-r),列方程组有:⎪⎪⎪⎩⎪⎪⎪⎨⎧-+⋯++==+=⋯⋯=+==+=rx x x L x a L x a L x a L n nn x x x n22221221102020221λλλλ, 解得:x i =∑=±nk kiaa r 12, (i=1,2,…,n)可知,当x i =∑=±nk kiaa r 12, 且r=1时,取得最大值f M =∑=nk ka12.6、求函数f(x 1,x 2,…,x n )=x 12+x 22+…+x n 2在条件∑=nk k kx a1=1(a k >0,k=1,2,…,n)下的最小值. 解:记L(x 1,x 2,…,x n ,λ)=x 12+x 22+…+x n 2+λ(∑=nk k kx a1-1),列方程组有⎪⎪⎪⎩⎪⎪⎪⎨⎧-==+=⋯⋯=+==+=∑=10202021221121n k k k n n x x x x a L a x L a x L a x L n λλλλ, 解得:x i =∑=n k k i a a 12, (i=1,2,…,n),∴函数在唯一的稳定点取得最小值F m =∑=nk ka121.7、利用条件极值方法证明不等式xy 2z 3≤10866⎪⎭⎫⎝⎛++z y x , x,y,z>0.证 :记L(x,y,z,λ)=xy 2z 3+λ(x+y+z-a), (x,y,z>0, a>0),列方程组有⎪⎪⎩⎪⎪⎨⎧=-++==+==+==+=00302022332a z y x L z xy L xyz L z y L z yxλλλλ,解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧===236a z a y a x , 又当n 个正数的和一定时,其积必有最大值,∴xy 2z 3≤32236⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛a a a =6633322⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯a =10866⎪⎭⎫⎝⎛++z y x .。
《函数的极值与导数》课件

应用示例
求函数的极值
通过求导和分析导数的变化,可以确定函数的极值 点和对应的极值。
求解实际问题
将实际问题转化为数学模型,并通过求导求解极值 来得到最优解。
端点的极值
函数定义域的端点如果存在极值,则称为端点描述函数在某一点处 的变化率,即函数曲线在 该点的切线斜率。
2 导数的意义
导数可以帮助我们分析函 数的变化趋势和特征,以 及确定函数的极值。
3 导数的符号表示
通常用f'(x)、dy/dx或y'来 表示函数f(x)的导数。
2
得到一些常见函数的导数表达式。
利用导数的性质,可以对复杂函数进行
四则运算的求导。
3
导数的链式法则
对复合函数求导时,可以使用链式法则 进行求导。
极值的判定
1 极值的必要条件
函数在极值点处的导数为 零或不存在。
2 极值的充分条件
当函数在极值点的导数发 生变号时,即可判断该点 为极值的充分条件。
3 极值的分类
导数与函数的关系
导数刻画函数的变化 趋势
导数的正负性可以描述函数的 单调性和变化趋势。
导数判断函数的单调 性
函数在导数大于零的区间上单 调递增,在导数小于零的区间 上单调递减。
极值与导数的关系
极值出现的地方,导数为零或 不存在。
导数的计算
1
基本导数公式
根据函数的基本性质和求导法则,可以
导数的四则运算
《函数的极值与导数》 PPT课件
欢迎来到《函数的极值与导数》PPT课件!本课程将带你深入了解函数的极值 和导数的概念,以及它们之间的关系。准备好迎接这趟知识之旅了吗?让我 们开始吧!
