北师大版八年级上册数学43一次函数的图象2导学案

合集下载

八年级数学上册4.3一次函数的图象第1课时正比例函数的图象和性质教学设计 (新版北师大版)

八年级数学上册4.3一次函数的图象第1课时正比例函数的图象和性质教学设计 (新版北师大版)

八年级数学上册4.3一次函数的图象第1课时正比例函数的图象和性质教学设计(新版北师大版)一. 教材分析《八年级数学上册4.3一次函数的图象》这一节,主要介绍了一次函数的图象和性质。

其中,正比例函数是特殊的一次函数,它的图象是一条通过原点的直线。

本节内容是学生学习一次函数的基础,对于学生理解和掌握一次函数的图象和性质,以及后续学习其他类型的函数具有重要意义。

二. 学情分析八年级的学生已经学习了代数基础知识,对于函数的概念有一定的理解。

但是,对于函数的图象和性质,特别是正比例函数的图象和性质,可能还比较陌生。

因此,在教学过程中,需要引导学生通过实际操作,观察和分析正比例函数的图象和性质,从而加深对一次函数的理解。

三. 教学目标1.理解正比例函数的图象是一条通过原点的直线。

2.掌握正比例函数的性质,即当x增大或减小时,y的值也按比例增大或减小。

3.能够通过观察图象,分析正比例函数的性质。

四. 教学重难点1.重难点:正比例函数的图象和性质。

2.难点:如何引导学生通过观察图象,分析正比例函数的性质。

五. 教学方法采用问题驱动的教学方法,引导学生通过观察和操作,发现正比例函数的图象和性质。

同时,结合小组合作学习,让学生在讨论中加深对一次函数的理解。

六. 教学准备1.准备正比例函数的图象和性质的相关教学材料。

2.准备计算机和投影仪,用于展示图象和讲解。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出正比例函数的概念,并提出问题:“正比例函数的图象是什么样的?”2.呈现(10分钟)利用计算机和投影仪,展示正比例函数的图象,并引导学生观察和分析。

3.操练(10分钟)让学生分组进行实际操作,通过改变x的值,观察y的变化,从而深入理解正比例函数的性质。

4.巩固(5分钟)通过一些练习题,让学生巩固对正比例函数图象和性质的理解。

5.拓展(5分钟)引导学生思考:除了正比例函数,还有其他类型的函数图象和性质是什么?6.小结(5分钟)对本节课的内容进行小结,强调正比例函数的图象是一条通过原点的直线,性质是当x增大或减小时,y的值也按比例增大或减小。

北师大版数学八年级上册《4.4一次函数的应用》教案

北师大版数学八年级上册《4.4一次函数的应用》教案

北师大版数学八年级上册《4.4一次函数的应用》教案一. 教材分析《4.4一次函数的应用》这一节内容,主要让学生了解一次函数在实际生活中的应用,通过具体的实例,让学生学会用一次函数解决实际问题,培养学生的动手操作能力和解决实际问题的能力。

教材中给出了丰富的实例,为学生提供了充足的学习材料。

二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的性质,对于一次函数的图像和表达式有一定的了解。

但学生在实际应用中,可能会对如何将实际问题转化为一次函数模型感到困惑。

因此,在教学过程中,教师需要引导学生正确地将实际问题抽象为一次函数模型,并运用一次函数的知识解决实际问题。

三. 教学目标1.了解一次函数在实际生活中的应用。

2.学会将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。

3.培养学生的动手操作能力和解决实际问题的能力。

四. 教学重难点1.教学重点:一次函数在实际生活中的应用。

2.教学难点:如何将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。

五. 教学方法采用案例分析法、问题驱动法、小组合作学习法等,引导学生通过自主学习、合作探讨,提高解决实际问题的能力。

六. 教学准备1.准备与一次函数应用相关的实例。

2.准备教学课件。

七. 教学过程1.导入(5分钟)通过一个实际问题引出本节内容,例如:某商店进行打折活动,原价100元的商品打8折,求打折后的价格。

让学生思考如何用数学模型来表示这个问题。

2.呈现(15分钟)呈现教材中的实例,引导学生了解一次函数在实际生活中的应用,如:手机话费套餐、出租车计费等。

让学生观察这些实例中的一次函数表达式,分析一次函数的构成和特点。

3.操练(15分钟)让学生分组讨论,每组选择一个实例,尝试将实际问题转化为一次函数模型,并求解。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)请各组学生汇报他们的解题过程和结果,其他学生和教师进行评价和讨论。

