multisim电子电路仿真教程第6章分析
第6章 Multisim 12.0在电源电路中的应用和仿真

图6-12
降压斩波电路图
3) XFG1设置为方波,频率为500Hz,振幅为10v偏置为10v ,占空比50%,运行仿真分析之后,输出波形如图6-13所示.
图6-13直流斩波降压电路输出波形
1)直流升压斩波变换电路模型如图6-14所示,输出电压Uo总 是大于输入电压UD,当开关S闭合时,二极管受电容C上的反 偏电压影响而截止,于是将输出级隔离,由输入端电源向电 感供应能量。
图6-16 函数发生器设置对话框
3)启动仿真之后,可看到输出电压在短暂的上升之后,趋近 稳定,达到20.07V,点击示波器,升压斩波电路输出电压变 化曲线如图6-17所示。
图6-17
直流升压斩波电路仿真波形
1)直流降压-升压斩波变换电路的输出电压可以高于或低于 输入电压,具有相对输入电压公共端为负极性的输出电压, 由直流降压和直流变换电路串接而成。稳态时,假定两个变 换电路的开关具有相同的占空比,这时输出-输入电压的变换 比是两个串接变换电路变换比的乘积。电路模型如图6-18所 示。
3)在图6-26中增加一个滤波电感(1H)和电容(10uF),如图6-29 所示,重新仿真之后,可以看到经过一段时间稳定后输出一个正弦 波,波形图如6-30所示。
图6-29 带LC滤波的 MOSFET DC-AC全桥逆变电路
图 6-30 滤波电路输出波形
1)正弦脉宽调制逆变电路是一种交流-直流-交流变换器,它先把工 频交流电通过整流器整流成直流,然后再通过逆变器把直流电转变 成固定频率的交流电,逆变部分通常采用正弦脉宽调制逆变器。 一个电压型单相桥式逆变电路如图6-31所示,采用电力晶体管作为开 关器件,V1、V2通断互补,V3、V4通断互补。
最详细最好的Multisim仿真教程

第13章MUltiSim模拟电路仿真本章MUltiSimIO电路仿真软件,讲解使用MUltiSim进行模拟电路仿真的基本方法。
目录1.MUltiSim软件入门2.二极管电路3.基本放大电路4.差分放大电路5.负反馈放大电路6.集成运放信号运算和处理电路7.互补对称(OCL)功率放大电路&信号产生和转换电路9.可涮式三端集成宜流稳压电源电路13.1MUltiSim用户界面及基本操作13.1.1MUItiSinI 用户界面在众多的EDA仿真软件中,IVIiiltisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。
MUItiSim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。
MUItiSim来源于加拿大图像交互技术公司(InteraCtiVe Image Technologies,简称IIT公司)推岀的以WindOWS 为基础的仿真工具,原名EWB。
HT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件EleCtrOniCS WOrk BCnCh (电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。
1996年IIT推岀了 EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为MUItiSim (多功能仿真软件)。
Irr后被美国国家仪器(NI, NatiOnal InStrUlnentS)公司收购,软件更名为Nl MUltiSinK MUItiSim经历了多个版本的升级,已经有 MUItiSim2001X MUItiSin17X MUItiSim8X MUItiSim9、MUltiSimlO 等版本, 9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。
下面以MUItiSimIO为例介绍其基本操作。
图13.1-1是MUltiSimIO的用户界而,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏.电路图编辑区等组成部分。
multisim电路分析方法

