高考数学压轴题:导数与不等式恒成立
专题05 应用导数研究不等式恒成立问题(解析版)

专题05 应用导数研究不等式恒成立问题【压轴综述】纵观近几年的高考命题,应用导数研究函数的单调性、极(最)值问题,证明不等式、研究函数的零点等,是高考考查的“高频点”问题,常常出现在“压轴题”的位置.其中,应用导数研究不等式恒成立问题的主要命题角度有:证明不等式恒成立、由不等式恒(能)成立求参数的范围、不等式存在性问题.本专题就应用导数研究不等式恒成立问题,进行专题探讨,通过例题说明此类问题解答规律与方法---参变分离、数形结合、最值分析等.一、利用导数证明不等式f(x)>g(x)的基本方法(1)若f(x)与g(x)的最值易求出,可直接转化为证明f(x)min>g(x)max;(2)若f(x)与g(x)的最值不易求出,可构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)>0.二、不等式恒成立问题的求解策略(1)已知不等式f(x,λ)≥0(λ为实参数)对任意的x∈D恒成立,求参数λ的取值范围.利用导数解决此类问题可以运用分离参数法,其一般步骤如下:(2)如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(a>0,Δ<0或a<0,Δ<0)求解.三、不等式存在性问题的求解策略“恒成立”与“存在性”问题的求解是“互补”关系,即f(x)≥g(a)对于x∈D恒成立,应求f(x)的最小值;若存在x∈D,使得f(x)≥g(a)成立,应求f(x)的最大值.在具体问题中究竟是求最大值还是最小值,可以先联想“恒成立”是求最大值还是最小值,这样也就可以解决相应的“存在性”问题是求最大值还是最小值.特别需要关注等号是否成立,以免细节出错.【压轴典例】例1.(2021·全国高三其他模拟)已知数列{}n a 满足11a =,()1ln 1n n a a +=+.若11n n a a λ++≥恒成立,则实数λ的最大值是( )(选项中e 为自然对数的底数,大约为2.71828)A .21e -B .2e 1- CD .e【答案】D【详解】由()1ln 1n n a a +=+得()111ln 1n n n n a a a a +++-=-+,设()ln(1),1f x x x x =-+>-, ()1x f x x '=+,()f x 在(1,0)-单调递减,在(0,+∞)单调递增,故min ()(0)0f x f ==,则10n n a a +->,所以1n n a a +≤, 1n a ≥,由11n n a a λ++≥得111ln(1)n n a a λ++++≥易得11ln(11)n n a a λ++≤++,记110n t a ++=>,所以111ln(1ln )n n a t a t ++=++,记()ln t f t t=,()2ln 1()ln t f t t -'=,当ln 10t ->即()0f t '>得t e >时()f t 单调递增,当ln 10t -<即()0f t '<得0t e <<时()f t 单调递减,所以min ()()f t f e e ==,得e λ≤,例2.(2021·浙江嘉兴市·高三)已知函数()()()1x f x e a tax =-+,其中0t ≠.若对于某个t ∈R ,有且仅有3个不同取值的a ,使得关于x 的不等式()0f x ≥在R 上恒成立,则t 的取值范围为( )A .()1,eB .(),2e eC .(),e +∞D .()2,e +∞ 【答案】C【详解】显然0a ≥,否则0x e a ->,于是()()()10x f x e a tax =-+≥,即10tax +≥,这与不等式的解集为R 矛盾.又易知0a =时,不等式()0f x >恒成立.于是仅需再分析0a >的情形.易知0t >,由()()()10x f x e a tax =-+=知ln x a =或1x ta=-,所以11ln ln a a a ta t =-⇔-=.所以原问题等价于关于a 的方程1ln a a t-=有两解,设()ln h a a a =,则()ln 1h a a '=+,10a e <<时,()0h a '<,()h a 递减,1a e>时,()0'>h a ,()h a 递增,所以min 11()h a h e e ⎛⎫==- ⎪⎝⎭,0x →时,()0h a →,a →+∞时,()h a →+∞,所以由关于a 的方程1ln a a t -=有两解,得110e t-<-<,所以t e >. 例3.(2020·新高考全国Ⅰ卷)已知函数f(x)=ae x-1-ln x+ln a.(1)当a=e 时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a 的取值范围.【解析】f(x)的定义域为(0,+∞),f'(x)=ae x-1-.(1)当a=e 时,f(x)=e x -ln x+1,f'(1)=e-1,曲线y=f(x)在点(1,f(1))处的切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2.直线y=(e-1)x+2在x 轴,y 轴上的截距分别为,2,因此所求三角形的面积为.(2)当0<a<1时,f(1)=a+ln a<1不满足条件;当a=1时,f(x)=e x-1-ln x,f'(x)=e x-1-.当x ∈(0,1)时,f'(x)<0;当x ∈(1,+∞)时,f'(x)>0.所以f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,所以当x=1时,f(x)取得最小值,最小值为f(1)=1,从而f(x)≥1.所以a=1满足条件;当a>1时,f(x)=ae x-1-ln x+ln a ≥e x-1-ln x ≥1.综上,a 的取值范围是[1,+∞).例4.(2020·全国卷Ⅰ高考理科·T21)已知函数f(x)=e x +ax 2-x.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥x 3+1,求a 的取值范围. 【解析】(1)当a =1时,f=e x +x 2-x ,f'=e x +2x -1,由于f″=e x +2>0, 故f'单调递增,注意到f'=0, 故当x ∈时,f'<0,f 单调递减,当x ∈时,f'>0,f 单调递增.(2)由f ≥x 3+1得,e x +ax 2-x ≥x 3+1,其中x ≥0, ①当x =0时,不等式为:1≥1,显然成立,符合题意;②当x>0时,分离参数a得,a≥-,记g =-,g'=-,令h=e x -x2-x -1,则h'=e x-x-1,h″=e x-1≥0,故h'单调递增,h'≥h'=0,故函数h单调递增,h≥h=0,由h≥0可得:e x -x2-x-1≥0恒成立,故当x ∈时,g'>0,g单调递增;当x ∈时,g'<0,g单调递减,因此,=g =,综上可得,实数a 的取值范围是.例5.(2020·天津高考·T20)已知函数f(x)=x3+k ln x(k∈R),f'(x)为f(x)的导函数.(1)当k=6时,①求曲线y=f(x)在点(1,f(1))处的切线方程;②求函数g(x)=f(x)-f'(x )+的单调区间和极值;(2)当k≥-3时,求证:对任意的x1,x2∈[1,+∞),且x1>x2,有>.【解析】(1)①当k=6时,f(x)=x3+6ln x,f'(x)=3x2+.可得f(1)=1,f'(1)=9,所以曲线y=f(x)在点(1,f(1))处的切线方程为y-1=9(x-1),即y=9x-8.②依题意,g(x)=x3-3x2+6ln x +,x∈(0,+∞).从而可得g'(x)=3x2-6x +-,整理可得:g'(x )=,令g'(x)=0,解得x=1.当x变化时,g'(x),g(x)的变化情况如表:x(0,1) 1 (1,+∞)g'(x) - 0 +g(x) 单调递减极小值单调递增所以,g(x)的减区间为(0,1),单调递增区间为(1,+∞);g(x)的极小值为g(1)=1,无极大值.(2)由f (x )=x 3+k ln x ,得f'(x )=3x 2+.对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令=t (t >1), 则(x 1-x 2)[f'(x 1)+f'(x 2)]-2(f (x 1)-f (x 2))=(x 1-x 2)-2 =--3x 2+3x 1+k -2k ln =(t 3-3t 2+3t -1)+k .