通过这个环节,巩固学生对一次函数模型的理解和应用。

北师大版八年级数学上册:4.3《一次函数的图象》教案

北师大版八年级数学上册:4.3《一次函数的图象》教案

北师大版八年级数学上册:4.3《一次函数的图象》教案一. 教材分析《一次函数的图象》是北师大版八年级数学上册第4.3节的内容。

本节主要让学生了解一次函数的图象特点,学会如何绘制一次函数的图象,并能够分析一次函数图象与系数之间的关系。

通过本节的学习,为学生后续学习二次函数、指数函数等函数图象打下基础。

二. 学情分析学生在学习本节内容前,已经掌握了函数的概念、一次函数的定义和性质。

但学生对函数图象的认识不足,对如何绘制一次函数图象以及分析图象与系数之间的关系还不够清晰。

因此,在教学过程中,需要引导学生通过实践操作,加深对一次函数图象的理解。

三. 教学目标1.让学生了解一次函数图象的特点,学会绘制一次函数图象。

2.引导学生分析一次函数图象与系数之间的关系。

3.培养学生的动手操作能力和观察分析能力。

四. 教学重难点1.一次函数图象的绘制方法。

2.分析一次函数图象与系数之间的关系。

五. 教学方法采用讲解法、示范法、实践操作法、讨论法等教学方法,引导学生通过自主学习、合作交流,掌握一次函数图象的特点和绘制方法。

六. 教学准备1.准备多媒体教学设备,如投影仪、计算机等。

2.准备一次函数图象的示例图片和相关素材。

3.准备练习题和作业。

七. 教学过程1.导入(5分钟)利用投影仪展示一次函数图象的示例图片,引导学生观察并总结一次函数图象的特点。

教师简要讲解一次函数图象的绘制方法,激发学生的学习兴趣。

2.呈现(10分钟)教师通过讲解和示范,详细介绍一次函数图象的绘制方法。

引导学生动手操作,尝试绘制一次函数图象。

在绘制过程中,注意引导学生观察图象与系数之间的关系。

3.操练(10分钟)学生分组进行实践操作,绘制不同系数的一次函数图象。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)教师挑选几组学生的作品,进行分析讨论。

引导学生总结一次函数图象与系数之间的关系。

同时,让学生回答课后练习题,巩固所学知识。

5.拓展(10分钟)教师提出一些拓展问题,如:如何判断一次函数图象与坐标轴的交点?如何求解一次函数图象上的点?引导学生进行思考和讨论。

《 一次函数的图象》示范公开课教学设计【北师大版八年级数学上册】第2课时

《 一次函数的图象》示范公开课教学设计【北师大版八年级数学上册】第2课时

第四章一次函数4.3 一次函数的图象第2课时教学设计一、教学目标1.经历一次函数图象的画图过程,初步了解画函数图象的一般步骤;经历一次函数图象变化情况的探索过程,发展数形结合的意识和能力.2.能熟练画出一次函数的图象;掌握一次函数及其图象的简单性质.二、教学重点及难点重点:用“两点法”画出一次函数图象是研究一次函数的性质的基础.难点:直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响.三、教学用具多媒体课件.四、相关资源《正比例函数y=-2x+1的图象的画法》动画或图片,《两点法画图象》的动画,《一次函数y=2x+3,y=-x,y=-x+3和y=5x-2的图象的画法》动画或图片.五、教学过程【复习导入】师:1.什么叫函数?在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.2.函数的表示方法有哪几种?(1)解析法(2)列表法(3)图象法3.同学们,上节课我们学习了正比例函数的图象,请画出正比例函数y=-2x的图象。

【探究新知】1.师:正比例函数y=-2x的图象是过原点的一条直线,那你们知道一次函数y=-2x+1 的图象是什么形状吗?那就让我们一起做一做,看一看,如何作出一次函数?要回答这个问题,必须弄清楚以下几点:(1)函数的图象是由无数个点构成的.(2)这些点在坐标系中是一对一对的有序实数.(3)此解析式实际上是一个二元一次方程,它的一对一对的x、y值可看作是图象上的点的坐标.(4)要找出它的某个点,实际上就是求出这个二元一次方程的一组解.(5)把x的值作为横坐标,y的值作为纵坐标.(6)把函数作图问题转化为求方程的解的问题.例画出一次函数y =-2x +1的图象。