在Variables in Circuit栏中列出的是电路中可 用于分析的节点和变量。点击 Variables in circuit 窗口中的下箭头按钮,可以给出变量类型选择表。 在变量类型选择表中: 点击Voltage and current选择电压和电流变量。
点击Voltage选择电压变量。 点击 Current选择电流变量。 点击Device/Model Parameters 选择元件/ 模型参数变量。 点击All variables选择电路中的全部变量。
其中Output variables、 Miscellaneous Options 和Summary 3个选项与直流工作点分析的设置 一样,下面仅介绍Analysis Parameters选项, Analysis Parameters对话框如图1.6.8所示。
图1.6.8 Analysis Parameters对话框
图 1.6.5 Miscellaneous Options对话框
如果选择Use this custom analysis,可以用 来选择用户所设定的分析选项。可供选取设定的 项目已出现在下面的栏中,其中大部分项目应该 采用默认值,如果想要改变其中某一个分析选项 参数,则在选取该项后,再选中下面的Use this option选项。选中Use this option选项将在其右边
2. Parameters区 在Parameters区可以对时间间隔和步长等参数 进行设置。
Start time窗口:设置开始分析的时间。 End time窗口:设置结束分析的时间。
点击Maximum time step settings,可以设 置分析的最大时间步长。其中:
(1)设置单位时间内的采样点数 点击Minimum number of time points,可以 设置单位时间内的采样点数。
Multisim仿真-数电

表7.达1 相式转关换虚为拟逻仪器
辑图
最简表达式转换为逻辑图
7.2 逻辑函数的化简及转换
7.2.1 逻辑函数的化简
利用逻辑转换仪(Logic Converter):化简逻辑函数,得到 最小项表达式或最简表达式。
例:将逻辑函数 Y(A,B,C,D,E)=∑m(2,9,15,19,20,23,24,25,27,28)+d(5,6,16,31) 化简为最简与或表达式。
7.1 相关虚拟仪器
7.1.1 字信号发生器(Word Generator)
用于产生数字信号(最多32位),作为数字
信号源
字信号编 辑区
16 16
低
高
位
位
数据 触发端 准备端
•7.字1信相号关编辑虚区拟:按仪顺器序显示待输出的数字信号,可直接编
辑修改
• Controls选择区域:数字信号输出控制
Multisim电路仿真 快速入门
之数字电子技术
郭东亮 2010.5
内容
========★☆★○ 基础篇 ○★☆★======= 第1章 Multisim电路仿真软件简介 第2章 仿真基础Ⅰ(放置元件-电路图编辑-仿真-报告) 第3章 仿真基础Ⅱ(元器件库、虚拟仪器) 第4章 仿真基础Ⅲ(仿真分析方法)
Se7t:.1设相置数关字虚信号拟类仪型和器数量
Pre-set Patterns: 不改变字信号编辑区的数字信号 载入数字信号文件*.dp 存储数字信号 将字信号编辑区的数字信号清零 数字信号从初始地址至终了地址输出 数字信号从终了地址至初始地址输出 数字信号按右移方式输出 数字信号按左移方式输出
。
单击运行按钮,双击逻辑分析仪,测量 结果如图所示。
multisim仿真教程

Multisim电子电路仿真教程:Multisim电子电路仿真教程作者朱彩莲,介绍了一种电子电路仿真软件——Multisim 2001。
通过对该软件的学习和使用,读者可以轻松地拥有一个元件设备非常完善的虚拟电子实验室,进而可以完成电子电路的各种实验和设计。
本书介绍了一种电子电路仿真软件——Multisim 2001。
通过对该软件的学习和使用,读者可以轻松地拥有一个元件设备非常完善的虚拟电子实验室,进而可以完成电子电路的各种实验和设计。
全书共9章。
第l~4章主要介绍Multisim 2001软件的基本功能和操作,主要有Multisim 200l中电路的创建、元件库和元件的使用、虚拟仪器的使用和Multisim基本分析方法;第5~9章主要介绍Mulfisim 200l软件的应用,其中第5~8章分别从电路基础、模拟电子技术、数字电子技术、高频电子技术中选取了若干个典型实验进行:Multisim仿真分析,每个实验给出了实验目的、实验电路、仿真操作步骤和实验结果,第9章是Multisim2001在电子综合设计中的应用实例。