(ⅰ)令h (x )=x --2ln x ,x ∈(1,+∞).当x >1时,h'(x )=1+-=>0,由此可得h (x )在(1,+∞)上单调递增,所以当t >1时,h (t )>h (1),即t --2ln t >0. 因为x 2≥1,t 3-3t 2+3t -1=(t -1)3>0,k ≥-3, 所以(t 3-3t 2+3t -1)+k ≥(t 3-3t 2+3t -1)-3=t 3-3t 2+6ln t +-1.(ⅱ) 由(1)②可知,当t >1时,g (t )>g (1),即t 3-3t 2+6ln t +>1,故t 3-3t 2+6ln t +-1>0.(ⅲ) 由(ⅰ)(ⅱ)(ⅲ)可得(x 1-x 2)[f'(x 1)+f'(x 2)]-2(f (x 1)-f (x 2))>0.所以,当k ≥-3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有>.例6.(2021·江苏苏州市·高三)已知函数()e ln ax f x x x =-,其中e 是自然对数的底数,0a >.(1)若曲线()y f x =在点(1,(1))f 处的切线斜率为21e -,求a 的值;(2)对于给定的常数a ,若()1f x bx ≥+对(0,)x ∈+∞恒成立,求证:b a ≤.【答案】(1)1a =;(2)证明见解析.【详解】(1)因为1()(1)ax f x ax e x'=+-,所以切线斜率为(1)(1)121a k f a e e '==+-=-,即(1)20a a ee +-=.设()(1)2x h x x e e =+-, 由于()(2)0x h x x e '=+>,所以()h x 在(0,)+∞上单调递增,又(1)0h =,由(1)()02a a e h a e +-==可得1a =.(2)设()1t u t e t =--,则()1t u t e '=-,当0t >时,()0u t '>,当0t <时,()0u t '<,所以()u t 在(,0)-∞上单调递减,在(0,)+∞上单调递增,所以min()(0)0u t u ==,即()0u t ≥,所以1(*)t e t ≥+.若()1f x bx ≥+对(0,)x ∈+∞恒成立,即ln 1ax xe x bx --≥对(0,)x ∈+∞恒成立,即ln 1ln 1ax ax x xe x b e x x x --≤--=对(0,)x ∈+∞恒成立.设ln 1()ax xe x g x x --=,由(*)可知ln ln 1ln 1ln 1ln 1()ax ax x xe x e x ax x x g x a x x x+----++--==≥=, 当且仅当()ln 0x ax x ϕ=+=时等号成立.由()1()00x a x xϕ'=+>>,所以()ϕx 在()0+∞,上单调递增,又()()1a a a e ae a a e ϕ---=-=-,由0a >,所以10a e --<,即()0a e ϕ-<()10a ϕ=>,则存在唯一()0,1a x e -∈使得0()=0x ϕ,即方程()ln 0x ax x ϕ=+=有唯一解()0,1a x e -∈,即()g x a ≥(对于给定的常数a ,当0x x =,()0,1a x e -∈时取等号)由ln 1ln 1ax axx xe x b e x x x --≤--=对(0,)x ∈+∞恒成立,所以b a ≤. 例7.(2020·江苏高考·T19)已知关于x 的函数y=f(x),y=g(x)与h(x)=kx+b(k,b ∈R)在区间D 上恒有f(x)≥h(x)≥g(x).(1)若f(x)=x 2+2x,g(x)=-x 2+2x,D=(-∞,+∞).求h(x)的表达式;(2)若f(x)=x 2-x+1,g(x)=kln x,h(x)=kx-k,D=(0,+∞).求k 的取值范围;(3)若f(x)=x 4-2x 2,g(x)=4x 2-8,h(x)=4(t 3-t)x-3t 4+2t 2(0<|t|≤),D=[m,n]⊆[-,],求证:n-m ≤. 【解析】(1)由f(x)=g(x)得x=0.又f'(x)=2x+2,g'(x)=-2x+2,所以f'(0)=g'(0)=2,所以,函数h(x)的图象为过原点,斜率为2的直线,所以h(x)=2x.经检验:h(x)=2x 符合题意.(2)h(x)-g(x)=k(x-1-ln x),设φ(x)=x -1-ln x,则φ'(x)=1-=,φ(x)≥φ(1)=0,所以当h(x)-g(x)≥0时,k ≥0.设m(x)=f(x)-h(x)=x 2-x+1-(kx-k)=x 2-(k+1)x+(1+k)≥0,当x=≤0时,m(x)在(0,+∞)上递增,所以m(x)>m(0)=1+k ≥0,所以k=-1.当x=>0时,Δ≤0,即(k+1)2-4(k+1)≤0,(k+1)(k-3)≤0,-1≤k≤3.综上,k∈[0,3].(3)①当1≤t≤时,由g(x)≤h(x),得4x2-8≤4(t3-t)x-3t4+2t2,整理得x2-(t3-t)x+≤0.(*)令Δ=(t3-t)2-(3t4-2t2-8),则Δ=t6-5t4+3t2+8.记φ(t)=t6-5t4+3t2+8(1≤t≤),则φ'(t)=6t5-20t3+6t=2t(3t2-1)(t2-3)<0恒成立, 所以φ(t)在[1,]上是减函数,则φ()≤φ(t)≤φ(1),即2≤φ(t)≤7所以不等式(*)有解,设解集为,因此n-m≤x2-x1=≤.②当0<t<1时,f(-1)-h(-1)=3t4+4t3-2t2-4t-1.设v(t)=3t4+4t3-2t2-4t-1,v'(t)=12t3+12t2-4t-4=4(t+1)(3t2-1),令v'(t)=0,得t=.当t∈时,v'(t)<0,v(t)是减函数;当t∈时,v'(t)>0,v(t)是增函数;v(0)=-1,v(1)=0,则当0<t<1时,v(t)<0,(或证:v(t)=(t+1)2(3t+1)(t-1)<0)则f(-1)-h(-1)<0,因此-1∉(m,n).因为[m,n]⊆[-,],所以n-m≤+1<.③当-≤t<0时,因为f(x),g(x)均为偶函数,因此n-m≤也成立.综上所述,n-m≤.例8.(2020届安徽省马鞍山市高三)已知函数.(1)若在定义域内无极值点,求实数的取值范围;(2)求证:当时,恒成立.【答案】(1);(2)见解析【解析】(1)由题意知,令,则,当时,在上单调递减, 当时,在上单调递增, 又,∵在定义域内无极值点,∴ 又当时,在和上都单调递增也满足题意,所以(2),令,由(1)可知在上单调递増,又,所以存在唯一的零点,故在上单调递减,在上单调递増,∴由知 即当时,恒成立.例9.(2021·安徽高三)已知函数()2ln ,f x x ax x =+-其中0.a ≥(1)讨论()f x 的单调性;(2)若当2x >时()31,12f x x <+恒成立,求a 的取值范围. 【答案】(1)当18a ≥时,函数()f x 在()0,∞+内单增;当108a <<,()f x 在1181180,,4,4a a a a -⎛--+⎛⎫ ⎪ ⎪⎝⎭⎝⎭∞内单增,在11811844a a a a -+-⎛ ⎝⎭内单减;当0a =时,()f x 在(0,1)内单增,在()1,+∞内单减; (2)7ln20,4-⎡⎤⎢⎥⎣⎦. 【详解】(1)()212121,0ax x f x ax x x x-+=+'-=> 若()()110,21,x a f x ax f x x x-==+-=-在(0,1)内单增,在()1,+∞内单减. 若0,a >由2210ax x -+=知, 18a ∆=-.当Δ180,a =-≤即18a ≥时,2210,ax x -+≥此时()f x 在()0,∞+内单增. 当1Δ180,08a a =-><<时,1184a x a-=,此时()f x 在1181180,,4,4a a a a -⎛-+-+⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∞内单增,在118118,44a a a a --+-⎛⎫ ⎪ ⎪⎝⎭内单减. 综上所述:当18a ≥时,函数()f x 在()0,∞+内单增. 