解:列表:描点:以表中各组对应值作为点的坐标,在直角坐标系内描出对应的点。

连线:把这些点依次连接起来,得到y=-2x+1的图象,它是一条直线。

北师大版八年级数学 上册导学案设计:4.4一次函数的应用(2)(无答案)

北师大版八年级数学 上册导学案设计:4.4一次函数的应用(2)(无答案)

八年级数学 4.4一次函数的应用(2)【学习目标】1、能通过函数图像获取信息,发展形象思维;2、能利用函数图像解决简单的实际问题,发展学生的数学应用能力。

【探究图象】由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.蓄水量V (万米3)与干旱持续时间t (天)的关系如下图所示,回答下列问题:(1)水库干旱前的蓄水量是多少?(2)干旱持续10天后,蓄水量为多少?连续干旱23天后呢?(3)蓄水量小于400万米3时,将发生严重干旱警报.干旱多少天后将发出严重干旱警报?(4)按照这个规律,预计持续干旱多少天水库将干涸?题后反思:【自学指导一】自学课本P91例2,3min 并回答相应问题。

【巩固提高】当得知周边地区的干旱情况后,小明意识到节约用水的重要性.当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后全校师生都参加了活动,并且参加该活动的家庭数S (户)与宣传时间t (天)的函数关系如图所示.根据图象回答下列问题:(1)活动开始当天,全校有多少户家庭参加了该活动?(2)全校师生共有多少户?该活动持续了几天?(3)你知道平均每天增加了多少户?(4)活动第几天时,参加该活动的家庭数达到800户?(5)写出参加活动的家庭数S 与活动时间t 之间的函数关系式【自学指导二】1、如图是某一次函数图像,根据图像填空:(1)当0y =时,______x =;(2)直线对应的函数表达式是________________.2、议一议一元一次方程0.510x +=与一次函数0.51y x =+有什么联系?(请大家根据刚做的练习来进行解答.)小结:一般地,当一次函数y=kx+b 的函数值为0时,相应的自变量的值就是方程kx+b=0的解。

从图像上看,一次函数y=kx+b 的图像与x 轴交点的横坐标就是方程kx+b=0的解。

【巩固提高】1、全国每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已经成为一项十分紧迫的任务,某地区现有土地面积100万千米2,沙漠面积200万千米2,土地沙漠化的变化情况如下图所示.(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2?(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失土地资源?(3)如果从现在开始采取植树造林措施,每年改造4万千米2沙漠,那么到第几年底,该地区的沙漠面积能减少到176万千米2.达标检测A 组1、如图,从成都向重庆打长途电话,设通话时间x(分钟),需付电话费y(元),通话3分钟以内话费3.6元,由图象找出通话5分钟需付话费为________元。

《一次函数的图象》第2课时示范课教学设计【数学八年级上册北师大】

《一次函数的图象》第2课时示范课教学设计【数学八年级上册北师大】

第四章一次函数3 一次函数的图象第2课时一、教学目标1.经历一次函数图象的作图过程,了解一次函数图象是一条直线,并能用两点法熟练画图.2.掌握一次函数及其图象的简单性质,并能灵活运用解答有关问题.3.会求一次函数图象与坐标轴的交点.4.经历正比例函数和一次函数图象变化情况的探索过程,发展数形结合的意识和能力.二、教学重难点重点:能熟练画出一次函数的图象.难点:引导学生用数形结合法探究得出一次函数的图象特征与性质,以及一次函数与正比例函数的图象之间的关系。

