01导数应用——不等式恒成立问题

合集下载

利用导数解决不等式恒成立问题

利用导数解决不等式恒成立问题

利用导数解决不等式恒成立问题作者:张景辉来源:《广东教育·高中》2010年第09期不等式恒成立问题是近年高考的热点问题,常以压轴题形式出现,交汇函数、方程、不等式和数列等知识,有效地甄别考生的数学思维能力.由于不等式恒成立问题往往都可以转化为函数的最值问题,而导数,以其本身所具备的一般性和有效性,在求解函数最值中,起到无可替代的作用.因此,我们就不等式恒成立问题的两种常见类型,探讨如何利用导数进行解决.类型一:“f (x)≥a”型(其中a为常数)形如“f (x)≥a”或“f (x)≤a”型不等式,是恒成立问题中最基本的类型,许多复杂的恒成立问题最终都可归结为这一类型.根据恒成立的本质,我们可以进行如下转化:(1)对任意x∈D,有f (x)≥a(其中a为常数)恒成立对x∈D,f (x)min≥a;(2)对任意x∈D,有f (x)≤a(其中a为常数)恒成立对x∈D,f (x)max≤a.形式推广:(1)对于任意的x∈D,f (x)≥g (x)恒成立对于任意的x∈D,f (x)-g (x)≥0恒成立对x∈D,[f (x)-g (x)]min≥0;对于任意的x∈D,f (x)≤g (x)恒成立对于任意的x∈D,f (x)-g (x)≤0恒成立对x∈D,[f (x)-g (x)]max≤0;(2)函数f(x)在区间D单调递增在f′(x)≥0在x∈D恒成立对x∈D,[f ′ (x)]min≥0;函数f (x)在区间D单调递增在f ′(x)≤0在x∈D恒成立对x∈D,[f ′(x)]max≤0.例1:已知函数f(x)=x2-alnx+a(a>0)在(0,+∞)满足f (x)≥0恒成立,求a的取值范围.分析:根据对任意x∈(0,+∞),f(x)≥0恒成立对x∈(0,+∞),f(x)min≥0. 问题转化为求函数f(x)在x∈(0,+∞)的最小值,进而我们借助导数,求出函数f(x)的最小值.解析:令f ′(x)=2x-==0,因为a>0,x>0,解得x=.列表:由表可得,f(x)min=f()=-aln+a=(3-ln).因为对任意x∈(0,+∞),f (x)≥0恒成立,所以对x∈(0,+∞),f(x)min≥0.所以f(x)min=(3-ln)≥0,解得a≤2e3,因为a>0,所以a的取值范围为(0,2e3].例2:已知函数f(x)=x2+a,g (x)=alnx(其中a>0),对任意x∈(0,+∞),有f(x)≥g (x)恒成立,求a的取值范围.解析:对任意x∈(0,+∞),有f(x)≥g (x)恒成立对任意x∈(0,+∞),f(x)-g (x)≥0恒成立,即对任意x∈(0,+∞),x2+a-alnx≥0恒成立.利用例1的结论,可得a的取值范围为(0,2e3].例3:已知函数f (x)=x+(其中a为常数),若对任意a∈(0,m],有函数f(x)在定义域单调递增,求m的最大值.解析:函数f(x)的定义域为(0,+∞),根据函数f(x)在定义域单调递增,可得f ′(x)=1+=≥0在x∈(0,+∞)恒成立,因为x2>0,所以条件转化为不等式x2-alnx+a≥0在x∈(0,+∞)恒成立,利用例1的结论,可得a的取值范围为(0,2e3],因为a∈(0,m],所以m的最大值为2e3.小结:在面对不同形式呈现的恒成立问题,我们应想方设法转化为“f (x)≥a”型的结构形式,利用导数在求解函数最值的优越性,从而轻松、简便地解决相应问题.类型二:“f (x1)≥g(x2)”型形如任意x1,x2∈D,都有f (x1)≥g(x2)恒成立对x∈D,有f (x)min≥g (x)max;任意x1,x2∈D,都有f (x1)≤g(x2)恒成立对x∈D,有f (x)max≤g (x)min.例4:已知f(x)=x+,g(x)=-x2+2lnx,其中a>0.若对任意x1,x2∈(0,+∞),都有f(x1)≥g (x2)恒成立,求a的取值范围.分析:根据任意x1,x2∈(0,+∞),都有f(x1)≥g (x2)恒成立对x∈(0,+∞),有f(x)min≥g (x)max,进而建立关于a的不等式,求得a的取值范围.解析:令f′(x)=1-==0,因为a>0,x>0,解得x=a.列表:由表可得,f(x)min=f(a)=a+=2a.令g′(x)=-2x+==0,因为x>0,解得x=1.列表:由表可得g(x)max=g(1)=-1.因为对任意x1,x2∈(0,+∞),都有f (x1)≥g(x2)恒成立.所以对x∈(0,+∞),有f (x)min≥g(x)max,即2a≥-1,解得a≥-,所以a的取值范围为[-,+∞).小结:至此,相信仍有不少同学难于辨别“f (x1)≥g(x2)”型与“f (x)≥g(x)”型的差异.那么,下面让我们一起比较这两种类型的差异,以便我们在实际操作中能够更好地理解和辨别.“对任意x1,x2∈D,有f (x1)≥g(x2)恒成立”等价于“对x∈D,有f (x)min≥g(x)max”.而“对任意x∈D,有f (x)≥g(x)恒成立”能够推出“函数f (x)图像恒在函数g(x)图像的上方”,但不一定推出“f(x)min≥g(x)max”成立.巩固练习:1. 已知函数f (x)=+lnx(a>0)在[1,+∞)单调递增,求a的取值范围;2. 已知函数f (x)=+lnx(a>0),g (x)=+1,若对任意x1,x2∈(0,+∞)有f (x1)≥g(x2)恒成立,求a的取值范围;答案:1. [1,+∞);2. [e,+∞).根据以上两种不等式恒成立类型的探究与学习,从中我们可以体验到不等式恒成立问题在正确转化为函数最值问题后,便可以借助导数作为求解函数最值的有效工具,把抽象、复杂的不等式恒成立问题,转化为直观、简单的函数最值问题,最终达到解决问题的目的.责任编校徐国坚。

