高效液相色谱的发展及其应用

合集下载

高效液相色谱仪的发展和在药物分析中的应用

高效液相色谱仪的发展和在药物分析中的应用

高效液相色谱仪的发展和在药物分析中的应用摘要:早在上个世纪六十年代,高效液相色谱仪就已经作为一项分离分析技术在医药行业、化学领域、工业行业、商业领域以及法学领域等获得了广泛良好的应用。

其主要是将液体当做流动相,同时应用颗粒极细的高效固定相的柱色谱分离技术。

目前高效液相色谱仪凭借自身高分离速度、高分离质量、高检测准确性以及自动化操作等优势,在医药行业中药品研发、制作、检验等流程中获得了广泛应用,且应用效果优良。

因此,本文主要对高效液相色谱仪在药物分析中的应用进行了简要分析,并对高效液相色谱仪的发展进行了深入研究。

关键词:高效液相色谱仪;发展;药物分析;应用引言在现代科学技术迅猛发展的背景下,我国医学界药物分析项目的检测设备、技术也获得了极大的进步与改善。

高效液相色谱仪是药物分析项目众多设备中最为高效质优的仪器之一,其操作灵活简便,而且检测效果跟早期人工检测对比也更精准、更快速,由此在我国药物分析生命科学领域中获得了广泛应用。

一、高效液相色谱仪在药物分析中的应用(一)在药物鉴别中的应用高效液相色谱仪之所以能够对药物进行鉴别,主要是因为药物中各个成分的结构、性质跟其保留时长有直接关系,利用此关系对药物性质进行判断。

比如:西红花,也叫作藏红花、番红花,是一种较为名贵的中药材,主要功能为镇静、祛痰、解痉,通常应用在胃病、调经、麻疹、黄疸、发热、肝脾肿大等疾病诊治中。

正是因为该药物产量少、价位高,所以市面上假冒伪劣产品极多,以玉米须、莲须、菊花、红花造假的较多。

患者服用伪造西红花药物之后,非但无法治愈疾病,还会对生命带来较大威胁,所以,一定要注重对西红花的分析与鉴别工作,高效液相色谱仪的运用可有效提升真假判断、优劣断定的精准性。

之前,相关学者曾通过高效液相色谱法分别针对西红花和假药物中所含成分展开了鉴别,发现真正的西红花中没有绿原酸与羟基红花黄素A,并将此当做鉴别环节的有效方式,称之为HPLC-DAD含量测定法。

高效液相色谱的原理及应用

高效液相色谱的原理及应用

高效液相色谱的原理及应用一、引言高效液相色谱(High Performance Liquid Chromatography,HPLC)是一种广泛应用于生化、制药、食品安全等领域的分析技术。

本文将详细介绍高效液相色谱的原理及其在不同领域中的应用。

二、高效液相色谱的原理高效液相色谱是一种基于分配和吸附作用的色谱技术。

其原理如下:1.分配作用: 样品在液相中均匀分散,样品中的组分按溶解度的不同在液相和固定相之间分配,从而实现对样品的分离。

2.吸附作用: 组分在固定相上通过吸附作用与固定相表面相互作用,进一步实现对组分的分离。

3.色谱柱: 高效液相色谱中常使用填充在色谱柱中的固定相,通过色谱柱中的孔隙结构和表面特性实现对样品的分离。

三、高效液相色谱的应用高效液相色谱技术广泛应用于以下几个领域:1. 生化分析高效液相色谱在生化分析中起着重要的作用,可以用于蛋白质、核酸、糖类等生物大分子的分离和定量分析。