三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计问题3:正比例函数的画图步骤是什么?预设答案:问题4:最快捷、最正确地画出正比例函数的图象时,通常在直角坐标系中选取哪两个点?预设答案:原点(0,0)和点(1,k).教师活动:正比例函数是特殊的一次函数,正比例函数的图象是一条直线,一次函数y=kx+b 的图象是什么样子的呢?也是一条直线吗?从表达式上看,正比例函数与一次函数有什么不同?如果体现在图象上又会有怎样的关系呢?通过本节课的学习,同学们就会明白了,下面就让我们一起来学习本节课的内容.【探究】画出一次函数y=-2x+1的图象.解:列表:描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连接起来,得到y=-2x+1的图象,它是一条直线.教师活动:在所画的图象上任意取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系式y=-2x+1.教师活动:通过两个点(-0.5,2),(1.5,-2)得出结论:它们都满足关系y=-3x.正比例函数的表达式与图象是一一对应的.【议一议】一次函数y=kx+b的图象有什么特点?一次函数y=kx+b的图象是一条直线,因此画一次函数图象时,只要确定两个点,再过这两点画直线就可以了.一次函数y=kx+b的图象也称为直线y=kx+b.【归纳】由于两点确定一条直线,画一次函数图象时我们只需描点(0,b)和点(b,0)或(1,k+b),k连线即可.【做一做】在同一直角坐标系内分别画出一次函数y=2x+3,y=-x,y=-x+3和y=5x-2的图象.1.列表描点、连线:【议一议】问题一:上述四个函数中,随着x值的增大,y的值分别如何变化?相应图象上点的变化趋势如何?预设答案:k>0时,直线左低右高,y的值随x值的增大而增大,图象上的点呈上升趋势;k<0时,直线左高右低,y的值随x值的增大而减小,图象上的点呈下降趋势.问题二:直线y=-x与y=-x+3的位置关系如何?你能通过适当的移动将直线y=-x变为直线y=-x+3吗?预设答案:直线y=-x与y=-x+3平行.教师活动:k相同,图平行.直线y=-x向上平移3个单位长度就可得直线y=-x+3.追问:直线y=kx+b与y=kx有怎样的位置关系呢?预设答案:一次函数y=kx+b(k≠0)的图象经过点(0,b),可以由正比例函数y=kx的图象平移|b|个单位长度得到:1.当b>0时,向上平移;2. 当b<0时,向下平移.问题三:直线y=2x+3与直线y=-x+3有什么共同点?一般地,你能从函数y=kx+b的图象上直接看出b的数值吗?预设答案:直线y=2x+3与直线y=-x+3都与y 轴交于一点(0,3).函数y=kx+b的图象与y轴交点的纵坐标即为b 的数值.追问:k,b对直线y=kx+b有怎样的影响呢?【做一做】已知点(-2,y1),(-1,y2),(1,y3)都在直线y=-3x+b上,则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y3>y1>y2D.y1>y2>y3解析:因为直线y=-3x+b中k=-3<0,所以y的值随x值的增大而减小;又因为-2<-1<1,所以y1>y2>y3.故选D.x的增大而增大,所以k>0,又因为b=2>0,所以它的图象经过第一、二、三象限,不经过第四象限.3.直线y=2x向下平移2个单位得到的直线是( )A.y=2(x+2)B.y=2(x-2)C.y=2x-2D.y=2x+2预设答案:C4.一次函数y=kx+k的图象大致是()【解析】因为y=kx+k=k(x+1),所以当x=-1时,y=0,所以直线y=kx+k必过点(-1,0),结合选项可知选A.5.x从0开始逐渐增大时,函数y=2x+6和y=5x-2哪一个的值先到达10?哪一个的值先到达20?这说明了什么?解:x从0开始逐渐增大时,函数y=2x+6的值先到达10,y=5x-2的值先到达20;这说明了当k>0时,一次项系数大的一次函数比一次项系数小的一次函数增长的更快.。

八年级数学上册_一次函数的图象(第二课时)教案__北师大版

八年级数学上册_一次函数的图象(第二课时)教案__北师大版

一次函数的图象教学设计(第二课时)一、教学设计思想本节课是一次函数图象的第2课时,主要研究正比例函数,我们将正比例函数作为一次函数的特例进行研究,过去是先研究正比例函数,再研究一次函数,体现了“特殊到一般”的研究方法,而本教材却体现“一般到特殊”研究的方法,给出了正比例函数的概念。