《函数的极值问题》课件

在物理问题中的应用
总结词
极值理论在物理领域的应用也十分广泛 ,它可以帮助我们解释各种物理现象, 预测物质的运动规律。
VS
ቤተ መጻሕፍቲ ባይዱ
详细描述
在物理学中,许多物理现象都可以通过极 值理论来解释,如物体下落、弹性碰撞、 电磁波传播等。通过分析这些现象对应的 物理函数,我们可以找到它们的极值点, 从而理解物质的运动规律和相互作用机制 。
05
极值的应用
Chapter
在最优化问题中的应用
总结词
极值理论是解决最优化问题的关键工具之一,它可以帮助我 们找到函数在某个区间内的最大值或最小值。
详细描述
在许多实际应用中,如工程设计、生产计划、金融投资等, 我们经常需要找到某个目标函数的最优解,即最大值或最小 值。通过分析函数的极值点,我们可以确定这些最优解的位 置,从而为实际问题的解决提供指导。
证明极值第一充分条件的关键在于理解导数的定义 和性质,以及函数极值的定义。首先,根据导数的 定义,如果函数在某一点的导数为零,那么函数在 该点可能取得极值。然后,根据函数极值的定义, 如果函数在某一点的导数在其两侧变号,那么函数 在该点一定取得极值。这两个条件共同构成了极值 的第一充分条件。
定理应用
在经济问题中的应用
总结词
极值理论在经济领域的应用十分广泛,它可以帮助我们分析各种经济指标的变化趋势, 预测未来的经济走势。
详细描述
在经济学中,许多经济指标都是随着时间变化的函数,如GDP、CPI、利率等。通过分 析这些指标的极值点,我们可以了解经济活动的周期性变化规律,从而为政策制定和投
资决策提供依据。
03
极值的第二充分条件
Chapter
定理表述
《函数极值与最值》课件

在工程设计中的应用
结构设计
在工程结构设计中,结构的稳定 性、强度和刚度等性能指标需要 通过计算和分析来保证。函数极 值与最值的方法可以用于分析结 构的应力分布、变形等关键参数 ,优化结构设计。
控制系统设计
在控制系统的设计中,系统的稳 定性、响应速度和精度等性能指 标需要经过权衡和优化。函数极 值与最值的方法可以用于分析控 制系统的性能指标,找到最优的 控制策略。
光学设计
在光学设计中,透镜的形状和材料需要经过精密的计算和设计,以达到最佳的光学性能。函数极值与最值的方法可以 用于分析透镜的光路,优化光学系统的性能。
电磁场研究
在电磁场的研究中,电场和磁场的变化可以通过函数极值与最值来描述。例如,在研究电磁波的传播和 散射时,可以利用函数极值与最值的方法分析电磁场的分布和变化规律。
连续函数的性质
如果函数在某区间内连续,则该函数在该区间内 必取得最大值和最小值。
极值的性质
极值点一定是驻点或不可导点,但驻点或不可导 点不一定是极值点。
最值的求法
代数法
通过函数的导数或二阶导数,结合函数的单调性、凹 凸性等性质,求得函数的最大值或最小值。
几何法
通过函数图像,直观地观察函数的最大值或最小值。
航空航天设计
在航空航天领域,飞行器的设计 和性能分析需要经过严密的计算 和分析。函数极值与最值的方法 可以用于分析飞行器的气动性能 、推进系统效率等关键参数,提 高飞行器的性能和安全性。
04
函数极值与最值的求解方法
导数法
总结词
通过求导数判断函数单调性,值和最值的一种常用方法。首先求出函数的导数,然后根据导数的符号变化判断函 数的单调性,从而确定极值点。在极值点处,函数的导数由正变负或由负变正,即一阶导数为零的点 。
《数学分析》课件 (完整版)

§1 无穷限广义积分
定积分的两个限制
积分区间的有界性 被积函数的有界性 实践中,我们却经常要打破这两个限制。如:关于级数收敛的Cauchy积分判别法;概率统计中,随机变量的空间通常是无限的;第二宇宙速度;物理中的 函数;量子运动;‥‥‥
无穷限积分的定义
设函数 在 有定义,在任意有限区间 上可积。若 存在,则称之为 在 上的广义积分,记为 此时亦称积分 收敛;若 不存在,则称积分 发散。
P.S. 为一符号,表示的是一无穷积分;而当它收敛时,还有第二重意义,可用来表示其积分值。
1. 2. 当 , 均收敛时,定义 显然, 的值与 的选取无关。
类似地,我们可以给出其它无穷积分的定义:
特别地,我们若可利用Taylor公式,求得
则
时 收敛, 时 发散, 时,只能于 时推得 收敛。
Question
我们将参照物取为幂函数 ,而有了上述的比较判别法;那么,将参照物取为指数函数 ,结果又如何呢? 无穷限的广义积分有着与级数非常类似的比较判别法,都是通过估计其求和的对象大小或收敛于0的速度而判断本身的敛散性;而且,我们还有Cauchy积分判别法,使某些级数的收敛与某些无穷限积分的收敛等价了起来。那么,是否可以将关于级数中结论推广至无穷限积分中来呢?某些结论不能推广的原因是什么呢?