利用导数“三招”破解不等式恒成立问题

利用导数“三招”破解不等式恒成立问题

利用导数“三招”破解不等式恒成立问题不等式恒成立问题一直是高考命题的热点,把函数问题、导数问题和不等式恒成立问题交汇命制压轴题成为一个新的热点命题方向.[典例] (2017·全国卷Ⅲ)已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝⎛⎭⎫1+12·⎝⎛⎭⎫1+122·…·⎝⎛⎭⎫1+12n <m ,求m 的最小值. [方法演示]解:(1)f (x )的定义域为(0,+∞).①若a ≤0,因为f ⎝⎛⎭⎫12=-12+a ln 2<0,所以不满足题意; ②若a >0,由f ′(x )=1-a x =x -a x 知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 故x =a 是f (x )在(0,+∞)的唯一最小值点. 由于f (1)=0,所以当且仅当a =1时,f (x )≥0. 故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0. 令x =1+12n ,得ln ⎝⎛⎭⎫1+12n <12n . 从而ln ⎝⎛⎭⎫1+12+ln ⎝⎛⎭⎫1+122+…+ln ⎝⎛⎭⎫1+12n <12+122+…+12n =1-12n <1. 故⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122·…·⎝⎛⎭⎫1+12n <e. 而⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122⎝⎛⎭⎫1+123>2, 所以m 的最小值为3. [解题师说](1)对a 分类讨论,并利用导数研究f (x )的单调性,找出最小值点,从而求出a . (2)由(1)得当x >1时,x -1-ln x >0.令x =1+12n ,换元后可求出⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122·…·⎝⎛⎭⎫1+12n 的范围.[应用体验]1.已知函数f (x )=(2-a )ln x +1x +2ax . (1)当a =2时,求函数f (x )的极值; (2)当a <0时,讨论f (x )的单调性;(3)若对任意的a ∈(-3,-2),x 1,x 2∈[1,3]恒有(m +ln 3)a -2ln 3>|f (x 1)-f (x 2)|成立,求实数m 的取值范围.解:(1)函数f (x )的定义域为(0,+∞),当a =2时,函数f (x )=1x +4x ,所以f ′(x )=-1x 2+4.由f ′(x )>0,得x >12,f (x )在⎝⎛⎭⎫12,+∞上单调递增; 由f ′(x )<0,得0<x <12,f (x )在⎝⎛⎭⎫0,12上单调递减, 所以函数f (x )在x =12处取得极小值f ⎝⎛⎭⎫12=4,无极大值. (2)f ′(x )=2-a x -1x 2+2a =(2x -1)(ax +1)x 2,令f ′(x )=0,得x =12或x =-1a .①当-1a >12,即-2<a <0时,由f ′(x )>0,得12<x <-1a ;由f ′(x )<0,得0<x <12或x >-1a ,所以函数f (x )在⎝⎛⎭⎫0,12上单调递减,在⎝⎛⎭⎫12,-1a 上单调递增,在⎝⎛⎭⎫-1a ,+∞上单调递减.②当-1a <12,即a <-2时,由f ′(x )>0,得-1a <x <12;由f ′(x )<0,得0<x <-1a 或x >12,所以函数f (x )在⎝⎛⎭⎫0,-1a 上单调递减,在⎝⎛⎭⎫-1a ,12上单调递增,在⎝⎛⎭⎫12,+∞上单调递减,③当a =-2时,f ′(x )≤0,函数f (x )在(0,+∞)上单调递减.(3)由(2)知当a ∈(-3,-2),x 1,x 2∈[1,3]时,函数f (x )在区间[1,3]上单调递减; 所以当x ∈[1,3]时,f (x )max =f (1)=1+2a ,f (x )min =f (3)=(2-a )ln 3+13+6a ,故对任意的a ∈(-3,-2),恒有(m +ln 3)a -2ln 3>1+2a -(2-a )ln 3-13-6a 成立,即am >23-4a .因为a <0,所以m <23a -4,又⎝⎛⎭⎫23a -4min =-133,所以实数m 的取值范围是⎝⎛⎦⎤-∞,-133.[典例] (2018·(1)若f (x )在区间⎣⎡⎭⎫-12,1上的最大值为38,求实数b 的值; (2)若对任意的x ∈[1,e],都有g (x )≥-x 2+(a +2)x 恒成立,求实数a 的取值范围. [方法演示]解:(1)f ′(x )=-3x 2+2x =-x (3x -2), 令f ′(x )=0,得x =0或x =23.当x ∈⎝⎛⎭⎫-12,0时,f ′(x )<0,函数f (x )为减函数, 当x ∈⎝⎛⎭⎫0,23时,f ′(x )>0,函数f (x )为增函数, 当x ∈⎝⎛⎭⎫23,1时,f ′(x )<0,函数f (x )为减函数. ∵f ⎝⎛⎭⎫-12=38+b ,f ⎝⎛⎭⎫23=427+b , ∴f ⎝⎛⎭⎫-12>f ⎝⎛⎭⎫23. ∴f ⎝⎛⎭⎫-12=38+b =38, ∴b =0.(2)由g (x )≥-x 2+(a +2)x ,得(x -ln x )a ≤x 2-2x , ∵x ∈[1,e],∴ln x ≤1≤x ,由于不能同时取等号, ∴ln x <x ,即x -ln x >0,∴a ≤x 2-2x x -ln x 在x ∈[1,e]上恒成立.令h (x )=x 2-2xx -ln x ,x ∈[1,e],则h ′(x )=(x -1)(x +2-2ln x )(x -ln x )2,当x ∈[1,e]时,x -1≥0,x +2-2ln x =x +2(1-ln x )>0,从而h ′(x )≥0, ∴函数h (x )=x 2-2xx -ln x 在[1,e]上为增函数,∴h (x )min =h (1)=-1,∴a ≤-1. 故实数a 的取值范围为(-∞,-1]. [解题师说]由不等式恒成立求解参数的取值范围问题,一般采用分离参数的方法,转化为求不含参数的函数的最值问题,如本例(2)转化为a ≤x 2-2xx -ln x,从而将问题转化为求函数h (x )=x 2-2xx -ln x,x ∈[1,e]的最小值问题.[应用体验]2.(2018·湖北七市(州)联考)函数f (x )=ln x +12x 2+ax (a ∈R),g (x )=e x +32x 2.(1)讨论f (x )的极值点的个数;(2)若对任意的x ∈(0,+∞),总有f (x )≤g (x )成立,求实数a 的取值范围.解:(1)法一:由题意得f ′(x )=x +1x +a =x 2+ax +1x (x >0),令f ′(x )=0,即x 2+ax +1=0,Δ=a 2-4.①当Δ=a 2-4≤0,即-2≤a ≤2时,x 2+ax +1≥0对x >0恒成立,即f ′(x )=x 2+ax +1x≥0对x >0恒成立,此时f (x )没有极值点.②当Δ=a 2-4>0,即a <-2或a >2时.若a <-2,设方程x 2+ax +1=0的两个不同实根为x 1,x 2,不妨设x 1<x 2,则x 1+x 2=-a >0,x 1x 2=1>0,故x 2>x 1>0,∴当0<x <x 1或x >x 2时,f ′(x )>0; 当x 1<x <x 2时,f ′(x )<0,故x 1,x 2是函数f (x )的两个极值点.若a >2,设方程x 2+ax +1=0的两个不同实根为x 3,x 4, 则x 3+x 4=-a <0,x 3x 4=1>0,故x 3<0,x 4<0. ∴当x >0时,f ′(x )>0,故函数f (x )没有极值点. 综上,当a <-2时,函数f (x )有两个极值点, 当a ≥-2时,函数f (x )没有极值点. 法二:f ′(x )=x +1x +a , ∵x >0,∴f ′(x )∈[a +2,+∞).①当a +2≥0,即a ∈[-2,+∞)时,f ′(x )≥0对∀x >0恒成立,f (x )在(0,+∞)上单调递增,f (x )没有极值点.②当a +2<0,即a ∈(-∞,-2)时,f ′(x )=0有两个不等正数解,设为x 1,x 2,∴f ′(x )=x +1x +a =x 2+ax +1x =(x -x 1)(x -x 2)x(x >0). 不妨设0<x 1<x 2,则当x ∈(0,x 1)时,f ′(x )>0,f (x )单调递增,当x ∈(x 1,x 2)时,f ′(x )<0,f (x )单调递减,当x ∈(x 2,+∞)时,f ′(x )>0,f (x )单调递增,所以x 1,x 2分别为f (x )极大值点和极小值点,故f (x )有两个极值点.综上所述,当a ∈[-2, +∞)时,f (x )没有极值点, 当a ∈(-∞,-2)时,f (x )有两个极值点. (2)f (x )≤g (x )⇔e x -ln x +x 2≥ax ,因为x >0,所以a ≤e x +x 2-ln xx 对∀x >0恒成立. 设φ(x )=e x +x 2-ln x x(x >0), 则φ′(x )=⎝⎛⎭⎫e x +2x -1x x -(e x +x 2-ln x )x 2=e x (x -1)+ln x +(x +1)(x -1)x 2,当x ∈(0,1)时,φ′(x )<0,φ(x )单调递减,当x ∈(1,+∞)时,φ′(x )>0,φ(x )单调递增, ∴φ(x )≥φ(1)=e +1,∴a ≤e +1. 故实数a 的取值范围为(-∞,e +1].导数应用的问题,其中求参数的取值范围是重点考查题型.在平常教学中,教师往往介绍利用变量分离法来求解.但部分题型利用变量分离法处理时,会出现“00”型的代数式,而这是大学数学中的不定式问题,解决这类问题的有效方法就是洛必达法则.[洛必达法则]法则1 若函数f (x )和g (x )满足下列条件: (1)li m x →af (x )=0及li m x →ag (x )=0; (2)在点a 的去心邻域内,f (x )与g (x )可导且g ′(x )≠0; (3)li m x →af ′(x )g ′(x )=l ,那么li m x →a f (x )g (x )=li m x →a f ′(x )g ′(x )=l .法则2 若函数f (x )和g (x )满足下列条件: (1)li m x →af (x )=∞及li m x →ag (x )=∞; (2)在点a 的去心邻域内,f (x )与g (x )可导且g ′(x )≠0; (3)li m x →af ′(x )g ′(x )=l ,那么li m x →a f (x )g (x )=li m x →a f ′(x )g ′(x )=l .[典例] 已知函数f (x )=a ln x x +1+bx,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0.(1)求a ,b 的值;(2)如果当x >0,且x ≠1时,f (x )>ln x x -1+kx ,求k 的取值范围.[方法演示]解:(1)f ′(x )=a x +1x -ln x(x +1)2-bx 2. 