•分离蛋白质: 高效液相色谱可以通过选择合适的固定相和流动相,实现对蛋白质的不同特性进行分离,如分离不同分子量的蛋白质。

•分析核酸: 高效液相色谱可以通过裂解DNA或RNA,使用特定的检测方法,实现核酸的定量分析。

•糖类分析: 高效液相色谱可以用于糖类的检测和分析,对食品、医药等行业具有重要意义。

2. 制药领域高效液相色谱在制药领域中应用广泛,可用于药物的分离、纯化和定量分析等。

•药物分离和纯化: 高效液相色谱可以通过调整固定相和流动相的性质,实现对复杂药物混合物的分离和纯化。

•药物含量测定: 高效液相色谱可用于药物中成分的定量分析,以保证药物的质量和安全性。

•质量控制: 高效液相色谱可用于制药过程中的质量控制,例如检测制药中间体和产成品中的杂质和不纯物。

3. 食品安全高效液相色谱在食品安全领域中起着重要的作用,可用于检测和分析食品中的有害物质和添加剂。

•残留农药检测: 高效液相色谱可以用于检测食品中农药的残留量,以保障食品安全。

高效液相色谱标准

高效液相色谱标准

高效液相色谱标准高效液相色谱标准的发展及其在分析化学中的重要性随着科技的不断进步,高效液相色谱法(HPLC)已经成为了现代分析化学中不可或缺的一部分。

这种方法以其极高的分离效能和灵敏度,广泛应用于各个领域,包括医药、环保、化工等。

然而,为了确保实验结果的准确性和可靠性,制定高效液相色谱标准显得尤为重要。

本文将深入探讨高效液相色谱法的原理、实验条件、标准制定原则与流程,以及其在实际应用中的案例分析,评估其优缺点并预测未来发展趋势。

一、高效液相色谱法的基本原理与概念高效液相色谱法是一种基于色谱分离技术的分析方法。

其基本原理是利用不同的物质在固定相和流动相之间的分配系数差异,实现对不同物质的分离。

这种方法的分离效能高,分析速度快,且具有较高的灵敏度和较低的检测限。

柱效能和检测限是高效液相色谱法中的关键概念。

柱效能反映了色谱柱的分离效果,而检测限则代表了方法的灵敏度。

二、实验条件与方法在进行高效液相色谱实验时,选择合适的固定相、流动相以及实验条件是至关重要的。

固定相是色谱分离的基础,不同的固定相对于不同物质的吸附能力不同。

流动相则决定了物质在色谱柱中的移动速度,从而影响分离效果。

实验条件包括温度、压力、流速等,这些因素都会对实验结果产生影响。

三、标准制定原则与流程制定高效液相色谱标准需要遵循一定的原则和流程。

首先,标准制定应基于广泛认可的方法和规范,确保实验过程的科学性和合理性。

其次,标准制定应注重可重复性和可操作性。

这意味着标准的制定应考虑到不同实验室之间的差异,确保实验结果具有可比性。

此外,标准制定还应关注样品处理、色谱柱条件优化、重复试验等环节,以确保实验结果的准确性和可靠性。

四、实际应用案例分析在实际应用中,高效液相色谱法已经在多个领域取得了显著成果。

例如,在医药领域,高效液相色谱法被用于药物的分离和纯化,以确保药品的质量和安全性。

在环保领域,高效液相色谱法被用于对环境样品中的有害物质进行检测和分析。

高效液相色谱的原理与发展

高效液相色谱的原理与发展

高效液相色谱的原理与发展高效液相色谱是目前应用最多的色谱分析方法,对复杂样品中的分析物具有极高的分离效率,在环境监测、药物鉴别、石油化工、食品安全等广泛应用。

本文从仪器原理、仪器结构、液相色谱发展、应用范围等方面,简要介绍高效液相色谱法在不同领域的应用情况及对前景进行展望,以期为相关研究人员提供参考。

高效液相色谱法具有下列主要优点:①应用了颗粒极细、规则均匀的固定相,传质阻抗小,柱效高,分离效率高;②采用高压输液泵输送流动相,流速快,一般试样的分析需数分钟,复杂试样分析在数十分钟内即可完成③广泛使用了高灵敏检测器,大大提高了灵敏度。

高效液相色谱仪是由高压输液系统、进样器、色谱柱、检测器、工作站等几部分组成。

一、原理高效液相色谱的原理是以液体为流动相,采用高压输液系统,样品溶液经进样器进入流动相,被流动相载入固定相内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中做相对运动时,经过反复多次的吸附—解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器进行检测。

二、结构贮液器主要用来提供足够数量的符合要求的流动相以完成分析工作,对于贮液器的要求:①必须有足够的容积,以备重复分析时保证供液;②脱气方便;③能耐一定的压力;④所选用的材质对所使用的溶剂都是惰性的。

贮液器一般是以不锈钢、玻璃、聚四氟乙烯或特种塑料聚醚醚酮衬里为材料,容积一般为0.5-2L。

所有流动相放入贮液罐之前都必须用0.45微米滤膜过滤,除去流动相中的杂质,防止输液管道或者进样阀出现阻塞现象。

所有流动相在使用前必须脱气。

因为色谱柱是带压力操作的,而检测器是在常压下工作的。

若流动相所含有的空气不除去,则流动相通过柱子时其中的气泡受到压力而收缩,流出柱子后到检测器时因常压而将气泡释放出来,造成检测器噪声较大,基线不稳,仪器不能正常工作,在梯度洗脱时尤为突出。