当108a <<,()f x 在1181180,,4,4a a a a -⎛-+-+⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∞内单增,在118118,44a a a a --+-⎛⎫ ⎪ ⎪⎝⎭内单减. 当0a =时,()f x 在(0,1)内单增,在()1,+∞内单减.(2)()3112f x x <+即231ln 1,2x ax x x +-<+ 即2311ln 2ax x x x <++- 即22111ln 2x a x x x x <++-,2x >,令()22111ln ,2,2x g x x x x x x=++-> 则()23311212ln 2x g x x x x -=---'33264ln ,22x x x x x--+=> 令()()324264ln ,2,320h x x x x x h x x x=--+>=-+>'. 所以()h x 在2x >时单增,()()()24ln222ln410h x h >=-=->,因此()0g x '>, ()g x 在2x >时单增,()()7ln224g x g ->=,于是7ln2.4a -≤ 故a 的取值范围是7ln20,.4-⎡⎤⎢⎥⎣⎦例10.(2020届山西省孝义市一模)已知函数. (1)讨论函数的单调性; (2)当时,曲线总在曲线的下方,求实数的取值范围.【答案】(1)当时,函数在上单调递增;当时,在上单调递增,在上单调递减;(2).【解析】(1)由可得的定义域为,且, 若,则,函数在上单调递增; 若,则当时,,在上单调递增, 当时,,在上单调递减. 综上,当时,函数在上单调递增; 当时,在上单调递增,在上单调递减.(2)原命题等价于不等式在上恒成立, 即,不等式恒成立.∵当时,,∴, 即证当时,大于的最大值.又∵当时,,∴,综上所述,.【总结提升】不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合( 图象在 上方即可);③ 讨论最值或恒成立;④ 讨论参数.本题是利用方法 ① 求得的范围. 【压轴训练】1.(2021·长宁区·上海市延安中学高三)设函数()f x 的定义域为R ,满足()()22f x f x +=,且当(]0,2x ∈时,()194f x x x =+-.若对任意(],x m ∈-∞,都有()23f x ≥-,则m 的取值范围是( )A .215⎛⎤-∞ ⎥⎝⎦,B .163⎛⎤-∞ ⎥⎝⎦,C .184⎛⎤-∞ ⎥⎝⎦,D .194⎛⎤-∞ ⎥⎝⎦,【答案】D【详解】当(]0,2x ∈时,()194f x x x =+-的最小值是1,4-由()()22f x f x +=知,当(]2,4x ∈时,()()192224f x x x ⎡⎤=-+-⎢⎥-⎣⎦的最小值是1,2-当(]4,6x ∈时,()()194444f x x x ⎡⎤=-+-⎢⎥-⎣⎦的最小值是1,-要使()23f x ≥-,则()1924443x x -+-≥--,解得:194x ≤或16.3x ≥2.(2020·河津中学高三)若函数2()cos sin 3f x a x x x ⎛⎫=-+ ⎪⎝⎭(其中a 为参数)在R 上单调递增,则a 的取值范围是( ) A .10,3⎡⎤⎢⎥⎣⎦B .11,,33⎛⎫⎛⎫-∞-+∞ ⎪⎪⎝⎭⎝⎭C .11,33⎡⎤-⎢⎥⎣⎦D .1,03⎡⎤-⎢⎥⎣⎦【答案】C【详解】函数1()sin sin 23f x a x x x =-+在R 上单调递增,等价于2245()cos cos21cos cos 0333f x a x x x a x =-+=-++'在R 上恒成立.设cos x t =,则245()033g t t at =-++在[1,1]-上恒成立,所以45(1)0,3345(1)0,33g a g a ⎧=-++⎪⎪⎨⎪-=--+⎪⎩解得.3.(2021·全国高三专题练习)已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( )A .1-B .0C .1D .2【答案】B【详解】设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212ln x kx x x x >-,等价于1221ln 1x kx x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-.设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=.所以0k ≤,k 的最大值为0.4.(2019·天津高考模拟)已知函数23ln ,1(),46,1x x f x x x x -≤⎧=⎨-+>⎩ 若不等式()|2|f x x a ≥-对任意(0,)x ∈+∞上恒成立,则实数a 的取值范围为( )A .13,3e ⎡⎤-⎢⎥⎣⎦ B .[3,3ln 5]+ C .[3,4ln 2]+D .13,5e ⎡⎤-⎢⎥⎣⎦【答案】C【解析】由题意得:设g(x)=|2|x a -,易得a >0,可得2,2g(x)=2,2a x a x a x a x ⎧-≥⎪⎪⎨⎪-+⎪⎩<,g(x)与x 轴的交点为(,0)2a,① 当2a x ≥,由不等式()|2|f x x a ≥-对任意(0,)x ∈+∞上恒成立,可得临界值时,()g()f x x 与相切,此时2()46,1f x x x x =-+>,()2,2ag x x a x =-≥,可得'()24f x x =-,可得切线斜率为2,242x -=,3x =,可得切点坐标(3,3), 可得切线方程:23y x =-,切线与x 轴的交点为3(,0)2,可得此时322a =,3a =, 综合函数图像可得3a ≥;② 同理,当2ax <,由()g()f x x 与相切, (1)当2()46,1f x x x x =-+>,()2,2a g x x a x =-+<,可得'()24f x x =-,可得切线斜率为-2,242x -=-,1x =,可得切点坐标(1,3),可得切线方程25y x =-+,可得5a =,综合函数图像可得5a ≤,(2)当()3ln ,1f x x x =-≤,()2,2a g x x a x =-+<,()g()f x x 与相切,可得'1()f x x, 此时可得可得切线斜率为-2,12x -=-,12x =,可得切点坐标1(,32)2In +, 可得切线方程:1(32)2()2y In x -+=--,242y x In =-++可得切线与x 轴的交点为2(2,0)2In +,可得此时2222a In =+,42a In =+, 综合函数图像可得42a In ≤+, 综上所述可得342a In ≤≤+,故选C.5.(2020·广东佛山市·高三)(多选)命题:p 已知ABC 为锐角三角形,不等式cos cos log 0sin CAB≥恒成立,命题2:2q x x ax +在[1,2]x ∈上恒成立,在[1,2]上恒成立,则真命题的为( ) A .p q ∨ B .p q ∧C .p q ⌝∨D .p q ∧⌝【答案】AD 【详解】因为为锐角三角形,所以0,0,0222A B C πππ<<<<<<,所以2A B π+>,则022A B ππ>>->,所以0cos cos()sin 12A B B π<<-=<,所以cos 01sin AB<<,又0cos 1C <<,所以不等式cos cos log 0sin CA B≥恒成立,故命题p 是真命题;命题2:2q x x ax +在[1,2]x ∈上恒成立()min2x a ⇔+,在[1,2]上恒成立,故命题q 是假命题所以p q ∨,p q ∧⌝是真命题.6.(2020·福清西山学校高三)(多选)记函数()f x 与()g x 的定义域的交集为I ,若存在0x I ∈,使得对任意x I ∈,不等式()()fx g x -⎡⎤⎣⎦()00x x -≥恒成立,则称()()(),f x g x 构成“相关函数对”.下列所给的两个函数构成“相关函数对”的有( ) A .()xf x e =,()1g x x =+B .()ln f x x =,()1g x x= C .()f x x =,()2g x x =D .