1. 结合律
对于收敛级数,可任意加括号,即
2. 交换律
仅仅对于绝对收敛的级数,交换律成立 而对于条件收敛的级数,是靠正负抵消才可求和的,故重排后结果将任意。可见,绝对收敛才是真正的和。
定理 10.19 若级数 绝对收敛,其和为 ,设 为 的任意重排,则 亦绝对收敛,且和仍为
第十章 数项级数
§5 无穷级数与代数运算 有限和中的运算律,如结合律,交换律,分配律,在无穷和中均不成立。具体地,我们有下面的一些结论。
数学分析极值与条件极值

3(1 1 1)1 3 3xyz , x, y, z 0 xyz
解:作拉格朗日函数:L(x, y, z) xyz (1 1 1)
xyz
令 Lx yz x2 0,
Ly xz y2 0,
Lz xy z2 0,
1 1 1 1, xyz r
x y z 3r
特别, 当区域内部最值存在, 且只有一个极值点P 时,
f (P)为极小(大) 值
f (P)为最小(大) 值
第二节 条件极值与拉格朗日乘数法
三、条件极值
无条件极值: 对自变量只有定义域限制 极值问题
条 件 极 值 : 对自变量除定义域限制外,
条件极值的求法:
还有其它条件限制
方法1 代入法. 例如 ,
穷。因此,函数 f 的唯一极小值
点是函数的 最小值点,即
xyz (3r)3, (x, y, z) D , r (1 1 1)1
xyz
代入得,3(1 1 1)1 3 3xyz , x, y, z 0
xyz
推广
拉格朗日乘数法可推广到多个自变量和多 个约束条件的情形.
例如, 求函数 u f (x, y, z) 在条件 (x, y, z) 0,
(x, y, z) 0下的极值.
设 F f (x, y, z) 1(x, y, z) 2 (x, y, z)
定理1 (必要条件) 函数 偏导数, 且在该点取得极值 , 则有
存在
fx (x0, y0 ) 0 , f y (x0, y0 ) 0
证:
取得极值 , 故
取得极值 取得极值
据一元函数极值的必要条件可知定理结论成立.
说明: 使偏导数都为 0 的点称为驻点 .
但驻点不一定是极值点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学分析PPT电子课件教案-第十八章极值与条件极值
1、第十八章:极值与条件极值,第一节极值与最小二乘法,一、多元函数的极值,定义:若函数,则称函数在该点取得极大值(微小值).,例如:,在点(0,0)有微
小值;,在点(0,0)有极大值;,在点(0,0)无极值.,极大值和微小值,统称为极值,,使函数取得极值的点称为极值点.,,的某邻域内有,说明:使偏导数都为0的点称为驻点.,例如,,定理1(必要条件),函数,偏导数,,证:,据一元函数极值的必要条件可知定理结论成立.,取得极值,,取得极值,取得极值,但驻点不肯定是极值点.,有驻点(0,0),,但在该点不取极值.,且在该点取得极值,
2、,则有,存在,故,定理2(充分条件),的某邻域内具有一阶和二阶连续偏导数,且,令,若函数,二、最值应用问题,,函数f在闭域上连续,函数f在闭域上可到达最值,,最值可疑点,稳定点,偏导数不存在的点,边界上的最值点,特殊,当区域内部最值存在,且只有一个极值点P时,,为微小值,,为最小值,(大),(大),根据,第二节条件极值与拉格朗日乘数法,三、条件极值,极值问题,无条件极值:,条件极值:,条件极值的求法:,方法1代入法.,求一元函数,的无条件极值问题,对自变量只有定义域限制,对自变量除定义域限制外,,还有其它条件限制,例如,,