高压输液泵是高效液相色谱仪的关键部件,其作用是将流动相以稳定的流速或压力输送到色谱分离系统。

高效液相色谱分离与检测技术的进展与创新

高效液相色谱分离与检测技术的进展与创新

高效液相色谱分离与检测技术的进展与创新概述高效液相色谱(High Performance Liquid Chromatography, HPLC)是一种重要的分离与检测技术,已经在广泛的科学领域中得到了广泛的应用。

本文将对高效液相色谱分离与检测技术的进展与创新进行综述,并探讨其在不同领域中的应用。

一、高效液相色谱的基本原理高效液相色谱是以液相作为固定相的分离技术。

其基本原理是将样品溶解在流动相中,通过与固定相之间的相互作用来实现样品的分离。

高效液相色谱的固定相种类繁多,不同种类的固定相可以实现对不同性质样品的选择性分离。

二、高效液相色谱的发展与创新1. 色谱柱技术的发展:随着材料科学与合成化学的不断进步,新型的色谱柱材料如亲水性、疏水性、离子交换、手性等材料相继出现。

这些材料可以提供更高的分离效率和选择性。

2. 检测器技术的创新:传统的高效液相色谱检测器主要有紫外检测器、荧光检测器和电化学检测器等。

随着科学技术的发展,新型的检测器如质量分析检测器(Mass Spectrometry, MS)和电喷雾检测器(Electrospray Ionization, ESI)等被引入到高效液相色谱中,提高了检测灵敏度和选择性。

3. 色谱分离模式的创新:除了传统的反相色谱分离模式,还出现了离子交换色谱、手性色谱、亲水色谱等新的分离模式。

这些分离模式可以对特定问题提供更好的解决方案。

三、高效液相色谱在不同领域中的应用1. 制药工业:高效液相色谱在制药工业中起着至关重要的作用。

它可以用于药物分析、药物代谢物分析和质量控制,以确保药物的质量和安全性。

2. 环境监测:高效液相色谱在环境监测领域中广泛应用,例如水质监测、土壤污染分析和空气污染物检测等。

它可以快速、准确地测定各种环境污染物。

3. 农业食品安全:高效液相色谱在农业食品安全领域中也发挥着重要作用。

它可以用于农药残留分析、食品添加剂检测和农产品质量控制等方面。

高效液相色谱法的发展和应用探究

高效液相色谱法的发展和应用探究
体 、易挥发 的 、具 有 中等 分子 量的化合 物都能 进行 分析 。 2 . 高效液 相色谱 法应 用的限 制
动相 通过 高压 输液泵 进 入了 柱压很 大 的色 谱柱 中,在 固定 相 中 ,溶 质 的传质 和扩 散速 度都 很快 ,所 以在 很多 的 时间 内 ,柱子 的效 率和 分 离
_ ‘
2 0 1 3 年1 2
C h i i l a C h e m i c a l T r a d e
实验岔 晰
高效液相色谱法的发展和应用探 究
王 艳
2 2 20 6 2) ( 江 苏正大 天晴 药业集 团有 限公司 ,江苏 连云港

要 :在对 高效液相 色谱 法进行 了解以后 ,概述 了高效液相 色谱 的组成结构、操作原理和 方法,分析 了高效液相 色谱的分 类方法和 它的优 势
1 . 高效液 相色谱 法的应 用范 围 对 于那 些高 沸 点不 易挥 发 、热稳 定性 差 的 、高分 子 的 、具有 不 同 极性 饿有机 化合 物 ,生 物活 性物 质和 各 种天 然的 物质 ,高 效液 相色 谱 法都能 对其 进行 分离和 分析 。这 些物 质在 食 品 、合 成 药物 、石 油化 工 产品 、生物 化工 产 品等 方面 都有 应用 ,其 中在 这 些方 面应 用 的无机 物 中占 2 0 %,在这 些方 面应 用 的有 机物 中占 8 0 %,特 别是 那些 永久 性气
的传质 和扩 散 的速度 都很 慢 ,因为柱 的入 口压 力很 小 ,导致 柱子 的效 果很 差 ,在 很 大程度 上增 加 了分析 时 间 。而高 效液 相色 谱 法使 用的 固 定相 是全 多孔 微粒 ,将 固定相 装在 口径 小 、短 的不 锈钢 的 柱子 内 ,流