()f x x =,【答案】BD【详解】根据函数的新定义,可得两个函数的图象有一个交点,且交点的两侧图象一侧满足()()f x g x >,另一侧满足()()f x g x <,对于A 中,令()()()1xx f x g x e x ϕ=-=--,可得()1xx e ϕ'=-,当0x >时,()10xx e ϕ'=->,函数单调递增;当0x <时,()10x x e ϕ'=-<,函数单调递减,所以当0x =时,函数()x ϕ 取得最小值,最小值为()00ϕ=,即()0x ϕ≥,所以()()f x g x ≥恒成立,不符合题意;对于B 中,令()()()1ln ,0x f x g x x x x ϕ=-=->,可得()2110x x xϕ'=+>,所以函数()x ϕ单调递增,又由()()11ln110,ln 0e e eϕϕ=-<=->,设0x x =满足()00x ϕ=,且01x e <<,则对任意(0,)x ∈+∞,不等式()()f x g x -⎡⎤⎣⎦()00x x -≥恒成立,符合题意;对于C 中,函数()f x x =,()2g x x =,根据一次函数和二次函数的性质,可得函数()y f x =的图象由两个交点,此时不满足题意;对于D 中,令()()()1()2x x f x g x x ϕ=-=,可得()1211()ln 2022x x x ϕ-'=+>,所以()x ϕ在定义域[0,)+∞单调递增,又由()()1010,102ϕϕ=-<=>,所以方程()0x ϕ=只有一个实数根,设为0x ,则满足对任意x I ∈,不等式()()f x g x -⎡⎤⎣⎦()00x x -≥恒成立,符合题意. 7.(2020·浙江高三月考)已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln x x x a a -≤-恒成立,则a 的最小值为______.【答案】3e【详解】()()4ln 3ln 3ln 3ln x x e x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤-令()ln f x x x =-,()111x f x x x-'=-=,∴()f x 在[)1,+∞上单调递增.∵1a >,1[,)3x ∈+∞,∴[)3,1,x e x a ∈+∞,∴33x x e ae x x a ⇔≤⇔≤恒成立,令()3x xg x e=,只需max ()a g x ≥,()33x xg x e -'=,∴1[,1),()0,()3x g x g x ∈'>单调递增,∴(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e ,∴3a e≥, ∴a 的最小值为3e. 8.(2020·全国高三月考)已知函数()()ln 202xaf x ae a x =+->+,若()0f x >恒成立,则实数a 的取值范围为______. 【答案】(),e +∞ 【详解】()ln202x af x ae x =+->+,则()ln ln ln 22x a e a x ++>++,两边加上x 得到()()()ln 2ln ln 2ln 2ln 2x x aex a x x ex ++++>+++=++,x y e x =+单调递增,()ln ln 2x a x ∴+>+,即()ln ln 2a x x >+-,令()()ln 2g x x x =+-,则()11121x g x x x --'=-=++,因为()f x 的定义域为()2,-+∞()2,1x ∴∈--时,()0g x '>,()g x 单调递增,()1,x ∈-+∞,()0g x '<,()g x 单调递减, ()()max ln 11a g x g ∴>=-=,a e ∴>.9.(2021·安徽高三开学考试)已知函数()()11ln f x a x x =+++. (1)讨论函数()f x 的单调性;(2)对任意0x >,求证:()()22e 11exa x f x x +++>.【答案】(1)答案见解析;(2)证明见解析.【详解】(1)由题意得,()f x 的定义域为()0,∞+,()()1111a x f x a x x++'=++=, 当1a ≥-时,()0f x '>恒成立,∴()f x 在()0,∞+上单调递增. 当1a <-时,令()0f x '>,解得11x a <-+;令()0f x '<,解得11x a >-+, ∴()f x 在10,1a ⎛⎫-⎪+⎝⎭上单调递增,在1,1a ⎛⎫-+∞⎪+⎝⎭上单调递减. (2)要证()()22e 11e x a x f x x +++>,即证22e ln 0e x x x ⋅->.令()22e ln e xg x x x =⋅-,则()()22221e e e x x x g x x--'=.令()()221e e x r x x x =--,则()22e e x r x x '=-, 易得()r x '在()0,∞+上单调递增,且()212e e 0r '=-<,()223e 0r '=>,∴存在唯一的实数()01,2x ∈,使得()00r x '=,∴()r x 在()00,x 上单调递减,在()0,x +∞上单调递增.∵()00r <,()20r =, ∴当()0r x >时,2x >;当()0r x <时,02x <<,∴()g x 在()0,2上单调递减,在()2,+∞上单调递增,∴()()21ln 20g x g ≥=->.综上,22e ln 0e x x x ⋅->,即()()22e 11exa x f x x +++>.10.(2020·山东高考模拟)已知函数2()ln 2()f x x a x x a R =+-∈.(1)求()f x 的单调递增区间;(2)若函数()f x 有两个极值点1212,()x x x x <且12()0f x mx -≥恒成立,求实数m 的取值范围.【答案】(1)12a ≥时,增区间为(0,)+∞;0a ≤时,增区间为1()2++∞;102a <<时,增区间为,)+∞;(2)3(,ln 2]2-∞--. 【解析】(1)函数()f x 的定义域为(0,)+∞,222'()22a x x af x x x x-+=+-=,令2220x x a -+=,484(12)a a ∆=-=-,1︒若12a ≥时,0∆≤,'()0f x ≥在(0,)+∞恒成立,函数()f x 在(0,)+∞上单调递增. 2︒若12a <,>0∆,方程2220x x a -+=,两根为1x =2x =,当0a ≤时,20x >,2(,)x x ∈+∞,'()0f x >,()f x 单调递增. 当102a <<时,1>0x ,20x >, 1(0,)x x ∈,'()0f x >,()f x 单调递增,2(,)x x ∈+∞,'()0f x >,()f x 单调递增.综上,12a ≥时,函数()f x 单调递增区间为(0,)+∞, 0a ≤时,函数()f x单调递增区间为1()2+∞, 102a <<时,函数()f x单调递增区间为1(0,2-,1()2++∞. (2)由(1)知,()f x 存在两个极值点1212,()x x x x <时,102a <<且121x x =+,122a x x ⋅=,则1112ax x +=,()1121a x x =-,且1102x <<,2112x <<. 此时()120f x mx ≥-恒成立,可化为()()21111112121ln 21f x x x x x x m x x +--≤=- ()()11111111121ln 11x x x x x x x -+-+--=-1111112ln 1x x x x =-++-恒成立, 设1()12ln 1g x x x x x =-++-,1(0,)2x ∈,2221(1)1'()122ln 2ln (1)(1)x g x x xx x --=-++-=+--2(2)2ln (1)x x x x -=+-, 因为102x <<,所以(2)0x x -<,2ln 0x <,所以)'(0g x <,故()g x 在1(0,)2单调递减,13()ln 222g x g ⎛⎫>=-- ⎪⎝⎭,所以实数m 的取值范围是3(,ln 2]2-∞--.11.(2021·黑龙江哈尔滨市·哈尔滨三中高三)已知()()ln 0f x x mx m =->. (1)若()y f x =在点()()1,1f 处的切线平行于x 轴,求其单调区间和极值;(2)若不等式()21112f x xmx ++≤对于任意的0x >恒成立,求整数m 的最小值. 【答案】(1)增区间为()0,1,减区间为()1,+∞,()f x 的极大值为1-,无极小值;(2)2. 