教学时教师关注学生的思维特征,只要学生说的有道理,就给与鼓励性评价,培养学生用于探索的精神。

二、教学目标知识与技能1.会作正比例函数的图象.2.能说出正比例函数y=kx的图象的特点.3.提高利用函数图像解决问题的能力.过程与方法通过作正比例函数图象,并分析其特点,进一步培养数形结合的意识和能力.情感态度与价值观1.通过议一议,培养探索精神和合作交流意识.2.能积极与同伴合作交流,并能进行探索活动,发展实践能力与创新精神.三、教学重点1.正比例函数的图象的特点.2.一次函数的图象的特点.3.y=-x与y=-x+6的位置关系.四、教学难点正比例函数,一次函数图象的特点的探索过程.五、教学方法启发式教学法.六、教具准备投影片四张:第一张:练习(记作§6.3.2 A);第二张:练习(记作§6.3.2 B);第三张:练习(记作§6.3.2 C);第四张:练习(记作§6.3.2 D ).七、教学过程Ⅰ.导入新课[师]上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线.经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可.还明确了一次函数的代数表达式与图象之间的对应关系.本节课我们进一步来研究一次函数图象的其他性质.Ⅱ.讲授新课一、[师]首先我们来研究一次函数的特例——正比例函数的有关性质.请大家在同一坐标系内作出正比例函数y =21x ,y =x ,y =3x ,y =-2x 的图象. [生]解:如图[师]大家在画正比例函数的图象时,描了几个点?[生]我描了五个点.[生]我描了两个,因为正比例函数是一次函数,一次函数的图象是直线,两点就能确定一条直线,所以我找了两点.[生]我找了一点,因为正比例函数y =kx 中,当x =0时,y =0,所以只要找一个点,再过这一点和(0,0)点就能画出正比例函数的图象.[师]刚才大家的回答都有道理,有找五个点的,有找两个点的,也有找一个点的,可能还有找四个或三个点的情况,下面大家思考一下,最少可描几个点?[生]描一个点.[生]不对,因为正比例函数的图象是直线而由两个点才能确定一条直线,所以他说描一个点就能画出直线是错的.[师]描一个点的同学实际上是描了两个点,一个点是原点,另一个是他所说的点,虽然他表达的不太合理,但是可以看出,这位同学进行了很好的观察,观察上图可以看出,每一个正比例函数的图象都过(0,0)点,所以只要再找一点就可以了.由此可以得出正比例函数y =kx 的图象是经过原点(0,0)的一条直线.[师]再观察上图,直线y =21x ,y =x ,y =3x 中,哪一个与x 轴正方向所成的锐角最大?哪一个与x 轴正方向所成的锐角最小? [生]y =3x 与x 轴正方向所成的锐角最大,y =21x 与x 轴正方向所成的锐角最小. [师]从正比例函数y =21x ,y =x ,y =3x 中的k 有何共同点? [生]都是大于0的数.[师]由k 的大小和直线与x 轴正方向所成的锐角的大小情况来看,它们之间是否有共同点?[生]k =3时,y =3x 与x 轴正方向所成的锐角最大,当x =21时,y =21x 与x 轴正方向所成的锐角最小,所以可以看出,当k >0时,k 的值越大,y =kx 与x 轴正方向所成的锐角越大.[师]从上面还可以看出,当k >0时,y 随x 的增大而怎样变化?当k <0时,y 随x 的增大而怎样变化?[生]当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.[师]现在,我们一起来回忆一下,对正比例函数都讨论了哪些性质?正比例函数的图象有以下特点:(1)正比例函数的图象都经过坐标原点.(2)作正比例函数y =kx 的图象时,除原点外,还需找一点,一般找(1,k )点.(3)在正比例函数y =kx 图象中,当k >0时,k 的值越大,函数图象与x 轴正方向所成的锐角越大.(4)在正比例函数y =kx 图象中,当k >0时,y 的值随x 值的增大而增大;当k <0时,y 的值随x 值的增大而减小.二、做一做在同一直角坐标系内作出一次函数y =2x +6,y =-x ,y =-x +6,y =5x 的图象.[生]图象如下:。

4.3.2 一次函数的图象与性质 课件 2024-2025学年北师大版八年级数学上册

4.3.2  一次函数的图象与性质   课件   2024-2025学年北师大版八年级数学上册

同,图象都经过点 (0 , 3))
y = 5x - 2 的图象经过点 ( 0 , -2 )
一次函数 y = kx+ b 的图象经过点 ( 0 , b )
图象与 y 轴交点的纵坐标就是 b 的值
y = -x + 3
y = 5x - 2
y = -x
归纳总结
一次函数 y = kx + b 的图象是一条经过 ( 0 , b
一次函数 y=kx+b图像有什么特点?
一次函数的图象:一次函数y=kx+b的图象是一条经过点(0,b)的直线,
通常也称为直线y=kx+b.
y=kx+b
y
b
( k , 0)
(0, b)
O
x
一次函数图象的画法
画图时通常取两点(0,b)与( b ,0)(k≠0),有时也可取横、纵坐标均为
整数的点.
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
B )
3. 在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k,b的
取值范围为(
C
)
A. k>0,b>0
B. k>0,b<0
C. k<0,b<0
D. k<0,b>0
第3题图
4.在平面直角坐标系中,一次函数y=-x-4的图象与y轴交于点A.
y = -2x向上平移一个单位得到y = -2x + 1;
y = -2x向下平移一个单位得到y = -2x - 1;
y = -2x - 1
(3)平移直线y = -2x+ 1,能得到y = -2x,y = -2x - 1吗?
y = -2x
y = -2x + 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版八年级上册数学4.3一次函数的图象(2)(导学案)
4.3一次函数的图象(2)
学习目标:
1、能熟练作出一次函数y=kx+b的图象.
2.通过画图归纳总结一次函数图象的性质,能说出函数中的k,b对函数图象的影响。