由于直线x +2y -3=0的斜率为-12,且过点(1,1),故⎩⎪⎨⎪⎧ f (1)=1,f ′(1)=-12,即⎩⎪⎨⎪⎧b =1,a 2-b =-12,解得⎩⎪⎨⎪⎧a =1,b =1. (2)法一:由(1)知f (x )=ln x x +1+1x,所以 f (x )-ln x x -1+k x =11-x 22ln x +(k -1)(x 2-1)x .设h (x )=2ln x +(k -1)(x 2-1)x (x >0), 则h ′(x )=(k -1)(x 2+1)+2x x 2.①设k ≤0,由h ′(x )=k (x 2+1)-(x -1)2x 2知,当x ≠1时,h ′(x )<0,h (x )单调递减. 而h (1)=0,故当x ∈(0,1)时,h (x )>0,可得11-x 2h (x )>0; 当x ∈(1,+∞)时,h (x )<0,可得11-x 2h (x )>0.从而当x >0,且x ≠1时,f (x )-ln x x -1+kx>0, 即f (x )>ln x x -1+kx. ②设0<k <1.由于y =(k -1)(x 2+1)+2x =(k -1)x 2+2x +k -1的图象开口向下,且Δ=4-4(k -1)2>0,对称轴x =11-k >1,所以当x ∈1,11-k时,(k -1)(x 2+1)+2x >0, 故h ′(x )>0,而h (1)=0,故当x ∈⎝⎛⎭⎫1,11-k 时,h (x )>0,可得11-x 2h (x )<0,与题设矛盾,③设k ≥1.此时h ′(x )>0,而h (1)=0,故当x ∈(1,+∞)时,h (x )>0,可得11-x 2h (x )<0,与题设矛盾.综上所述,k 的取值范围为(-∞,0].(法一在处理第(2)问时很难想到,现利用洛必达法则处理如下) 法二:由题设可得,当x >0,x ≠1时,k <2x ln x1-x 2+1恒成立.令g (x )=2x ln x1-x 2+1(x >0,x ≠1), 则g ′(x )=2·(x 2+1)ln x -x 2+1(1-x 2)2,再令h (x )=(x 2+1)ln x -x 2+1(x >0,x ≠1), 则h ′(x )=2x ln x +1x -x ,又h ″(x )=2ln x +1-1x 2,易知h ″(x )=2ln x +1-1x 2在(0,+∞)上为增函数,且h ″(1)=0,故当x ∈(0,1)时,h ″(x )<0,当x ∈(1,+∞)时,h ″(x )>0,∴h ′(x )在(0,1)上为减函数,在(1,+∞)上为增函数,故h ′(x )>h ′(1)=0, ∴h (x )在(0,+∞)上为增函数.又h (1)=0,∴当x ∈(0,1)时,h (x )<0,当x ∈(1,+∞)时,h (x )>0, ∴当x ∈(0,1)时,g ′(x )<0,当x ∈(1,+∞)时,g ′(x )>0, ∴g (x )在(0,1)上为减函数,在(1,+∞)上为增函数. 由洛必达法则知, li m x →1g (x )=2li m x →1x ln x 1-x 2+1=2li m x →1 1+ln x -2x+1=2×⎝⎛⎭⎫-12+1=0,∴k ≤0, 故k 的取值范围为(-∞,0]. [解题师说]解决本题第(2)问时,如果直接讨论函数的性质,相当繁琐,很难求解.采用参数与变量分离较易理解,但是分离出来的函数式的最值无法求解,而利用洛必达法则却较好的处理了它的最值,这是一种值得借鉴的方法.[应用体验]3.已知函数f (x )=x (e x -1)-ax 2,若当x ≥0时,f (x )≥0,求a 的取值范围. 解:当x ≥0时,f (x )≥0,即x (e x -1)≥ax 2. ①当x =0时,a ∈R ;②当x >0时,x (e x-1)≥ax 2等价于a ≤⎝⎛⎭⎫e x-1x min .记g (x )=e x -1x ,x ∈(0,+∞),则g ′(x )=(x -1)e x +1x 2.记h (x )=(x -1)e x +1,x ∈[0,+∞),则h ′(x )=x e x >0.因此h (x )=(x -1)e x +1在[0,+∞)上单调递增,且h (x )>h (0)=0,所以g ′(x )=h (x )x 2>0, 从而g (x )=e x -1x 在(0,+∞)上单调递增.由洛必达法则有li m x →0g (x )=li m x →0 e x -1x =li m x →0 e x1=1,所以g (x )>1,即有a ≤1. 故实数a 的取值范围为(-∞,1].1.(2017·全国卷Ⅱ)设函数f (x )=(1-x 2)e x . (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围. 解:(1)f ′(x )=(1-2x -x 2)e x .令f ′(x )=0,得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.(2)f (x )=(1+x )(1-x )e x . ①当a ≥1时,设函数h (x )=(1-x )e x ,则h ′(x )=-x e x <0(x >0). 因此h (x )在[0,+∞)上单调递减, 又h (0)=1,故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1. ②当0<a <1时,设函数g (x )=e x -x -1,则g ′(x )=e x -1>0(x >0), 所以g (x )在[0,+∞)上单调递增,而g (0)=0, 故e x ≥x +1.当0<x <1时,f (x )>(1-x )(1+x )2, (1-x )(1+x )2-ax -1=x (1-a -x -x 2), 取x 0=5-4a -12, 则x 0∈(0,1),(1-x 0)(1+x 0)2-ax 0-1=0, 故f (x 0)>ax 0+1.当a ≤0时,取x 0=5-12, 则x 0∈(0,1),f (x 0)>(1-x 0)(1+x 0)2=1≥ax 0+1. 综上,a 的取值范围是[1,+∞). 2.已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)若对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围. (2)证明:对一切x ∈(0,+∞),ln x >1e x -2e x恒成立.解:(1)由题意知2x ln x ≥-x 2+ax -3对一切x ∈(0,+∞)恒成立, 则a ≤2ln x +x +3x.设h (x )=2ln x +x +3x (x >0),则h ′(x )=(x +3)(x -1)x 2.当x ∈(0,1)时,h ′(x )<0,h (x )单调递减; 当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增. 所以h (x )min =h (1)=4,因为对一切x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4,故实数a 的取值范围是(-∞,4]. (2)问题等价于证明x ln x >x e x -2e (x >0).又f (x )=x ln x (x >0),f ′(x )=ln x +1, 当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0,f (x )单调递增, 所以f (x )min =f ⎝⎛⎭⎫1e =-1e . 设m (x )=x e x -2e (x >0),则m ′(x )=1-xe x, 当x ∈(0,1)时,m ′(x )>0,m (x )单调递增, 当x ∈(1,+∞)时,m ′(x )<0,m (x )单调递减, 所以m (x )max =m (1)=-1e ,从而对一切x ∈(0,+∞),f (x )>m (x )恒成立,即x ln x >x e x -2e恒成立.所以对一切x ∈(0,+∞),ln x >1e x -2e x 恒成立.3.已知函数f (x )=bx 2-2ax +2ln x .(1)若曲线y =f (x )在(1,f (1))处的切线为y =2x +4,求实数a ,b 的值;(2)当b =1时,若y =f (x )有两个极值点x 1,x 2,且x 1<x 2,a ≥52,若不等式f (x 1)≥mx 2恒成立,求实数m 的取值范围.解:(1)由题可知f (1)=b -2a =6,∵f ′(x )=2bx -2a +2x ,∴f ′(1)=2b -2a +2=2,联立可得a =b =-6. (2)当b =1时,f (x )=x 2-2ax +2ln x ,∴f ′(x )=2x -2a +2x =2(x 2-ax +1)x. ∵f (x )有两个极值点x 1,x 2,且x 1<x 2, ∴x 1,x 2是方程x 2-ax +1=0的两个正根, ∴x 1+x 2=a ≥52,x 1·x 2=1,∴x 1+1x 1≥52,∴0<x 1≤12.不等式f (x 1)≥mx 2恒成立,即m ≤f (x 1)x 2恒成立. f (x 1)x 2=x 21-2ax 1+2ln x 1x 2=x 31-2ax 21+2x 1ln x 1 =x 31-2(x 1+x 2)x 21+2x 1ln x 1=-x 31-2x 1+2x 1ln x 1.令h (x )=-x 3-2x +2x ln x ⎝⎛⎭⎫0<x ≤12, 则h ′(x )=-3x 2+2ln x <0, ∴h (x )在⎝⎛⎦⎤0,12上是减函数, ∴h (x )≥h ⎝⎛⎭⎫12=-98-ln 2,故m ≤-98-ln 2, ∴实数m 的取值范围为⎝⎛⎦⎤-∞,-98-ln 2. 4.(2018·张掖诊断)已知函数f (x )=mxln x,曲线y =f (x )在点(e 2,f (e 2))处的切线与直线2x +y =0垂直(其中e 为自然对数的底数).(1)求f (x )的解析式及单调递减区间;(2)是否存在最小的常数k ,使得对任意x ∈(0,1),f (x )>k ln x+2x 恒成立?若存在,求出k 的值;若不存在,请说明理由.解:(1)f ′(x )=m (ln x -1)(ln x )2, 由f ′(e 2)=m 4=12,得m =2,故f (x )=2x ln x, 此时f ′(x )=2(ln x -1)(ln x )2. 由f ′(x )<0,得0<x <1或1<x <e ,所以函数f (x )的单调递减区间为(0,1),(1,e).(2)f (x )>k ln x +2x 恒成立,即2x ln x >k ln x +2x 恒成立⇔k ln x <2x ln x-2x 恒成立, 当x ∈(0,1)时,ln x <0,则有k >2x -2x ·ln x 恒成立.令g (x )=2x -2x ·ln x ,则g ′(x )=2x -ln x -2x. 再令h (x )=2x -ln x -2,则h ′(x )=x -1x <0, 所以h (x )在(0,1)上单调递减,所以h (x )>h (1)=0,故g ′(x )=h (x )x>0, 所以g (x )在(0,1)上单调递增,g (x )<g (1)=2⇒k ≥2.故存在常数k =2满足题意.。