高效液相色谱的发展及现状【文献综述】

高效液相色谱的发展及现状【文献综述】

毕业论文文献综述应用化学高效液相色谱的发展及现状1. 色谱技术的发展历程色谱技术的研究起步于20世纪初,俄国植物学家M.S.Tswett发表了题为“一种新型吸附现象在生化分析上的应用”的研究论文中提到了一种用吸附原理分离植物的方法,并将其命名为色谱法。

但由于这种色谱分离技术速度慢且效率低,没有受到科学界重视。

1938年获得诺贝尔化学奖的德国化学家Kuhn采用Tswett色谱分离技术,在维生素和胡萝卜素的分离和结构的分析中取得了重大成果,色谱法因此得到各国科学家的关注[1]。

可以预想到,在接下来的几十年中,色谱技术更是飞速发展。

随着1940年Martin 和Synge提出液液分配色谱法后,1952年James和Martin发明了气相色谱因此获得1952年诺贝尔化学奖[2]。

紧接着,通过各国科学家的努力,还分别开创了毛细管气相色谱法、毛细管超临界色谱、毛细管电泳和电色谱等分析分离技术,使色谱技术的应用日益广泛。

高效液相色谱出现于20世纪60年代末,由高压泵和键合固定相应用于液相色谱,导致了高效液相色谱的出现。

直至今日,高效液相色谱技术不断发展,并广泛应用在各个领域,成为分析、分离技术中不可或缺的一种尖端科技。

2.高效液相色谱的构成高效液相色谱是近几十年来分析化学中最活跃的领域之一。

这种将分离手段及检测系统相连接的分析分离技术,逐步成为在生化药物、精细化工产品、环境保护等各个领域中主要的物质分析分离方法[3]。

2.1输液系统——泵由于色谱柱很细,填充剂粒度小,因此阻力很大,为达到快速、高效的分离效果,必须要提高柱前压力,以获得高速的液流,使分析、分离更加有效率的进行。

泵为液相提供了流动相流动所必须的压力。

2.2进样系统一般高效液相色谱对于进样系统多采用六通阀进样[4]。

先由注射器将样品常压下注入样品环[5]。

然后切换阀门到进样位置,由高压泵输送的流动相将样品送人色谱柱。

样品环的容积是固定的,因此进样重复性好。

高效液相色谱技术的研究现状及其应用

高效液相色谱技术的研究现状及其应用

高效液相色谱技术的研究现状及其应用高效液相色谱(HPLC)是现代分析化学中最常用的分离分析技术之一。

它可以快速、准确地分离和检测各种化合物,广泛应用于大家生命科学、化工、环保、食品等领域。

本文将介绍高效液相色谱技术的研究现状及其应用。

一、HPLC技术的基础高效液相色谱技术基于物质的化学性质,在多种物理和化学作用的共同作用下,通过高效液相色谱柱进行分离和检测。

它借助液体流动的特点,将待检样品溶解于流动相中,在分配指定波长下,测量物质的独特的光学特性,进行定性和定量分析。

二、HPLC技术的研究现状HPLC技术诞生于20世纪60年代末,经过多年的发展和完善,它已成为现代分析化学的核心技术之一。

在HPLC仪器、柱、检测器等方面的持续改进和优化,使得HPLC分析的灵敏度、分辨率、重现性等指标得到了大幅提升,并且越来越适应于复杂的样品分析。

1. HPLC仪器传统的HPLC仪器结构简单,易于维护,但灵敏度和分离能力有限。

随着技术的进步,新型HPLC仪器受到更多关注。

它们使用电镀柱和各种新型材料,如小孔隙、非球形、非对称等,使样品分析更加高效。

此外,凭借着现代信息技术(IT)的发展,HPLC仪器正在向珂学(在线监测、规定实时性检测),自动化(自动进样、数据处理智能化)和移动化(小型化、便携式)等方向发展。

2. HPLC柱HPLC柱作为HPLC技术的核心部件之一,是HPLC性能和分离效率的关键因素之一。

对于众多的HPLC柱,随着时间的推移和应用领域的不同,柱的类型也在持续发展和改进。

例如,亲水凝胶柱、醚类柱、反相柱、离子交换柱、手性分析柱等不同的HPLC柱的类型,都得到了不同程度上的应用。

3. HPLC检测器HPLC检测器是HPLC分析中最关键的部分之一。

现代HPLC检测器可以识别样品中的任何鉴定成分,测量许多光学信号、电学信号等,请通过检测技术进行检测分析样品。

例如,高性能荧光检测器、紫外光吸收检测器、电感耦合等离子体发射光谱仪等应用在HPLC技术中,使HPLC检测手段的多样性和分析手段的严密性得以彰显。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高效液相色谱的发展及其应用
摘要:了解高效液相色谱[1]的发展历史,知道高效液相色谱的组成结构、操作
原理以及方法等等。