【详解】(1)()1f x m x'=-,则()110f m '=-=,1m ∴=, ()ln f x x x ∴=-,定义域为(0,)+∞,()111xf x x x-'=-=令()0f x '>,得01x <<;令()0f x '<,得1x >()f x ∴的增区间为()0,1,减区间为()1,+∞,且()f x 的极大值为()11f =-,无极小值.(2)因为0m >,所以()21112f x xmx ++≤对于任意的0x >恒成立,可化为21ln 122x x m x x ++≥+,设()2ln 12x x h x x x++=+,则()()()()()()2222212(ln 1)(22)12ln 22x x x x x x x x x x h x x x x x ⎛⎫++-+++ ⎪-++⎝⎭'==++, 设()2ln g x x x =+,则()2ln g x x x =+单调增,且111112ln 2ln 2ln 4022222g ⎛⎫=+=-=-< ⎪⎝⎭,()10g >,01,12x ⎛⎫∴∃∈ ⎪⎝⎭使()00g x =,即 ()00h x '=,所以002ln 0x x +=,所以当012x x <<时,0()()0g x g x <=,()0h x '>, 当01x x <<时,0()()0g x g x >=,()0h x '<,()h x ∴在()00,x 单调递增,在()0,x +∞单调递减()()000022max000001ln 1112,12222x x x h x h x x x x x x +++⎛⎫∴====∈ ⎪++⎝⎭()()021,2m h x ∴≥∈,m ∴的最小整数值为2。
2024年高考数学 二轮复习第49讲 洛必达法则解高考导数压轴题

第49讲 洛必达法则解高考导数压轴题确界如果分离参数后相应的函数不存在最值,为了能够利用分离参数思想【解析】决含参不等式恒成立的问题,我们利用如下的函数确界的概念:函数()()y f x x D =∈的上确界为(){}min ,Mf x M x D ∈∣,记作.M 上函数()()y f x x D =∈的下确界为()max{Mf x ∣,}M x D ∈,记作M 下.于是,有如下结论:(1)若()f x 无最大值,而有上确界,这时要使()()f x g a <恒成立,只需()M g a 上. (2)若()f x 无最小值,而有下确界,M 下,这时要使()()f x g a >恒成立,只需()M g a 下. 确界通俗地说就是,知道函数不会超过某个值(这个值其实就是确界),但就是在定义域内取不到这个值,举个【例】子:在()()1,21x f x x a ∈=+>恒成立,求a 的取值范围.x 取不到1,但()f x 为单调递增,()()12f x f ∴>=,即2就是()f x 的下确界,于是我们可以得到2a .可以简单地理解为确界就是函数取不到的最值,需要用极限来逼近,下面举例子来说明.【例1】 设函数()21x f x e x ax =−−−,0x 时,()0f x ,求a 的取值范围. 分析:由()0f x 对所有的0x 成立,可得 (1)当0x =时,a R ∈.(2)当0x >时,21x e x a x −−.设()21x e x g x x −−=,把问题转化为求()g x 的最小值或下确界. ()()2222422,22,x x x x x e xe x xg x h x x e xe x x x'−++==−++令 则()2e 2e 22,0x x h x x x x '=−++>.又()h x 的二阶导数()22x x h x xe x e =+−''()22x e h x +的三阶导数()()240x h x e x x '+'=>',()h x ∴''是增函数.()()00h x h ''''∴>=.()h x ∴'增函数.()()00h x h ''∴>=.()h x ∴是增函数.()()00h x h ∴>=,从而()0g x '>,于是()g x 在()0,+∞上单调递增,故()g x 无最小值. 此时,由于()0g 无意义,分析可知()g x 是有下确界的,运用极限表述为:()g x >()0lim x g x +→,关键是这个极限值或者说确界如何求出呢?这就是本章的重点:洛必达法则.由洛必达法则即可得()0lim x g x +→=2000111lim lim lim 222x x x x x x e x e e x x +++→→→−−−===. 故0x >时,()12g x >,因而12a ,综上知a 的取值范围为1,2⎛⎤−∞ ⎥⎝⎦.那什么是洛必达法则呢?洛必达法则(一)型不定式 定理1 设函数()(),f x F x 满足下列条件: (1)()()0lim 0,lim 0x x x x f x F x →→==.(2)()f x 与()F x 在0x 的某一去心邻域内可导,且()0F x '≠. (3)()()limx x f x F x →''存在(或为无穷大),则()()()()00lim limx x x x f x f x F x F x →→''=. 【例1】计算极限01lim x x e x →−.【解析】 该极限属于00型不定式,于是由洛必达法则得001limlim 1.1x xx x e e x→→−== (二)∞∞型不定式定理2设函数()(),f x F x 满足下列条件: (1)()()0lim ,lim x x x x f x F x →→=∞=∞.(2)()f x 与()F x 在0x 的某一去心邻域内可导,且()0F x '≠. (3)()()limx x f x F x →''存在(或为无穷大), 则()()()()00limlimx x x x f x f x F x F x →→''=. 【例2】 计算极限lim nx x x e→+∞【解析】 所求问题是∞∞型不定式,连续n 次实行洛必达法则,有()211!lim lim lim lim0n n n x x xxx x x x n n x x nx n e e e e −−→+∞→+∞→+∞→+∞−=====.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于00型和∞∞型的不定式,其他的不定式须先化简变形成00型或∞∞型才能运用该法则.对于∞−∞型与0⋅∞型的未定式,可通过通分或者取倒数的形式化为基本形式.对于00型,1∞型与0∞型的未定式,可通过取对数等手段化为00型或∞∞型未定式. (2)只要条件具备,就可以连续应用洛必达法则.(3)洛必达法则的条件是充分的,但不必要,因此,在该法则失效时并不能断定原极限不存在.洛必达法则求参数取值范围洛必达法则求参数取值范围的一般步骤和前面参变分离的解题步骤一致,只不过是最后无法直接求解最值,只能用洛必达法则求解确界.【例1】已知函数()()21x f x x e ax =−−,当0x 时,()0f x ,求a 的取值范围. 【解析】 证明 第一步:分类讨论,参变分离.当0x 时,()0f x ,即()21x x e ax −.①当0x =时,a R ∈.②当0x >时,()21xx e ax −等价于1xe ax −,即1x e a x−.第二步:构造函数,求导,并把分子提出,再次构造函数,求导并研究出原函数单调性.记()()1,0,x e g x x x −=∈+∞,则()g x '=()211x x e x −+.记()()()11,0,x h x x e x =−+∈+∞, 则()e 0x h x x =>',因此()()11x h x x e =−+在()0,+∞上单调递增,且()()00h x h >=,()()20h x g x x ='∴>,()e 1x g x x−=从而在()0,+∞上单调递增.第三步:利用洛必达法则求出函数下确界.()0001lim limlim 1,1x xx x x e e g x x→→→−=== 即当0x →时,()1g x →.()1g x ∴>,即有1a . 综上所述,当1,0a x 时,()0f x 成立.【例2】 设函数()1x f x e −=−,设当0x 时,()1xf x ax +,求a 的取值范围. 【解析】 证明 第一步:必要性讨论,缩小参数范围. 由题设0x ,此时()0f x .①当0a <.