利用导数研究不等式恒成立(能成立)问题

利用导数研究不等式恒成立(能成立)问题

利用导数研究不等式恒成立(能成立)问题1.设函数f (x )=(1+x -x 2)e x (e =2.718 28…是自然对数的底数).(1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1+2x 2恒成立,求实数a 的取值范围.解:(1)f ′(x )=(2-x -x 2)e x =-(x +2)(x -1)e x .当x <-2或x >1时,f ′(x )<0;当-2<x <1时,f ′(x )>0.所以f (x )在(-∞,-2),(1,+∞)上单调递减,在(-2,1)上单调递增.(2)设F (x )=f (x )-(ax +1+2x 2),F (0)=0,F ′(x )=(2-x -x 2)e x -4x -a ,F ′(0)=2-a ,当a ≥2时,F ′(x )=(2-x -x 2)e x -4x -a ≤-(x +2)·(x -1)e x -4x -2≤-(x +2)(x -1)e x -x -2=-(x +2)·[(x -1)e x +1],设h (x )=(x -1)e x +1,h ′(x )=x e x ≥0,所以h (x )在[0,+∞)上单调递增,h (x )=(x -1)e x +1≥h (0)=0,即F ′(x )≤0在[0,+∞)上恒成立,F (x )在[0,+∞)上单调递减,F (x )≤F (0)=0,所以f (x )≤ax +1+2x 2在[0,+∞)上恒成立.当a <2时,F ′(0)=2-a >0,而函数F ′(x )的图象在(0,+∞)上连续且x →+∞,F ′(x )逐渐趋近负无穷,必存在正实数x 0使得F ′(x 0)=0且在(0,x 0)上F ′(x )>0,所以F (x )在(0,x 0)上单调递增,此时F (x )>F (0)=0,f (x )>ax +1+2x 2有解,不满足题意. 综上,a 的取值范围是[2,+∞).2.设函数f (x )=2ln x -mx 2+1.(1)讨论函数f (x )的单调性;(2)当f (x )有极值时,若存在x 0,使得f (x 0)>m -1成立,求实数m 的取值范围. 解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=2x -2mx =-2(mx 2-1)x, 当m ≤0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增;当m >0时,令f ′(x )>0,得0<x <m m , 令f ′(x )<0,得x >m m , ∴f (x )在⎝⎛⎭⎫0,m m 上单调递增,在⎝⎛⎭⎫m m ,+∞上单调递减. (2)由(1)知,当f (x )有极值时,m >0,且f (x )在⎝⎛⎭⎫0,m m 上单调递增,在⎝⎛⎭⎫m m ,+∞上单调递减.∴f (x )max =f ⎝⎛⎭⎫m m =2ln m m -m ·1m +1=-ln m , 若存在x 0,使得f (x 0)>m -1成立,则f (x )max >m -1.即-ln m >m -1,ln m +m -1<0成立.令g (x )=x +ln x -1(x >0),∵g ′(x )=1+1x>0,∴g (x )在(0,+∞)上单调递增, 且g (1)=0,∴0<m <1.∴实数m 的取值范围是(0,1).3.(2020·西安质检)已知函数f (x )=ln x ,g (x )=x -1.(1)求函数y =f (x )的图象在x =1处的切线方程;(2)若不等式f (x )≤ag (x )对任意的x ∈(1,+∞)均成立,求实数a 的取值范围.解:(1)∵f ′(x )=1x,∴f ′(1)=1. 又∵f (1)=0,∴所求切线的方程为y -f (1)=f ′(1)(x -1),即为x -y -1=0.(2)易知对任意的x ∈(1,+∞),f (x )>0,g (x )>0.①当a ≥1时,f (x )<g (x )≤ag (x );②当a ≤0时,f (x )>0,ag (x )≤0,不满足不等式f (x )≤ag (x );③当0<a <1时,设φ(x )=f (x )-ag (x )=ln x -a (x -1),则φ′(x )=1x-a (x >1),令φ′(x )=0,得x =1a, 当x 变化时,φ′(x ),φ(x )的变化情况如下表:∴φ(x )max =φ⎝⎛⎭⎫1a >φ(1)=0,不满足不等式.综上所述,实数a 的取值范围为[1,+∞).4.已知函数f (x )=a x +x 2-x ln a (a >0,a ≠1).(1)求函数f (x )的极小值;(2)若存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e -1(e 是自然对数的底数),求实数a 的取值范围.解:(1)f ′(x )=a x ln a +2x -ln a =2x +(a x -1)ln a .∵当a >1时,ln a >0,函数y =(a x -1)ln a 在R 上是增函数,当0<a <1时,ln a <0,函数y =(a x -1)ln a 在R 上也是增函数,∴当a >1或0<a <1时,f ′(x )在R 上是增函数,又∵f ′(0)=0,∴f ′(x )>0的解集为(0,+∞),f ′(x )<0的解集为(-∞,0),故函数f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0),∴函数f (x )在x =0处取得极小值1.(2)∵存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e -1,∴只需f (x )max -f (x )min ≥e -1即可.由(1)可知,当x ∈[-1,1]时,f (x )在[-1,0]上是减函数,在(0,1]上是增函数, ∴当x ∈[-1,1]时,f (x )min =f (0)=1,f (x )max 为f (-1)和f (1)中的较大者.f (1)-f (-1)=(a +1-ln a )-⎝⎛⎭⎫1a +1+ln a =a -1a-2ln a , 令g (a )=a -1a-2ln a (a >0), ∵g ′(a )=1+1a 2-2a =⎝⎛⎭⎫1-1a 2>0, ∴g (a )=a -1a-2ln a 在(0,+∞)上是增函数. 而g (1)=0,故当a >1时,g (a )>0,即f (1)>f (-1);当0<a <1时,g (a )<0,即f (1)<f (-1).∴当a >1时,f (1)-f (0)≥e -1,即a -ln a ≥e -1.由函数y =a -ln a 在(1,+∞)上是增函数,解得a ≥e ;当0<a <1时,f (-1)-f (0)≥e -1,即1a+ln a ≥e -1, 由函数y =1a +ln a 在(0,1)上是减函数,解得0<a ≤1e. 综上可知,所求实数a 的取值范围为⎝⎛⎦⎤0,1e ∪[e ,+∞).。

导数在处理不等式的恒成立问题(一轮复习教案)

导数在处理不等式的恒成立问题(一轮复习教案)