掌握它的分类方法,通过比较得出高效液相色谱分析方法的优点与缺点。

明确高效液相色谱的应用,最终分析结果。

关键词:高效液相色谱;发展历史;应用
高效液相色谱是以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。

1、高效液相色谱的发展历史
1.1高效液相色谱的历史
高效液相色谱作为色谱分析法的一个分支,是在二十世纪60年代末期,在经典液相色谱法和气相色谱法的基础上,发展起来的新型分离分析技术。

1960年中后期,气相色谱理论和实践的发展,以及机械、光学、电子等技术上的进步,液相色谱开始活跃。

到60年代末期把高压泵和化学键合固定相用于液相色谱就出现了高效液相色谱。

1.2高效液相色谱与其它色谱的比较[2]
1.2.1与经典液相色谱的比较
经典液相色谱法使用粗粒多孔固定相,装填在大口径、长玻璃柱管内,流动相仅靠重力流经色谱柱,溶质在固定相的传质、扩散速度缓慢,柱入口压力低,柱效低,分析时间冗长。

高效液相色谱法使用了全多孔微粒固定相,装填在小口径、短不锈钢柱内,流动相通过高压输液泵进入高柱压的色谱柱,溶质在固定相的传质,扩散速度大大加快,从而在短的分析时间内获得高柱效和高分离能力。

1.2.2与气相色谱法的比较
高效液相色谱法与气相色谱法有许多相似之处。

气相色谱法具有选择性高、分离效率高、灵敏度高,分析速度快的特点,但它仅适于分析蒸气压低、沸点低的样品,而不适用于分析高沸点有机物、高分子和热稳定性差的化合物以及生物活性物质,因而使其应用受到限制。

在全部有机化合物中仅有20%的样品适用于气相色谱分析。

高效液相色谱法却恰可弥补气相色谱法的不足之处,可对80%的有机化合物进行分离和分析。

2、高效液相色谱
2.1高效液相色谱的特点
2.1.1高效液相色谱的优点
1.分辨率高于其它色谱法,可选择固定相和流动相以达到最佳分离效果;
2.速度快,十几分钟到几十分钟可完成;
3.重复性高、样品不被破坏、易回收;
4.高效相色谱柱可反复使用;
5.自动化操作,分析精确度高;
6.应用范围广,百分之七十以上的有机化合物可用高效液相色谱分析,特别是高沸点、大分子、强极性、热稳定性差化合物的分离分析,显示出优势。

2.1.2高效液相色谱的缺点
1.需要高压:一般可达150~350×105Pa。

2.柱外效应[3]:在从进样到检测器之间,除了柱子以外的任何死空间中,例如进样器、柱接头、连接管和检测池等,如果流动相的流型有变化,被分离物质的任何扩散和滞留都会显著地导致色谱峰的加宽,柱效率降低。

2.2高效液相色谱的分类[4]
根据分离机制的不同,高效液相色谱法可分为:
1.分配色谱:固定相是液体,利用液体固定相对试样中诸组分的溶解能力不同,
即试样中诸组分在流动相与固定相中分配系数的差异,而实现试样中诸组分分离的色谱法。

根据固定相和液体流动相相对极性的差别,又可分为正相分配色谱和反相分配色谱。

当固定相的极性大于流动相的极性时,可称为正相分配色谱或简称正相色谱;若固定相的极性小于流动相的极性时,可称为反相分配色谱或简称反相色谱。

2.吸附色谱:用固体吸附剂作固定相,以不同极性溶剂作流动相,依据样品中
各组分在吸附剂上吸附性能的差别来实现分离。

3.离子交换色谱:以离子交换剂作为固定相。

是基于离子交换树脂上可电离的
离子与流动相中具有相同电荷的溶质离子进行可逆交换,依据这些离子以交换剂具有不同的亲和力而将它们分离。

4.亲和色谱:也称为亲和层析,是一种利用固定相的结合特性来分离分子的色
谱方法。

亲和色谱在凝胶过滤色谱柱上连接与待分离的物质有一定结合能力的分子,并且它们的结合是可逆的,在改变流动相条件时二者还能相互分离。

5.体积排阻色谱:用化学惰性的多孔性凝胶作固定相,按固定相对样品中各组
分分子体积阻滞作用的差别来实现分离。

以水溶液作流动相的体积排阻色谱法,称为凝胶过滤色谱;以有机溶剂作流动相的体积排阻色谱法,称为凝胶渗透色谱法。

2.3高效液相色谱的组成
(1)高压泵:高效液相色谱使用的色谱柱是很细的(1~6 mm),所用固定相的粒度也非常小(几微米到几十微米),所以流动相在柱中流动受到的阻力很大,在常压下,流动相流速十分缓慢,柱效低且费时。