本书可作为高等院校电子技术类课程的软件实验教材,也可作为从事电子电路设计的工程技术人员的参考书。
计算机高效率绿色电源高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。
八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。
接着开关电源技术相继进入了电子、电器设备领域。
计算机技术的发展,提出绿色电脑和绿色电源。
绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。
就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。
通信用高频开关电源通信业的迅速发展极大的推动了通信电源的发展。
Multisim仿真教程剖析

例1. 求下图所示电路的节点电压U1.U2。
50
二 求戴维宁等效电路
基本操作: 1. 利用数字万用表测量电路端口的开路电压和短路电流 2. 求解出该二端网络的等效电阻 3. 绘制戴维宁等效模型
例2 求下图所示电路的戴维宁等效电路。
51
Req=16/6.333≈3Ω
添加输入/输出节点
函数信号 发生器
1kHz 0.4V
a 0.22μ C
b Vca
R 1k
c
荧光屏
Y1
Y2
双踪示波器
45
(一) 建立电路文件 (二) 从元器件库中调有所需的元器件 (三) 电路连接及导线调整 (四)为电路增加文本 (五)示波器的连接 (六)电路仿真
46
47
基于Multisim的电路分析
1 电阻电路分析
13
设置元件的识别、参数值 与属性、节点序号、引脚 名称和原理图文本等文字 的属性设置
14
设置显示窗口 图纸格式
设置窗口图纸的大小
选择窗口图纸的 缩放比例
15
设置导线的宽度 设置导线的自动 连接方式
16
选择文件自动保存功能 并设定保存时间间隔
设置存取文件路径 设置数字电路的 仿真方式
选择PCB的接地方式
设置分析类型 设置显示状态 设置电压幅值
设置标号
设置故障
2.直流电压源
20
3.交流电压源
设置最大值 设置有效值
设置频率 设置初相位
21
4.时钟电压源
实质上是一个频率、占空比及幅度皆可调的方波发生器
22
5.受控源
1)VCVS
23
2)VCCS
24
3)CCVS
Multisim仿真-电路分析

内容
========★☆★○ 基础篇 ○★☆★======= 第1章 Multisim电路仿真软件简介 第2章 仿真基础Ⅰ(放置元件-电路图编辑-仿真-报告) 第3章 仿真基础Ⅱ(元器件库、虚拟仪器) 第4章 仿真基础Ⅲ(仿真分析方法)
========★☆★○ 应用篇 ○★☆★======= 第5章 应用于电路分析 第6章 应用于模拟电路 第7章 应用于数字电路 第8章 应用于单片机电路 第9章 FPGA/CPLD仿真 第10章 电子系统综合设计
实用文档
5.1 基尔霍夫定律
注意电流的方向、参考方向 电流表内阻在表旁;双击可以更改Mode(DC/AC)
实用文档
5.1 基尔霍夫定律
2. KVL
实用文档
5.2 节点电压法
节点电压法:对所有独立节点列KCL方程组,求解。 当电路结构复杂时,计算困难!
实用文档
5.2 节点电压法
用仿真方法可以顺利解决这一问题。
Multisim电路仿真 快速入门
之电路分析
实用文档
内容
========★☆★○ 基础篇 ○★☆★======= 第1章 Multisim电路仿真软件简介 第2章 仿真基础Ⅰ(放置元件-电路图编辑-仿真-报告) 第3章 仿真基础Ⅱ(元器件库、虚拟仪器) 第4章 仿真基础Ⅲ(仿真分析方法)
========★☆★○ 应用篇 ○★☆★======= 第5章 应用于电路分析 第6章 应用于模拟电路 第7章 应用于数字电路 第8章 应用于单片机电路 第9章 FPGA/CPLD仿真 第10章 电子系统综合设计
等效电阻为二者之比。
实用文档
5.6 RC一阶电路
方波作为信号源。
实用文档
5.6 RC一阶电路
Multisim仿真-电路分析

(1)改变三相平衡负载的大小
(2)不对称负载仿真
(3)将某一相对零线短路(勿做实际实验!)