学习过程一、复习预习考纲要求:1.理解导数和切线方程的概念。

2.能在具体的数学环境中,会求导,会求切线方程。

3.特别是没有具体点处的切线方程,如何去设点,如何利用点线式建立直线方程。

4.灵活应用建立切线方程与其它数学知识之间的内在联系。

5. 灵活应用导数研究函数的单调性问题二、知识讲解1.导数的计算公式和运算法那么几种常见函数的导数:0'=C (C 为常数);1)'(-=n n nx x (Q n ∈);x x cos )'(sin =; x x sin )'(cos -=;1(ln )x x '=; 1(log )log a a x e x'=, ()x x e e '= ; ()ln x x a a a '= 求导法那么:法那么1 [()()]()()u x v x u x v x ±'='±'.法那么2 [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '=法那么3: '2''(0)u u v uv v v v -⎛⎫=≠ ⎪⎝⎭复合函数的导数:设函数()u x ϕ=在点x 处有导数()x u x ϕ'=',函数()y f u =在点x 的对应点u 处有导数()u y f u '=',那么复合函数(())y f x ϕ=在点x 处也有导数,且x u x u y y '''⋅= 或(())()()x f x f u x ϕϕ'='⋅'2.求直线斜率的方法〔高中范围内三种〕(1) tan k α=〔α为倾斜角〕; (2) 1212()()f x f x k x x -=-,两点1122(,()),(,())x f x x f x ; (3)0()k f x '= 〔在0x x =处的切线的斜率〕;3.求切线的方程的步骤:〔三步走〕〔1〕求函数()f x 的导函数()f x ';〔2〕0()k f x '= 〔在0x x =处的切线的斜率〕;〔3〕点斜式求切线方程00()()y f x k x x -=-;4.用导数求函数的单调性:〔1〕求函数()f x 的导函数()f x ';〔2〕()0f x '>,求单调递增区间;〔3〕()0f x '<,求单调递减区间;〔4〕()0f x '=,是极值点。

高一不等式恒成立问题3种基本方法

高一不等式恒成立问题3种基本方法

高一不等式恒成立问题3种基本方法文章标题:探讨高一不等式恒成立问题的三种基本方法在高中数学学习中,不等式恒成立问题是一个很常见的题型。

学生们通常需要掌握多种方法来解决这类问题,而这些方法通常可以分为三种基本类型。

本文将会详细介绍这三种基本方法,帮助读者全面理解这一数学概念。

1. 方法一:代数法我们来介绍代数法。

这种方法是在不等式两边进行代数变换,使得不等式变成一个容易解决的形式。

代数法通常包括加减变形、乘除变形以及平方去根等技巧。

以不等式ax+b>0为例,我们可以通过移项得到ax>-b,然后再除以a的正负来确定不等式的方向,从而得到不等式的解集。

代数法在解决不等式恒成立问题中应用广泛,能够快速简便地找到解的范围和规律。

2. 方法二:图像法我们介绍图像法。

图像法是通过绘制不等式所代表函数的图像,来直观地找出不等式恒成立的区间。

对于一元一次不等式ax+b>0,我们可以画出函数y=ax+b的图像,从而通过观察图像的上升或下降趋势来确定不等式的解集。

图像法能够帮助我们更直观地理解不等式的性质和范围,提高我们的思维逻辑和空间想象能力。

3. 方法三:参数法我们介绍参数法。

参数法是通过引入一个或多个参数,将不等式转化为一个有参数的等式问题,进而进行求解。

参数法的典型应用包括辅助角法、二次函数法等。

以不等式ax²+bx+c>0为例,我们可以引入Δ=b²-4ac,然后根据Δ的正负来确定不等式的解集。

参数法在解决不等式问题中能够简化问题的复杂度,将不等式的求解转化为参数的求解,从而提高解题的效率和准确度。

总结回顾通过对以上三种基本方法的介绍,我们可以发现它们各有特点,应用范围和解题思路有所不同。

代数法能够利用代数变形快速求解不等式问题,图像法能够帮助我们直观地理解不等式的性质,而参数法则能够将问题转化为参数的求解,提高解题的效率。

个人观点和理解在实际解题中,我们应该根据具体情况灵活选用这三种方法,结合题目的特点和自身的掌握程度来选择合适的解题方法。

利用导数研究不等式恒成立问题

利用导数研究不等式恒成立问题

(2)当 x>0 时,函数 f(x)≥0 恒成立,求实数 a 的取值范围.
[解] 由 f(1)≥0,得 a≥e-1 1>0, 则 f(x)≥0 对任意的 x>0 恒成立可转化为a+a 1≥2xx-ex 1对任意 的 x>0 恒成立. 设函数 F(x)=2xx-ex 1(x>0),则 F′(x)=-2x+x12exx-1. 当 0<x<1 时,F′(x)>0;当 x>1 时,F′(x)<0, 所以函数 F(x)在(0,1)上单调递增,在(1,+∞)上单调递减, 所以 F(x)max=F(1)=1e. 于是a+a 1≥1e,解得 a≥e-1 1.
(2)若对任意的 x∈[0,+∞),不等式 f(x)≥g(x)恒成立,求 实数 a 的取值范围.
[解] 令 h(x)=f(x)-g(x),由题意得 h(x)min≥0 在 x∈[0,+∞) 上恒成立,因为 h(x)=(x+a-1)ex-12x2-ax,
所以 h′(x)=(x+a)(ex-1). ①若 a≥0,则当 x∈[0,+∞)时,h′(x)≥0,所以函数 h(x)在 [0,+∞)上单调递增, 所以 h(x)min=h(0)=a-1,则 a-1≥0,得 a≥1. ②若 a<0,则当 x∈[0,-a)时,h′(x)≤0; 当 x∈(-a,+∞)时,h′(x)>0, 所以函数 h(x)在[0,-a)上单调递减,在(-a,+∞)上单调递增, 所以 h(x)min=h(-a), 又因为 h(-a)<h(0)=a-1<0,所以不合题意. 综上,实数 a 的取值范围为[1,+∞).
1 f(x)<k+2x-x2
成立,求 k 的取值范围.
解:由题意知 f(x)=exx<k+21x-x2对任意的 x∈(0,2)都成立,

专题12利用导数研究不等式恒成立问题(原卷版)

专题12利用导数研究不等式恒成立问题(原卷版)