3、,方法2拉格朗日乘数法.,如方法1所述,,则问题等价于一元函数,可确定隐函数,的极值问题,,极值点必满足,设,记,例如,,故,故有,引入帮助函数,帮助函数F称为拉格朗日(Lagrange)函数.,利用拉格,极值点必满足,,则极值点满足:,,朗日函数求极值的方法称为拉格朗日乘数法.,例1.求满足约束条件,的最大值。
,解:作拉格朗日函数:,令,即,稳定点:,由实际问题知所求最大值必存在,而稳定点又唯一,因此唯一的稳定点就是最大值点。
故球内接长方体中以正方体的体积最大。
,例2.求在约束条件,下的微小值;,并证明不等式:,解:作拉
4、格朗日函数:,令,即,稳定点:,下面判别稳定点是极值点,记,则,故方程,在稳定点附近可唯一确定可微数,令,如今用二元函数取极值的充分条件判别,是的极值点。
,由约束条件得:,从而,故在点有,.因此在取微小值,,这等价于在取微小值,分析约束集,是一无界集。
当在内远离原点时,函数将趋于正无,穷。
因此,函数的唯一微小值点是函数的最小值点,即,代入得,,推广,拉格朗日乘数法可推广到多个自变量和多个约束条件的情形.,设,解方程组,可得到条件极
值的可疑点.,例如,求函数,下的极值.,在条件,,内容小节,1.函数的极值问题,
第一步利用必要
5、条件在定义域内找驻点.,即解方程组,第二步利用充分条件判别驻点是否为极值点.,2.函数的条件极值问题,(1)简洁问题用代入法,如对二元函数,(2)一般问题用拉格朗日乘数法,设拉格朗日函数,如求二元函数,下的极值,,解方程组,第二步判别,?比较驻点及边界点上函数值的大小,?依据问题的实际意义确定最值,第一步找目标函数,确定定义域(及约束条件),3.函数的最值问题,在条件,求驻点.,,习题,例1.,求函数,解:第一步求驻点.,得驻点:(1,0),(1,2),(–
3,0),(–3,2).,第二步判别.,在点(1,0)处,为微小值
6、;,解方程组,,,,的极值.,求二阶偏导数,,,,,在点(?3,0)处,不是极值;,在点(?3,2)处,为极大值.,在点(1,2)处,不是极值;,,例2.商量函数,及,是否取得极值.,解:明显(0,0)都是它们的驻点,,在(0,0)点邻域内的取值,,因此z(0,0)不是极值.,因此,为微小值.,,正,负,0,在点(0,0),并且在(0,0)都有,可能为,例3.,解:设水箱长,宽分别为x,ym,则高为,则水箱所用材料的面积为,令,得驻点,某厂要用铁板做一个体积为2,依据实际问题可知最小值在定义域内应存在,,的有盖长方体水,问
7、当长、宽、高各取怎样的尺寸时,才能使用料最省?,,因此可,断定此唯一驻点就是最小值点.,即当长、宽均为,高为,时,水箱所用材料最省.,例4.有一宽为24cm的长方形铁板,,把它折起来做成,解:设折起来的边长为xcm,,则断面面积,,一个断面为等腰梯形的水槽,,倾角为?,,,,积最大.,为,,问怎样折法才能使断面面,,令,,解得:,由题意知,最大值在定义域D内到达,,而在域D内只有,一个驻点,,故此点即为所求.,,,,例5.,要设计一个容量为,则问题为求x,y,,令,解方程组,解:设x,y,z分别表示长、宽、高,,下水箱外表
8、积,最小.,z使在条件,,水箱长、宽、高等于多少时所用材料最省?,的长方体开口水箱,试问,补充题,已知平面上两定点A(1,3),B(4,2),,试在椭圆,圆周上求一点C,使,△ABC面积S△最大.,解答提示:,设C点坐标为(x,y),,则,设拉格朗日函数,解方程组,得驻点,对应面积,而,比较可知,点C与E重合时,三角形,面积最大.,,,作业,P102:2.4.6,。