时,若1x a>−,则01x ax <+,()1x f x ax +不成立. ②当0a 时,当0x 时,()1x f x ax +,即.1111xx x x e e ax ax −−−−++. 若0x =,则a R ∈.第二步:不等式等价变化并参变分离. 若0x >,则11xx eax −−+等价于111xe x ax −−+,即1x x xxe e a xe x −+−. 第三步:构造函数,并因式分解,把部分因式提出,单独构造函数,并多次求导,结合特殊值最终确定原函数的单调性.记e e 1()e x x x x g x x x −+=−,则()g x '=()()(22222e e 2e 1e e 2e e x x x xx x x x x x x x x −−+=−−+−−)e x − 记2()e 2e x x h x x −=−−+,则()h x '=e 2e ,()e e 20x x x xx h x −−−−''=+−>.因此,()e 2exxh x x −'=−−在(0,)+∞上单调递增,且(0)0,()0h h x '=∴'>,即()h x 在(0,)+∞上单调递增,且(0)0,()0h h x =∴>.因此()2e ()()0exxg x h x x x'=⨯>−,∴()g x 在(0,)+∞上单调递增.第四步:利用洛必达法则求出函数下确界.00e e 1lim ()lim e x x x x x x g x x x →→−+==−00e e e 1lim lim e e 12e e 2x x x x x x x x x x x x x →→+==+−+,即当0x →时,1()2g x →,即有1()2g x >, 1. 2a∴综上所述,a 的取值范围是1,2⎛⎤−∞ ⎥⎝⎦. 【例3】若不等式3sin x x ax >−对于x ∈0,2π⎛⎫⎪⎝⎭恒成立,求a 的取值范围。
2020高考冲刺数学总复习压轴解答:函数、不等式与导数的综合问题(附答案及解析)

专题三 压轴解答题第六关 函数、不等式与导数的综合问题【名师综述】1.本专题在高考中的地位导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点, 所以在历届高考中,对导数的应用的考查都非常突出 2.本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用【考点方向标】方向一 用导数研究函数的性质典例1.(2020·山东高三期末)已知函数21()2ln (2)2f x x a x a x =+-+. (1)当1a =时,求函数()f x 的单调区间; (2)是否存在实数a ,使函数34()()9g x f x ax x =++在(0,)+∞上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.【举一反三】(2020·云南昆明一中高三期末(理))已知函数2()(1)xx f x e ax e =-+⋅,且()0f x …. (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <.方向二 导数、函数与不等式典例2.(2020·四川省泸县第二中学高三月考)已知函数()sin f x x ax =-.(1)对于(0,1)x ∈,()0f x >恒成立,求实数a 的取值范围; (2)当1a =时,令()()sin ln 1h x f x x x =-++,求()h x 的最大值; (3) 求证:1111ln(1)1231n n n+<+++⋅⋅⋅++-*()n N ∈.【举一反三】(2020·黑龙江哈尔滨三中高三月考)已知111123S n =++⋅⋅⋅+,211121S n =++⋅⋅⋅+-,直线1x =,x n =,0y =与曲线1y x=所围成的曲边梯形的面积为S .其中n N ∈,且2n ≥.(1)当0x >时,()ln 11axx ax x <+<+恒成立,求实数a 的值; (2)请指出1S ,S ,2S 的大小,并且证明;(3)求证:131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑.方向三 恒成立及求参数范围问题典例3.(2020·天津高三期末)已知函数()2ln h x ax x =-+. (1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在012x ⎡⎤∈⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围.【举一反三】(2020·江苏高三专题练习)已知函数()(32)xf x e x =-,()(2)g x a x =-,其中,a x R ∈. (1)求过点(2,0)和函数()y f x =的图像相切的直线方程; (2)若对任意x ∈R ,有()()f x g x ≥恒成立,求a 的取值范围; (3)若存在唯一的整数0x ,使得00()()f x g x <,求a 的取值范围.【压轴选编】1.(2020·山西高三开学考试)已知函数()()()222ln ,2ln f x x ax a x a R g x x x x =--+∈=-.(1)讨论()f x 的单调性;(2)求证:当1a =时,对于任意()0,x ∈+∞,都有()()f x g x <.2.(2020·河南鹤壁高中高三月考)已知函数2()ln (0,)a xf x x a a R x a=++≠∈ (1)讨论函数()f x 的单调性; (2)设1()2a x g x x a a=+-+,当0a >时,证明:()()f x g x ≥.3.(2020·四川石室中学高三月考)已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;①若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f xg x k -≤-恒成立,求实数k 的取值范围.4.(2020·江西高三)已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值.5.(2020·江西高三)已知函数()e 2xf x m x m =--.(1)当1m =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若()0f x >在(0,)+∞上恒成立,求m 的取值范围.6.(2020·江西高三)已知函数()()2xf x x e =-.(1)求()f x 的单调区间;(2)证明:对任意的()0,x ∈+∞,不等式()2ln 6xf x x x >-恒成立.7.(2020·四川高三月考)已知函数21()(32)()2xf x m e x m R =--∈. (1)若0x =是函数()f x 的一个极值点,试讨论()ln ()()h x b x f x b R =+∈的单调性; (2)若()f x 在R 上有且仅有一个零点,求m 的取值范围.8.(2020·山西高三)已知函数()2ln 21f x a x x =-+(其中a R ∈). (1)讨论函数()f x 的极值;(2)对任意0x >,2()2f x a ≤-恒成立,求a 的取值范围.9.(2020·北京高三期末)已知函数()2xf x x e =(1)求()f x 的单调区间;(2)过点()1,0P 存在几条直线与曲线()y f x =相切,并说明理由; (3)若()()1f x k x ≥-对任意x ∈R 恒成立,求实数k 的取值范围.10.(2020·全国高三专题练习)已知函数()()33114ln 10f f x ax x x '=--的图象在点()()1,1f 处的切线方程为100++=x y b . (1)求a ,b 的值; (2)若()13f x m >对()0,x ∈+∞恒成立,求m 的取值范围.11.(2020·天津静海一中高三月考)已知函数()ln 1()f x ax x a R =--∈. (1)讨论()f x 的单调性并指出相应单调区间; (2)若21())1(2g x x x x f ---=,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,且()()12g x g x k -≥恒成立,求实数k 的取值范围.12.(2020·山东高三期末)已知函数()()2sin ln 12x f x x x =+-+.