专题12利用导数研究不等式恒成立问题不等式恒成立问题的基本类型类型1:任意x ,使得f (x )>0,只需f (x )min >0.类型2:任意x ,使得f (x )<0,只需f (x )max <0.类型3:任意x ,使得f (x )>k ,只需f (x )min >k .类型4:任意x ,使得f (x )<k ,只需f (x )max <k .类型5:任意x ,使得f (x )>g (x ),只需h (x )min =[f (x )-g (x )]min >0.类型6:任意x ,使得f (x )<g (x ),只需h (x )max =[f (x )-g (x )]max <0.(1)构造函数分类讨论:遇到f (x )≥g (x )型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数h (x )=f (x )-g (x ) 或“右减左”的函数u (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或u (x )max ≤0,将比较法的思想融入函数中,转化为求解函数最值的问题,适用范围较广,但是往往需要对参数进行分类讨论.(2)分离函数法:分离参数法的主要思想是将不等式变形成一个一端是参数a ,另一端是变量表达式v (x )的不等式后,应用数形结合思想把不等式恒成立问题转化为水平直线y =a 与函数y =v (x )图象的交点个数问题来解决. 可化为不等式恒成立问题的基本类型类型1:函数f (x )在区间D 上单调递增,只需f ′(x )≥0.类型2:函数f (x )在区间D 上单调递减,只需f ′(x )≤0.类型3:∀x 1,x 2∈D ,f (x 1)>g (x 2),只需f (x )min >g (x )max .类型4:∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),只需f (x )min >g (x )min .类型5:∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),只需f (x )max <g (x )max .(1)∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值 即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.(2)∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.典例1.已知函数f (x )=ax +ln x +1,若对任意的x >0,f (x )≤x e 2x 恒成立,求实数a 的取值范围.典例2.设函数f (x )=ln x +k x,k ∈R. (1)若曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围.典例3.已知函数f (x )=13x 3+x 2+ax . (1)若函数f (x )在区间[1,+∞)上单调递增,求实数a 的最小值;(2)若函数g (x )=x e x ,对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立,求实数a 的取值范围. 典例4.已知函数f (x )=3x -3x +1,g (x )=-x 3+32(a +1)x 2-3ax -1,其中a 为常数. (1)当a =1时,求曲线g (x )在x =0处的切线方程;(2)若a <0,对于任意的x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2),求实数a 的取值范围.专项突破练一、单选题1.若不等式4342x x a ->-对任意实数x 都成立,则实数a 的取值范围是() A .27a <- B .25a >- C .29a ≥ D .29a >2.已知函数()22f x ax x a =-+,对[]1,2x ∀∈都有()0f x ≤成立,则实数a 的取值范围是()A .(],0-∞B .4,5⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .[]1,0-3.已知函数()32183833f x x x x =-+-,()lng x x x =-,若()120,3x x ∀∈,,()()12g x k f x +≥恒成立,则实数k 的取值范围是()A .[)2ln 2,++∞B .[)3,∞-+C .5,3⎡⎫+∞⎪⎢⎣⎭D .[)3,+∞4.已知不等式()()23ln 1231x x a -+≤+对任意[]0,1x ∈恒成立,则实数a 的最小值为()A .1ln 22-B .113ln 622--C .13-D .113ln 622+ 5.若关于x 的不等式sin x x ax -≥,对[]0,x π∈恒成立,则实数a 的取值范围是() A .(],1-∞- B .(],1-∞C .4,π⎛⎫-∞- ⎪⎝⎭D .4,∞π⎛⎤- ⎥⎝⎦ 6.若关于x 的不等式()()22e222ln 1x a x a a x -+-+>+-在()2,+∞上恒成立,则实数a 的取值范围为() A .1,e ⎡-+∞⎫⎪⎢⎣⎭ B .()1,-+∞C .[)1,-+∞D .[)2,-+∞ 7.已知函数()2sin f x x x =+,若ln (1)0a f x f x ⎛⎫++-≥ ⎪⎝⎭对(]0,2x ∈恒成立,则实数a 的取值范围为() A .[)1,+∞ B .[)2,+∞C .[]1,2D .()1,+∞ 8.已知不等式22ln 0ax x +-≥恒成立,则a 的取值范围为()A .21,e ⎡⎫+∞⎪⎢⎣⎭B .22,e ⎡⎫+∞⎪⎢⎣⎭C .210,e ⎛⎤ ⎥⎝⎦D .220,e ⎛⎤ ⎥⎝⎦9.若函数()ln f x x =,g (x )=313x 对任意的120x x >>,不等式112212()()()()x f x x f x m g x g x ->-恒成立,则整数m 的最小值为()A .2B .1C .0D .-1二、多选题 10.已知函数22,0(),0x x x f x e x ⎧+<=⎨≥⎩,满足对任意的x ∈R ,()f x ax ≥恒成立,则实数a 的取值可以是() A.-B.CD.11.设函数()()e 1x f x ax a +=-+∈N ,若()0f x >恒成立,则实数a 的可能取值是()A .1B .2C .3D .4 12.已知函数()312x f x x +=+,()()42e x g x x =-,若[)120,x x ∀∈+∞,,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值可以是()A .6e B.(2e C.(2e D .2e13.已知()2121()1e 2x f x a x -=--,若不等式11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,则a 的值可以为() A.B .1- C .1 D三、填空题 14.已知函数2()2ln f x x x a =--,若()0f x ≥恒成立,则a 的取值范围是________. 15.当(]0,1x ∈时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是______.16.已知函数()2f x x a =+,()ln 2g x x x =-,如果对任意的1x ,2122x ⎡⎤∈⎢⎥⎣⎦,,都有()()12f x g x ≤成立,则实数a 的取值范围是_________.17.已知不等式[]1ln(1)x e x m x x -->-+对一切正数x 都成立.则实数m 的取值范围是___________.四、解答题18.设()()32114243f x x a x ax a =-+++,其中a R ∈.(1)若()f x 有极值,求a 的取值范围;(2)若当0x ≥,()0f x >恒成立,求a 的取值范围.19.已知函数()ln 32a f x ax x =--,其中0a ≠. (1)求函数()f x 的单调区间;(2)若()310xf x x +-≥对任意[)1,x ∞∈+恒成立,求实数a 的取值范围. 20.已知函数2()(2)e (1)(R,R)x f x x a x m a m =----∈∈.(1)若12a =,求()f x 的单调区间; (2)若()0,()2ln 2e x a f x x x =≥+-对一切,()0x ∈+∞恒成立,求m 的取值范围. 21.已知函数()()()21e ,12x f x x g x ax a R =-=+∈. (1)求()f x 的图象在0x =处的切线方程;(2)当[)0,x ∈+∞时,()()f x g x ≥恒成立,求a 的取值范围. 22.已知函数211()(1)ln (,0)22f x x a x a a =-+-∈≠R . (1)讨论函数的单调性;(2)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围. 23.已知函数()()ln 1ln f x ax a x =-+的图像在点()()1,1f 处的切线方程为4y x b =+. (1)求a ,b 的值;(2)当4k ≥时,证明:()()1f x k x <-对()1,x ∈+∞恒成立.24.已知函数()()21ln R f x ax x a =--∈.(1)讨论函数()f x 的单调性;(2)若()f x 在x =()()0,,1x f x bx ∈+∞≥-恒成立,求实数b 的取值范围. 25.已知函数()e (2)1x f x a x =---.(1)当a =1时,求曲线在点()()1,1f 处的切线方程;(2)若2()()g x f x x =-,且()0g x ≥在[)0,∞+上恒成立,求a 的取值范围.26.已知函数()e x f x =.(1)证明:()1f x x ≥+;(2)当[]0,x π∈时,不等式()()sin 21ln 1x f x m x --≤+⎡⎤⎣⎦恒成立,求实数m 的取值范围.27.已知函数()()ln 0x f x e a x a =->.(1)当2a =时,直线2y kx =+与曲线()y f x =相切,求实数k 的值;(2)当0x >时,()ln f x a a >,求a 的取值范围.28.已知函数2()e (1)=+-+x f x a x x .(1)当1a =时,求()f x 的单调区间;(2)若不等式()2f x ≥恒成立,求实数a 的取值范围.29.设函数()()321f x x a x ax =+++.(1)0a =时,求()f x 在区间[]1,2-上的最大值与最小值.(2)0a >时,()f x 有两个不同的极值点1x ,2x ,且对不等式()()120f x f x +≤恒成立,求实数a 的取值范围? 30.已知函数()()()1e x f x a x a =--∈R ,()ln e k x x =-,e 为自然对数的底数.(1)讨论()f x 的单调性;(2)当1x >时,不等式()()f x k x ≤恒成立,求a 的取值范围.31.已知函数()()2ln 2f x x ax a =-+∈R .(1)讨论()f x 的单调性;(2)若()()20f x a x --≥在[]1,e x ∈上恒成立,求实数a 的取值范围. 32.已知函数()ln 1f x ax x =++.(1)若()f x 在(0,)+∞上仅有一个零点,求实数a 的取值范围;(2)若对任意的0x >,2()e x f x x ≤恒成立,求实数a 的取值范围.33.已知函数21()e sin 12x f x kx x =---,函数()21cos 12g x x x =+-.(1)求函数()g x 的单调区间.(2)0x ≥时,不等式()0f x ≥恒成立,求实数k 的取值范围. 34.已知函数12()(1)e -=--x f x a x x (其中a R ∈,e 为自然对数的底数).(1)当2e a >时,讨论函数f (x )的单调性;(2)当1x >时,2()ln(1)3f x x x x >--+-,求a 的取值范围. 35.已知函数()e ln 1x f x mx x =--.(1)当1m =时,求曲线()y f x =在()()1,1f 处的切线方程;(2)若(x)x f ≥恒成立,求实数m 的取值范围.。