为了达到快速、高效分离,必须给流动相施加很大的压力,以加快其在柱中的流动速度。

为此,须用高压泵进行高压输液。

高效液相色谱的高压泵的要求是流量恒定,无脉动,并有较大的调节范围;能抗溶剂腐蚀;有较高的输液压力。

(2)梯度洗提装置: 梯度洗提就是载液中含有两种(或更多)不同极性的溶剂,在分离过程中按一定的程序连续改变载液中溶剂的配比和极性,通过载液中极性的变化来改变被分离组分的分离因素,以提高分离效果。

有高压梯度和低压梯度。

(3)色谱柱:是色谱仪最重要的部件。

通常用后壁玻璃管或内壁抛光的不锈钢管制作的,对于一些有腐蚀性的样品且要求耐高压时,可用铜管、铝管或聚四氟乙烯管。

发展趋势是减小填料粒度和柱径以提高柱效。

(4)进样装置:注射器进样装置时进样所用微量注射器及进样方式与气相色谱法一样。

进样压力小于150×105Pa,当进样压力大于150×105Pa时,必须采用停
流进样。

(5)检测装置:主要用于监测经色谱柱分离后的组分浓度的变化,并由记录仪绘出谱图来进行定性、定量分析。

通常的检测器有紫外光度检测器、光电二极管阵列检测器、荧光检测器、差示折光检测器、电导检测器。

(6)数据处理装置:高效液相色谱的分析结果除可用记录仪绘制谱图外,还可使用微处理机和色谱数据工作站来记录和处理色谱分析的数据。

3、高效液相色谱的应用[5]
3.1高效液相色谱的应用范围
高效液相色谱法适于分析高沸点不易挥发的、受热不稳定易分解的、分子量大、不同极性的有机化合物;生物活性物质和多种天然产物;合成的和天然的高分子化合物等。

它们涉及石油化工产品、食品、合成药物、生物化工产品及环境污染物等,约占全部有机化合物的80%,其余20%的有机化合物,包括永久性气体,易挥发低沸点及中等分子量的化合物只能用气相色谱法进行分析。

3.2高效液相色谱的应用局限性
第一,在高效液相色谱法中,使用多种溶剂作为流动相,当进行分析时所需成本高于气相色谱法,且易引起环境污染。

当进行梯度洗脱操作时,它比气相色谱法的程序升温操作复杂。

第二,高效液相色谱法中缺少如气相色谱法中使用的通用型检测器(如热导检测器和氢火焰离子化检测器)。

近年来蒸发激光散射检测器的应用日益增多,有望发展成为高效液相色谱法的一种通用型检测器。

第三,高效液相色谱法不能替代气相色谱法,去完成要求柱效高达10万块理论塔板数以上,必需用毛细管气相色谱法分析组成复杂的具有多种沸程的石油产品。

第四,高效液相色谱法也不能代替中、低压柱色谱法,在200千帕至1兆帕柱压下去分析受压易分解、变性的具有生物活性的生化样品。

结论
高效液相色谱是从气相色谱和液相色谱发展而来的,其发展十分迅猛,目前应用也很广泛。

它的结构和操作流程比较完善。

高效液相色谱的应用范围也十分广泛。

但我们也要发现其不足之处,进一步完善高效液相色谱,为样品分析提供更为方便的分析方法。

参考文献
[1]于世林,高效液相色谱方法及应用[M].北京市:化学工业出版社 ,2005.04
[2]王俊德;商振华;郁蕴璐,高效液相色谱法[M]. 1992年03月第1版
[3]吴宁生;顾光华,高效液相色谱[M].1989年08月第1版
[4]张金专;华菲,;张晔,高效液相色谱在火灾调查中的应用[J].消防技术与产品信息,2005.10
[5]冀晓磊; 陈如春; 黑均安,高效液相色谱分析应用心得[J].CJFD收录刊,2006(04)。

相关文档
最新文档