(1)证明:()0f x ≥; (2)数列{}n a 满足:1102a <<,()1n n a f a +=(n *∈N ). (①)证明:1102a <<(n *∈N ); (①)证明:n *∀∈N ,1n n a a +<.13.(2020·四川三台中学实验学校高三开学考试)已知函数()ln f x x x a =+,()ln ,g x x ax a =-∈R . (1)求函数()f x 的极值; (2)若10a e<<,其中e 为自然对数的底数,求证:函数()g x 有2个不同的零点; (3)若对任意的1x >,()()0f x g x +>恒成立,求实数a 的最大值.14.(2020·河北高三期末)已知函数()f x 满足:①定义为R ;①2()2()9xx f x f x e e+-=+-. (1)求()f x 的解析式;(2)若12,[1,1]x x ∀∈-;均有()()21122(2)61x a x x f x -+-+-…成立,求a 的取值范围;(3)设2(),(0)()21,(0)f x x g x x x x >⎧=⎨--+≤⎩,试求方程[()]10g g x -=的解.15.(2020·湖南高三月考)已知函数2()()af x x ax a R x=+-∈. (1)当1a =且1x >-时,求函数()f x 的单调区间;(2)当21e a e ≥+时,若函数2()()ln g x f x x x =--的两个极值点分别为1x 、2x ,证明12240()()1g x g x e <-<+.16.(2020·江西高三期末)已知函数2()x f x e ax x =--(e 为自然对数的底数)在点(1,(1))f 的切线方程为(3)y e x b =-+. (1)求实数,a b 的值;(2)若关于x 的不等式4()5f x m >+对于任意(0,)x ∈+∞恒成立,求整数m 的最大值.17.(2020·江西高三期末)已知函数()()()2,xf x x m e nxm n R =--∈在1x =处的切线方程为y ex e =-.(1)求,m n 的值;(2)当0x >时,()3f x ax -…恒成立,求整数a 的最大值.18.(2020·河南高三期末)已知函数()()ln 1mxf x x x m=+-+,()1,0x ∈-. (1)若1m =,判断函数()f x 的单调性并说明理由; (2)若2m ≤-,求证:关于x 的不等式()()()21xx m f x e x-+⋅<-在()1,0-上恒成立.19.(2020·江西高三月考)已知函数32()32f x x x x =-+,()g x tx t R =∈,,()xe x xφ=. (1)求函数()()y f x x φ=⋅的单调增区间;(2)令()()()h x f x g x =-,且函数()h x 有三个彼此不相等的零点0m n ,,,其中m n <. ①若12m n =,求函数()h x 在x m =处的切线方程; ①若对[]x m n ∀∈,,()16h x t ≤-恒成立,求实数M 的取值范围.专题三 压轴解答题第六关 函数、不等式与导数的综合问题【名师综述】1.本专题在高考中的地位导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点, 所以在历届高考中,对导数的应用的考查都非常突出 2.本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用【考点方向标】方向一 用导数研究函数的性质典例1.(2020·山东高三期末)已知函数21()2ln (2)2f x x a x a x =+-+. (1)当1a =时,求函数()f x 的单调区间; (2)是否存在实数a ,使函数34()()9g x f x ax x =++在(0,)+∞上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.【答案】(1)()f x 的单调递增区间为(]0,1和[)2,+∞,单调递减区间为()1,2(2)存在,724a ≥ 【解析】(1)当1a =时,21()2ln 3(0)2f x x x x x =+->. 所以2()3f x x x '=+-=232(2)(1)x x x x x x-+--=令()0f x '≥,则01x <≤或2x ≥,令()0f x '<,则12x <<, 所以()f x 的单调递增区间为(]0,1和[)2,+∞,单调递减区间为()1,2 (2)存在724a ≥,满足题设,因为函数34()()9g x f x ax x =++=23142ln 229x a x x x +-+所以224()23a g x x x x '=+-+,要使函数()g x 在0,∞(+)上单调递增,224()20,(0,)3a g x x x x x '=+-≥+∈+∞,即3243660x x x a +-+≥,(0,)x ∈+∞⇔324366x x xa +-≥-,(0,)x ∈+∞ 令32436()6x x x h x +-=,(0,)x ∈+∞,则2()21(21)(1)h x x x x x '=+-=-+,所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 在10,2⎛⎫⎪⎝⎭上单调递减,当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0h x '>,()h x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 所以12x =是()h x 的极小值点,也是最小值点,且17224h ⎛⎫=- ⎪⎝⎭,∴324366x x x+--在(0,)+∞上的最大值为724.所以存在724a ≥,满足题设.【举一反三】(2020·云南昆明一中高三期末(理))已知函数2()(1)xx f x e ax e =-+⋅,且()0f x …. (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <. 【答案】(1)1a =;(2)证明见解析. 【解析】(1)因为()()ee 10xxf x ax =--≥,且e0x>,所以e 10x ax --≥,构造函数()e 1xu x ax =--,则()'e xu x a =-,又()00u =,若0a ≤,则()'0u x >,则()u x 在R 上单调递增,则当0x <时,()0u x <矛盾,舍去;若01a <<,则ln 0a <,则当ln 0a x <<时,'()0u x >,则()u x 在(ln ,0)a 上单调递增,则()()ln 00u a u <=矛盾,舍去;若1a >,则ln 0a >,则当0ln x a <<时,'()0u x <,则()u x 在(0,ln )a 上单调递减,则()()ln 00u a u <=矛盾,舍去;若1a =,则当0x <时,'()0u x <,当0x >时,'()0u x >, 则()u x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 故()()00u x u ≥=,则()()e 0xf x u x =⋅≥,满足题意;综上所述,1a =.(2)证明:由(1)可知()()2e 1e xxf x x =-+⋅,则()()'e2e 2xxf x x =--,构造函数()2e 2xg x x =--,则()'2e 1xg x =-,又()'g x 在R 上单调递增,且()'ln20g -=,故当ln2x <-时,)'(0g x <,当ln 2x >-时,'()0g x >, 则()g x 在(,ln 2)-∞-上单调递减,在(ln 2,)-+∞上单调递增,又()00g =,()2220e g -=>,又33233332223214e 16e 022e 2e 8e 2e g --⎛⎫-=-==< ⎪⎝⎭+, 结合零点存在性定理知,在区间3(2,)2--存在唯一实数0x ,使得()00g x =, 当0x x <时,()'0f x >,当00x x <<时,()'0f x <,当0x >时,()'0f x >, 故()f x 在()0,x -∞单调递增,在()0,0x 单调递减,在()0,∞+单调递增,故()f x 存在唯一极大值点0x ,因为()0002e 20xg x x =--=,所以00e 12xx =+, 故()()()()022200000011e1e 11112244x x x x f x x x x ⎛⎫⎛⎫=-+=+-++=-+ ⎪ ⎪⎝⎭⎝⎭,因为0322x -<<-,所以()201133144216f x ⎛⎫<--+<⎪⎝⎭. 