(4)将三相不对称负载电路的中性线断开
(二)三相负载三角形联结的电路仿真
可只做平衡负载仿真
要求:
(1)独立写一个仿真报告,参数自拟
(2)基于数据验证三相电路理论,给出分析或结论
(3)语言精练,忌口语化, A4打印,不得超过4页
第5章 应用于电路分析
第6章 应用于模拟电路
第7章 应用于数字电路
第8章 应用于单片机电路
第9章 FPGA/CPLD仿真
第10章 电子系统综合设计
h
2
内容
========★☆★○ 基础篇 ○★☆★======= 第1章 Multisim电路仿真软件简介 第2章 仿真基础Ⅰ(放置元件-电路图编辑-仿真-报告) 第3章 仿真基础Ⅱ(元器件库、虚拟仪器) 第4章 仿真基础Ⅲ(仿真分析方法)
(4)若发现雷同则雷同报告一律计零分
h
21
========★☆★○ 应用篇 ○★☆★=======
第5章 应用于电路分析
第6章 应用于模拟电路
第7章 应用于数字电路
第8章 应用于单片机电路
第9章 FPGA/CPLD仿真
第10章 电子系统综合设计
h
3
第5章 Multisim应用于电路分析
5.1 基尔霍夫定律 5.2 节点分析法 5.3 叠加原理 5.4 戴维南及诺顿等效电路 5.5 最大功率传输 5.6 过渡过程仿真 5.7 谐振电路仿真 5.8 三相电路仿真 5.9 二端口网络
h
4
5.1 基尔霍夫定律
1. KCL 电压表和电流表:Place/Component/Indicators
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章 模拟电子技术Multisim仿真实验
4.实验步骤 (1) 测量变压器的输出波形。变压器后的电路暂不要连 接,用示波器测量变压器的输入、输出波形,输出波形与输 入波形完全相同,只是幅度不同,如图6-5所示。 (2) 将电路按图6-4所示电路进行连接,先将J1断开, 用示波器同时观察输入波形和桥式整流输出波形,波形如图
第6章 模拟电子技术Multisim仿真实验 图6-3 温度扫描的结果
第6章 模拟电子技术Multisim仿真实验 5.结论 随着温度的升高,二极管的正向压降减少,PN结具有
负的温度特性。
第6章 模拟电子技术Multisim仿真实验
6.2 单相整流滤波电路仿真实验
1.实验要求与目的 (1) 连接一个单相桥式整流滤波电路,掌握电路的结构 形式。 (2) 测量电路中各电压波形,掌握整流滤波电路的工作 原理。 2.实验原理 (1) 利用二极管的单向导电性,将正负变化的交流电变 成单一方向的脉动电。常见的电路形式有半波整流、全波整 流和桥式整流。 (2) 利用电容的“通交隔直”的特性,将整流后脉动电 压中的交流成分滤除,得到较平滑的电压波形。
第6章 模拟电子技术Multisim仿真实验
3.实验电路 单向整流滤波实验电路如图6-4所示,将电路中XMM1 调到交流电压挡,XMM2调到直流电压挡。当J1开关打开时, 电路是一个桥式整流电路;当J1开关闭合时,电路是一个桥 式整流电容滤波电路。
第6章 模拟电子技术Multisim仿真实验 图6-4 单相整流滤波实验电路
第6章 模拟电子技术Multisim仿真实验
(2) 测量二极管的反向伏安特性。 按图6-2连接电路。改变RW的百分比,启动仿真开关, 将测量的结果依次填入表6-2中。
第6章 模拟电子技术Multisim仿真实验 表6-2 反向伏安特性测试结果
RW
UD/V
ID/A
RD=
UD ID
/
10%
40%
60%
第6章 模拟电子技术Multisim仿真实验
(3) 研究温度对二极管参数的影响。 对图6-1所示电路进行温度扫描分析,RW调到70%,启 动分析菜单中的Temperature Sweep选项,在参数设置对话框 中的Sweep Variation Type栏选择List,在Value栏输入扫描的 温度0、27和100,选择节点6为分析变量,点击Simulate按 钮,仿真结果如图6-3所示。