高考数学专题《利用导数研究不等式恒成立问题 》

高考数学专题《利用导数研究不等式恒成立问题 》

第04讲利用导数研究不等式恒成立问题(精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:分离变量法高频考点二:分类讨论法高频考点三:等价转化法第四部分:高考真题感悟第五部分:第04讲利用导数研究不等式恒成立问题(精练)1、分离参数法用分离参数法解含参不等式恒成立问题,可以根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量表达式的不等式; 步骤:①分类参数(注意分类参数时自变量x 的取值范围是否影响不等式的方向)②转化:若()a f x >)对x D ∈恒成立,则只需max ()a f x >;若()a f x <对x D ∈恒成立,则只需min ()a f x <.③求最值.2、分类讨论法如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(0a >,0∆<或0a <,0∆<)求解.3、等价转化法当遇到()()f x g x ≥型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数()()()F x f x g x =-或者“右减左”的函数()()()H x g x f x =-,进而只需满足min ()0F x ≥,或者max ()0H x ≤,将比较法的思想融入函数中,转化为求解函数的最值的问题.1.(2022·全国·高二)设a 为正实数,函数322()34f x x ax a =-+,若(,2)x a a ∀∈,()0f x <,则a 的取值范围是( ) A .[2,)+∞B .(2,)+∞C .(0,2]D .2(0,)32.(2022·全国·高二)若不等式4342x x a ->-对任意实数x 都成立,则实数a 的取值范围是( ) A .27a <-B .25a >-C .29a ≥D .29a >3.(2022·全国·高二)已知函数()22f x ax x a =-+,对[]1,2x ∀∈都有()0f x ≤成立,则实数a 的取值范围是( )A .(],0-∞B .4,5⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .[]1,0-高频考点一:分离变量法1.(2022·全国·高三专题练习)设a R ∈,若不等式ln ax x >在()1,x ∞∈+上恒成立,则实数a 的取值范围是( ) A .()0,∞+B .1,e ⎛⎫+∞ ⎪⎝⎭C .()1,∞+D .()e,+∞2.(2022·内蒙古乌兰察布·高二期末(文))已知函数2()ln 2a f x x x =+,若对任意两个不等的正数1x ,2x ,都有1212()()4f x f x x x -≥-恒成立,则a 的取值范围为( )A .[)4∞+,B .()4.∞+C .(]4∞-,D .()4∞-,3.(2022·全国·高三专题练习)已知对(0,)x ∀∈+∞,不等式ln 1ax x ≥-恒成立,则实数a 的最小值是( ) A .eB .2eC .21e D .1e4.(2022·河南·高二阶段练习(理))已知当0x >时,()21e 1x x a x -≤--恒成立,则实数a 的取值范围是( ) A .(],e 1-∞-B .(],1-∞C .(]2,e 1--D .(],2-∞- 5.(2022·湖南·临澧县第一中学高二阶段练习)已知函数()ln af x x x=+(a 为常数) (1)讨论函数()f x 的单调性; (2)不等式()1f x ≥在2(]0,x ∈上恒成立,求实数a 的取值范围.6.(2022·重庆市育才中学高二阶段练习)已知函数()1ln f x ax x =--,a R ∈. (1)讨论函数()f x 在区间()1,e 的极值;(2)若函数()f x 在1x =处取得极值,对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围.7.(2022·四川省泸县第一中学高二阶段练习(理))已知函数()e 1()x f x ax a =-+∈R . (1)讨论函数()f x 的单调性与极值;(2)若对任意0x >,2()f x x x ≥--恒成立,求实数a 的取值范围.8.(2022·河南·三模(文))已知函数()e x f x ax b =++(e 是自然对数的底数),曲线()y f x =在点()()0,0f 处的切线为y a b =-. (1)求a ,b 的值;(2)若不等式()1f x mx >-在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立,求正实数m 的取值范围.高频考点二:分类讨论法1.(2022·广西柳州·三模(文))已知函数()ln f x ax x =-. (1)讨论函数()f x 的单调性;(2)若1x =为函数()f x 的极值点,当[)e,x ∞∈+,不等式()()()1e x f x x m x -+≤-恒成立,求实数m 的取值范围.2.(2022·陕西西安·二模(文))已知函数()()1ln f x a x a x=+∈R . (1)当1a =时,求函数()f x 的单调减区间;(2)若不等式()f x x ≥对(]0,1x ∈恒成立,求实数a 的取值范围.3.(2022·河南·高二阶段练习(文))已知曲线()ln f x m x =+在1x =处的切线方程为()y h x =,且210e f ⎛⎫= ⎪⎝⎭.(1)求()h x 的解析式;(2)若0x ≥时,不等式()20e x ax h x --≥恒成立,求实数a 的取值范围.4.(2022·全国·高三专题练习)已知函数()e xf x =,曲线()y f x =在点()00,x y 处的切线为()yg x =.(1)证明:对于x R ∀∈,()()f x g x ≥; (2)当0x ≥时,()11axf x x≥++恒成立,求实数a 的取值范围.5.(2022·四川·树德中学高三开学考试(文))已知a ∈R ,设函数()()ln ln f x a x a x =++. (1)讨论函数()f x 的单调性; (2)若()2ln xf x a x a≤+恒成立,求实数a 的取值范围.6.(2022·贵州黔东南·一模(文))已知函数()22ln f x x a x =-.(1)讨论()f x 的单调性;(2)当x >1时,()1f x >恒成立,求a 的取值范围.高频考点三:等价转化法1.(2022·河南·民权县第一高级中学高三阶段练习(文))已知函数()1ln f x a x x=+,()()1e 1,x g x x mx a m x=+--∈R .(1)讨论f (x )的单调性;(2)当a =1时,若不等式()()f x g x ≤恒成立,求m 的取值范围.2.(2022·江苏·高二课时练习)已知函数()ln f x ax x =+,()()220g x a x a =>.若()()f x g x ≤对一切正实数x 都成立,求实数a 的取值范围.3.(2022·全国·高三专题练习)已知函数()()2ln f x x a x =+,()2g x ax x =+.(1)当0a =时,求函数()f x 的最小值;(2)当0a ≤时,若对任意1≥x 都有()()f x g x ≥成立,求实数a 的取值范围.4.(2022·江西·南昌市实验中学高二阶段练习(理))已知函数()2ln f x x a x =+,()2g x x x =+.(1)若()y f x =在点()()1,1M f 处的切线方程为30x y b -+=,求实数a 、b 的值; (2)若对任意1x >,都有()()f x g x ≤成立,求实数a 的取值范围.5.(2022·山东日照·高三期末)已知函数()ln f x x ax b =-+,中,a b ∈R . (1)当0a >时,求()f x 的单调区间;(2)若[]()1,0,2,ln 1a b x kx x x ϕ=∈=--,对任意实数[]()()1,e ,x f x x ϕ∈≥恒成立,求2k b -的最大值.高频考点四:最值法1.(2022·重庆市朝阳中学高二阶段练习)已知函数321()22f x x x x m =--+,其中.m R ∈(1)若函数()f x 的极小值为0,求实数m 的值; (2)当[1,2]x ∈-时,1()2f x 恒成立,求实数m 的取值范围.2.(2022·重庆市长寿中学校高二阶段练习)已知函数()()2ln 0f x a x ax a =+-> (1)求()f x 的最大值(2)若()0f x ≤恒成立,求a 的值3.(2022·江西·模拟预测(文))已知函数()222(0)e xmx x f x m +-=>.(1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224e f x f x -≤恒成立,求实数m 的取值范围.4.(2022·河南·高二阶段练习(文))已知函数()32f x x ax bx c =+++在23x =-与1x =处都取得极值.(1)求a ,b 的值;(2)若对任意[]1,2x ∈-,不等式()23f x c <恒成立,求实数c 的取值范围.5.(2022·全国·高三专题练习)已知函数()()()221n l 0f x ax a x a x=-+->. (1)讨论函数()f x 的单调性;(2)若对[]2,3a ∀∈,[]12,1,2x x ∀∈,不等式()()12ln 2m f x f x +>-恒成立,求实数m 的取值范围.6.(2022·全国·高三专题练习)已知曲线()()3,f x ax bx a b =+∈R 在点()()1,1f 处的切线方程是20y +=.(1)求()f x 的解析式;(2)若对任意[]12,2,3x x ∈-,都有()()12f x f x m -,求实数m 的取值范围.1.(2019·天津·高考真题(理))已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为 A .[]0,1B .[]0,2C .[]0,eD .[]1,e2.(2020·海南·高考真题)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积; (2)若不等式()1f x ≥恒成立,求a 的取值范围.3.(2020·全国·高考真题(理))已知函数2()e x f x ax x =+-. (1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.4.(2019·全国·高考真题(文))已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数. (1)证明:f′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.一、单选题1.(2022·河南南阳·高二期末(文))若函数()ln f x kx x =-在区间(1,)+∞单调递增,则k 的取值范围是( ) A .[1,)+∞ B .