3.已知函数的代数表达式作函数的图象.
4.理解一次函数的代数表达式与图象之间的一一对应关系.
预习案
一、课前导学
阅读课本P86—P87,完成下列内容。

1、下列函数中,图象经过原点的为( )
A.y=5x+1 B.y=-5x-1 C.y=-5x D.y=51?x
2、作函数图象的基本步骤是
3、一次函数与正比例函数有何联系?
二、尝试练习
1、如果直线经过一、二、四象限,则有()
A . k>0,b>0 B. k>0,b<0 C. k<0,b>0 D.k<0,b<0 2、下面哪个点不在函数的图像上()
A、(-5,13) B.(0.5,2) C(3,0) D(1,1)
3、函数y=-2x图象在()
A、第一、三象限
B、第二、四象限
C、第二、三象限
D、第三、四象限
4、函数y=-3x,y=5x,y=6x共同点是()
A、图象位于同样象限
B、y随x增大而减小bkxy??.
C、图象经过原点
D、y随x增大而增大
5、若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为________..
6、下列所给的点在正比例函数y=2x的图象上的是()
A、(2,1)
B、(1,2)
C、(-2,1)
D、(-1,2)
学习案
一、知识点拨
1、一次函数的图象的概念
2、作一次函数的基本步骤
3、一次函数图象上的点与函数关系式的对应关系
4、一次函数的性质
二、课内训练
1、一次函数的图象:把一个函数的自变量x与对应的因变量y的值分别作为点的_______和______,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的
_______..
2、请作出正比例函数y=2x的图象.
解:列表: x … -2 -1 0 1 2 …
y=2x
描点:以上表中5组对应值作为点的坐标,依次为___,___,____,____,____在直角坐标系内描出相应
的点.
连线:把这些点依次连接起来,得到y=2x的图象.它是一条________ 由例1我们发现:作一个函数的图象需要三个步骤:_______________ 3、动手操作,深化探索:
(1)作出正比例函数y=?3x的图象.
(2)请同学们以小组为单位,讨论下面的问题,把得出的结论写出来.
①满足关系式y=?3x的x,y所对应的点(x,y)都在正比例函数y=?3x的图象上吗?
____________________
②正比例函数y=?3x的图象上的点(x,y)都满足关系式y=?3x吗?__________ ③正比
例函数y=kx的图象是____________________________________
④思考:既然我们得出正比例函数y=kx的图象是一条直线.那么在画正比例函数图象时有没有什么简单的方法呢? ______________________. 4、合作探究,发现规律
在同一直角坐标系内作出y=x y=3x, y=-12x, y=-4x的图
x ……
y=-3x
……
解:列表、描点、连线。

x 0 1 y=x
y=3x
y=-12x
y=?4x
①思考:上述四个函数中,随着x的增大,y的值分别如何变化
? 总结:在正比例函数y=kx中,
当k>0时,图象在第____________象限,y的值随着x值的增大而________; 当k<0时, 图象在第___________象限, y的值随着x值的增大而____________. ②请你进一步思考:
a、正比例函数y=x和y=3x中,随着x值的增大y的值都增加了,其中哪一个增加得更快?你能说明其中的道理吗?。

b、正比例函数y=-12x和y=-4x中,随着x值的增大y的值都减小了,其中哪一个减小得更快?你是如何判断的?。

反馈案
一、基础训练
1、下列图象哪个可能是函数y=-x的图象().
A B C D 2、函数y=-6x(x ≤0)图象是一条线,y随x增大而。

3、下列哪个点在 y=-5x的图象上().
A.(1,5) B.(-1,5) C.(-5,1) D.(0.5,2.5)
4、函数kxy?的图象经过点P(3,-1),则k的值为().
A.3 B.-3 C31 D.-31
5、在同一直角坐标系作正比例函数y=-2x与y=x的图象。

相关文档
最新文档