第6章 模拟电子技术Multisim仿真实验 表6-1 正向伏安特性测试结果
RW
UD/V
ID/mA
RD=
UD ID
/
10%
20%
30%
50%
70%
90%
100%
0.3
0.548
0.591
0.619
0.642
0.685
0.765
0
0.153
0.744
1.854
3.513
8.572
22
∞
3582
794
第6章 模拟电子技术Multisim仿真实验
6.1 二极管特性仿真实验
1.实验要求与目的 (1) 测量二极管的伏安特性,掌握二极管各工作区的特 点。 (2) 掌握二极管正向电阻、反向电阻的特性。 (3) 用温度扫描的方法测试二极管电压及电流随温度变 化的情况,了解温度对二极管的影响。
第6章 模拟电子技术Multisim仿真实验
第6章 模拟电子技术Multisim仿真实验 (2) 测试二极管反向伏安特性电路,如图6-2所示。
图6-2 测试二极管反向伏安特性电路
第6章 模拟电子技术Multisim仿真实验
4.实验步骤 (1) 测量二极管的正向伏安特性。 按图6-1连接电路,按a键或Shift+a键改变电位器的大小, 先将电位器的百分数调为0%,再逐渐增加百分数,从而可 改变加在二极管两端正向电压的大小。启动仿真开关,将测 量的结果依次填入表6-1中。
80%
85%
90%
100%
12.5
50.001 75.001 100.002 100.747 100.894 101.670
0
0
0
0
0.019
0.049
0.233
∞
∞
∞Leabharlann ∞5.3k2k
436
第6章 模拟电子技术Multisim仿真实验
结论:由表6-2所示的测试结果可知,二极管加上反向 电压时,电阻很大,电流几乎为0。比较表6-1和表6-2,二 极管反偏电阻大、而正偏电阻小,说明二极管具有单向导电 性。但若加在二极管上的反向电压太大时,二极管进入反向 击穿区,反向电流急剧增大,而电压值变化很小。
334
183
80
35
第6章 模拟电子技术Multisim仿真实验
结论:从表6-1中RD的值可以看出,二极管的电阻值不 是一个固定值。当在二极管两端加正向电压时,若正向电压 比较小,则二极管呈现很大的正向电阻,正向电流非常小, 称为“死区”。当二极管两端的电压达到0.6 V左右时,电 流急剧增大,电阻减小到只有几十欧姆,而两端的电压几乎 不变,此时二极管工作在“正向导通区”。
第6章 模拟电子技术Multisim仿真实验
第6章 模拟电子技术Multisim仿真实验
6.1 二极管特性仿真实验 6.2 单相整流滤波电路仿真实验 6.3 单管共发射极放大电路仿真实验 6.4 射极跟随器仿真实验 6.5 差动放大电路仿真实验 6.6 负反馈放大电路仿真实验 6.7 正弦波振荡电路仿真实验 6.8 集成运放线性应用仿真实验 6.9 电压比较器仿真实验 6.10 有源滤波电路仿真实验 6.11 功率放大电路仿真实验 6.12 串联稳压电路仿真实验
2.实验原理 半导体二极管主要是由一个PN结构成的,为非线性元 件,具有单向导电性。一般二极管的伏安特性可划分成4个 区:死区、正向导通区、反向截止区和反向击穿区。
第6章 模拟电子技术Multisim仿真实验 3.实验电路 (1) 测试二极管正向伏安特性电路,如图6-1所示。
图6-1 测试二极管正向伏安特性电路
6-6所示。同时打开万用表读取数据,U1≈21.972 V,
U2≈18.468 V。
第6章 模拟电子技术Multisim仿真实验
(3) 将J1闭合,用示波器再次同时观察输入波形和整流 滤波后的输出波形,波形如图6-7所示。同时读取万用表的 数据,U1≈21.972 V,U2≈27.474 V。