(1,)+∞C .[2,)+∞D .(,2)-∞-2.(2022·全国·高二)函数f (x )=13x 3-x 2+a ,函数g (x )=x 2-3x ,它们的定义域均为[1,+∞),并且函数f (x )的图象始终在函数g (x )图象的上方,那么a 的取值范围是( ) A .(0,+∞)B .(-∞,0)C .4,3⎛-+∞⎫ ⎪⎝⎭D .4,3⎛⎫-∞- ⎪⎝⎭3.(2022·全国·高三阶段练习(理))已知()xae f x x x=-,()0,x ∈+∞,且1x ∀,()20,x ∈+∞,且12x x <,()()12210f x f x x x -<恒成立,则a 的取值范围是( )A .12,e ∞-⎛⎤- ⎥⎝⎦B .2,e ⎡⎫+∞⎪⎢⎣⎭C .(2,e ⎤-∞⎦D .13,e ⎛⎫+∞ ⎪⎝⎭4.(2022·全国·高二)已知函数()()e 10xx a f ax =--≠在[]1,2上是减函数,则实数a 的取值范围是( )A .21,e ⎛⎤-∞ ⎥⎝⎦B .21,e ⎡⎫+∞⎪⎢⎣⎭C .210,e ⎛⎤⎥⎝⎦D .211,e e ⎡⎤⎢⎥⎣⎦5.(2022·重庆市清华中学校高二阶段练习)已知函数()()31e 1x f x x kx =--+,若对任意的()12,0,x x ∈+∞,且12x x ≠,都有()()()()11222112x f x x f x x f x x f x +>+,则实数k 的取值范围是( ) A .e ,3∞⎛⎫- ⎪⎝⎭B .e ,3⎛⎤-∞ ⎥⎝⎦C .1,3⎛⎫-∞ ⎪⎝⎭D .1,3⎛⎤-∞ ⎥⎝⎦6.(2022·山西临汾·二模(理))已知函数22,1()ln ,1x ax a x f x x a x x ⎧-+≤=⎨->⎩,若()0f x ≥恒成立.则a 的取值范围为( ) A .[0,1]B .[0,2e]C .[1,2]D .[2,2e]7.(2022·浙江·义乌市商城学校高二阶段练习)已知m ,n 为实数,不等式ln 0x mx n --≤恒成立,则nm的最小值为( ) A .1-B .2-C .1D .28.(2022·宁夏中卫·一模(理))已知定义域为(0,)+∞的函数()f x 满足2()1()f x f x x x'+=,且2(e)e f =,e为自然对数的底数,若关于x 的不等式()20f x ax x x--+≤恒成立,则实数a 的取值范围为( ) A .[1,)+∞B .[2,)+∞C .2,e e +⎡⎫+∞⎪⎢⎣⎭D .322,e e e ⎡⎫-+++∞⎪⎢⎣⎭二、填空题9.(2022·全国·高二课时练习)当(]0,1x ∈时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是______.10.(2022·上海交大附中高二阶段练习)已知()2ln f x x ax a =-+,若对任意1≥x ,都有()0f x ≤,则实数a 的取值范围是______.11.(2022·江苏省石庄高级中学高二阶段练习)已知函数()ln xf x x=.若对任意[)12,,x x a ∞∈+,都有()()121ef x f x -≤成立,则实数a 的最小值是________.12.(2022·河南·民权县第一高级中学高三阶段练习(文))设函数f (x )在区间I 上有定义,若对12,x x I ∀∈和()0,1λ∀∈,都有()()()()()121211f x x f x f x λλλλ+-≤+-,那么称f (x )为I 上的凹函数,若不等号严格成立,即“<”号成立,则称f (x )在I 上为严格的凹函数.对于上述不等式的证明,19世纪丹麦数学家琴生给出了如下的判断方法:设定义在(a ,b )上的函数f (x ),其一阶导数为()f x ',其二阶导数为()f x ''(即对函数()f x '再求导,记为()f x ''),若()0f x ''>,那么函数f (x )是严格的凹函数(()f x ',()f x ''均可导).试根据以上信息解决如下问题:函数()21ln f x m x x x=++在定义域内为严格的凹函数,则实数m 的取值范围为___________. 三、解答题13.(2022·福建省厦门集美中学高二阶段练习)已知函数()ln f x x x =, (1)求过点(0,1)-的函数()f x 的切线方程(2)若对任意0x >,都有ln()x ax x a ≥-成立,求正数a 的取值范围.14.(2022·四川·成都外国语学校高二阶段练习(文))已知函数()()1ln f x x x =+ (1)求函数()f x 的单调区间和极值;(2)若m Z ∈,()()1m x f x -<对任意的()1,x ∈+∞恒成立,求m 的最大值.15.(2022·陕西·武功县普集高级中学高三阶段练习(理))已知函数()()e ln 1xf x a x =+-+,()'f x 是其导函数,其中a R ∈.(1)若()f x 在(,0)-∞上单调递减,求a 的取值范围;(2)若不等式()()f x f x '≤对(,0)x ∀∈-∞恒成立,求a 的取值范围.16.(2022·四川达州·二模(文))已知()()e 1x f x mx m =+<-.(1)当2m =-时,求曲线()y f x =上的斜率为1-的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-恒成立,求实数m 的范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015届高三培优____导数应用不等式恒成立问题
【基础导练】
1.已知函数32()39f x x x x c =--+,若[2,6]x ∈-时,()2f x c <恒成立,则c 的取值范
围是
解析:问题等价于3239()c x x x g x >+-=,只要max ()(6)54c g x g >==
答案:(54,)+∞
2.已知33()3,(0),()3,(0)f x x x x g t t t m t =-≤=-+≥,若对任意0,0x t ≤≥恒有不等
式()()g t f x ≥成立,则实数m 的取值范围是
解析:求得max ()(1)2f x f =-=,min ()(1)2g t g m ==-,只需22m -≥,即 4.m ≥ 答案:[4,)+∞
3.设函数()(1)ln(1)f x x x =++,若对所有的0x ≥,都有()f x ax ≥成立,则实数a 的
取值范围 .
【解析】令()(1)ln(1)g x x x ax =++-,
对函数()g x 求导数:'()ln(1)1g x x a =++-令'()0g x =,解得11a x e -=-, (i)当1a ≤时,对所有0,'()0x g x >>,所以()g x 在[0,)+∞上是增函数,
又(0)0g =,所以对0x ≥,都有()(0)g x g ≥,
即当1a ≤时,对于所有0x ≥,都有()f x ax ≥.
(ii)当1a >时,对于101a x e -<<-,'()0g x <,所以()g x 在1(0,1)a e -- 是减函数,
又(0)0g =,所以对1
01a x e
-<<-,都有()(0)g x g <,即当1a >时,对所有的0x ≥,都有()f x ax ≥成立. 综上,a 的取值范围是(-∞,1].
【例题研究】
例题1.已知函数()f x ax e x =-,其中0a ≠ . 若对一切x R ∈ ,()f x ≥1恒成立,求a 的取值集合.
【解析】(Ⅰ)若0a <,则对一切0x >,()f x 1ax e x =-<,这与题设矛盾,又0a ≠,
故0a >.
而()1,ax f x ae '=-令11()0,ln .f x x a a
'==得
当11ln x a a <
时,()0,()f x f x '<单调递减;当11ln x a a
>时,()0,()f x f x '>单调递增,故当11ln x a a =时,()f x 取最小值11111(ln )ln .f a a a a a =- 于是对一切,()1x R f x ∈≥恒成立,当且仅当
111ln 1a a a
-≥. ① 令()ln ,g t t t t =-则()ln .g t t '=-
当01t <<时,()0,()g t g t '>单调递增;当1t >时,()0,()g t g t '<单调递减.
故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当
11a
=即1a =时,①式成立. 综上所述,a 的取值集合为{}1.
例题2.设函数2()()ln ,.f x x a x a R =-∈
(Ⅰ) 若x e =为()y f x =的极值点,求实数a ;
(Ⅱ) 求实数a 的取值范围,使得对(0,3]x e ∀∈,恒有2()4f x e ≤成立 【解析】(Ⅰ) 求导得2()'()2()ln ()(2ln 1)x a a f x x a x x a x x x
-=-+=-+-,因为x e =是()f x 的极值点,所以'()()(3)0a f e e a e
=--=,所以a e =或3a e =经检验符合题意 (Ⅱ)①当01x <≤时,对a R ∀∈,恒有2
()04f x e ≤<成立
②当13x e <≤时,由题意,首先由22(3)(3)ln(3)4,f e e a e e =-≤解
得33e a e ≤≤+由(Ⅰ)知'()()(2ln 1)a f x x a x x =-+-, 令()2ln 1a h x x x
=+-,则(1)10,()2ln 0h a h a a =-<=>,且
(3)2ln(3)12ln(3)12(ln(3)03a h e e e e e =+-≥+=>, 又()h x 在(0,)+∞内单调递增,所以函数()h x 在(0,)+∞内有唯一零点,记此零点为0x ,
则0013,1x e x a <<<<,从而当0(0,)x x ∈时,'()0f x >;当0(,)x x a ∈时,'()0f x <;当(,)x a ∈+∞时,'()0f x >,即()f x 在00(0,),(,),(,).x x a a ↑↓+∞↑
所以要2
()4f x e ≤对(1,3)x e ∈恒成立,只要2200022()()ln 4(3)(3)ln(3)4f x x a x e f e e a e e ⎧=-≤⎨=-≤⎩ (1)(2)成立, 由000
()2ln 10a h x x x =+-=知,0002ln .a x x x =+ (3)代入(1)得232004ln 4.x x e ≤又01x >,注意到函数23ln x x 在(1,)+∞内单调递增,故01x e <≤再由(3)以及函数2ln x x x
+在(1,)+∞内单调递增,可得1.a e <≤由(2)解得33.ln(3)ln(3)
e a e e e -≤≤+ 所以33.ln(3)
e a e e -≤≤ 例题3已知函数()()()[]3
21,12cos .0,12
x x f x x e g x ax x x x -=+=+++∈当时, (I )求证:()11;1x f x x
-≤≤+ (II )若()()f x g x ≥恒成立,
a 求实数的取值范围.。

相关文档
最新文档