方向二 导数、函数与不等式典例2.(2020·四川省泸县第二中学高三月考)已知函数()sin f x x ax =-. (1)对于(0,1)x ∈,()0f x >恒成立,求实数a 的取值范围; (2)当1a =时,令()()sin ln 1h x f x x x =-++,求()h x 的最大值;(3) 求证:1111ln(1)1231n n n+<+++⋅⋅⋅++-*()n N ∈. 【答案】(1)sin1a ≤.(2)max ()(1)0h x h ==.(3)见解析.【解析】(1)由()0f x >,得:sin 0x ax ->,因为01x <<,所以sin xa x<, 令sin ()x g x x=,()2cos sin 'x x xg x x -=, 再令()cos sin m x x x x =-,()'cos sin cos sin 0m x x x x x x x =--=-<, 所以()m x 在()0,1上单调递减, 所以()()0m x m <,所以()'0g x <,则()g x 在()0,1上单调递减, 所以()(1)sin1g x g >=,所以sin1a ≤. (2)当1a =时,()sin f x x x =-, ①()ln 1h x x x =-+,()11'1x h x x x-=-=, 由()'0h x =,得:1x =,当()0,1x ∈时,()'0h x >,()h x 在()0,1上单调递增; 当()1,x ∈+∞时,()'0h x <,()h x 在()1,+∞上单调递减; ①()max (1)0h x h ==.(3)由(2)可知,当()1,x ∈+∞时,()0h x <, 即ln 1x x <-, 令1n x n +=,则11ln1n n n n ++<-,即()1ln 1ln n n n+-<, 分别令1,2,3,,n n =L 得,()11ln 2ln11,ln 3ln 2,,ln 1ln 2n n n-<-<+-<L ,将上述n 个式子相加得:()()*111ln 1121n n N n n+<++++∈-L . 【举一反三】(2020·黑龙江哈尔滨三中高三月考)已知111123S n =++⋅⋅⋅+,211121S n =++⋅⋅⋅+-,直线1x =,x n =,0y =与曲线1y x=所围成的曲边梯形的面积为S .其中n N ∈,且2n ≥.(1)当0x >时,()ln 11axx ax x <+<+恒成立,求实数a 的值; (2)请指出1S ,S ,2S 的大小,并且证明;(3)求证:131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑. 【答案】(1)1;(2)12S S S <<,证明见解析;(3)见解析 【解析】(1)由已知得0a ≤时,不合题意,所以0a >.()ln 11axx x <++恒成立,即()()()1ln 10ax x x x <++>恒成立. 令()()()1ln 1m x x x ax =++-,()()'ln 11m x x a =++-. 当1a ≤时,()m x 在()0,∞+上为增函数,此时()0m x >成立.当1a >时,()m x 在()10,1a e --上为减函数,不合题意,所以1a ≤.令()()ln 1n x ax x x =-+,()1'1n x a x =-+,当1a ≥时,()n x 在()0,∞+上为增函数,此时()0n x >,()ln 1x ax +<恒成立.当01a <<时,()n x 在10,1a ⎛⎫- ⎪⎝⎭上为减函数,不合题意,所以1a ≥.综上得1a =. (2)由(1)知()()ln 101x x x x x <+<>+.令1x i =,得111ln 11i i i⎛⎫<+< ⎪+⎝⎭, 从而11111111ln 112321n i n i n -=⎛⎫+++<+<+++ ⎪-⎝⎭∑L L ,又因为11ln nS dx n x==⎰,则12S S S <<. (3)由已知111232313ni i i i =⎛⎫+- ⎪--⎝⎭∑1111111123323n n ⎛⎫⎛⎫+++⋅⋅⋅+-++++ ⎪ ⎪⎝⎭⎝=⎭L 111123n n n =++⋅⋅⋅+++,因为111ln 11i i i⎛⎫<+< ⎪+⎝⎭,所以 111111ln 1ln 1ln 1123123n n n n n n ⎛⎫⎛⎫⎛⎫+++>++++++ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭L L 31ln1n n +=+, 111123ln ln ln 123131n n n n n n n n n ++⎛⎫⎛⎫⎛⎫+++<+++ ⎪ ⎪ ⎪+++-⎝⎭⎝⎭⎝⎭L L ln 3=.从而131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑. 方向三 恒成立及求参数范围问题典例3.(2020·天津高三期末)已知函数()2ln h x ax x =-+. (1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在0122x ⎡⎤∈+⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围. 【答案】(1)322ln 220x y +-+=(2)()1,2(3)1,4⎛⎤-∞- ⎥⎝⎦【解析】()1当1a =时,()()12ln ,'2h x x x h x x=-+=-+2x =时,()()3'2,24ln 22h h =-=-+()h x ∴在()()2,2h 处的切线方程为()34ln 222y x +-=--,化简得:322ln 220x y +-+= ()2对函数求导可得,()()221'0ax ax f x x x-+=>,令()'0f x =,可得2210ax ax -+=20440112a a a a ⎧⎪≠⎪∴->⎨⎪⎪>⎩,解得a 的取值范围为()1,2 ()3由2210ax ax -+=,解得1211x x ==+而()f x 在()10,x 上递增,在()12,x x 上递减,在()2,x +∞上递增12a <<Q211x ∴=+<()f x ∴在122⎡⎤+⎢⎥⎣⎦单调递增 ∴在1,22⎡⎤+⎢⎥⎣⎦上,()()max 22ln 2f x f a ==-+012x ⎡⎤∴∃∈⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对a M ∀∈恒成立等价于不等式2(2ln 2ln 1112))()n (l 2a a m a a -+++>--++恒成立 即不等式2()ln 1ln 210a ma a m +--+-+>对任意的()12a a <<恒成立令()()2ln 1ln 21g a a ma a m =+--+-+,则()()121210,'1ma a m g g a a ⎛⎫-++ ⎪⎝⎭==+ ①当0m ≥时,()()'0,g a g a <在()1,2上递减()()10g a g <=不合题意①当0m <时,()1212'1ma a m g a a ⎛⎫-++ ⎪⎝⎭=+ 12a <<Q若1112m ⎛⎫-+> ⎪⎝⎭,即104m -<<时,则()g a 在()1,2上先递减 ()10g =Q12a ∴<<时,()0g a >不能恒成立若111,2m ⎛⎫-+≤ ⎪⎝⎭即14m ≤-,则()g a 在()1,2上单调递增 ()()10g a g ∴>=恒成立m ∴的取值范围为1,4⎛⎤-∞- ⎥⎝⎦【举一反三】(2020·江苏高三专题练习)已知函数()(32)xf x e x =-,()(2)g x a x =-,其中,a x R ∈. (1)求过点(2,0)和函数()y f x =的图像相切的直线方程; (2)若对任意x ∈R ,有()()f x g x ≥恒成立,求a 的取值范围; (3)若存在唯一的整数0x ,使得00()()f x g x <,求a 的取值范围. 【答案】(1)2y x =-,8833918y e x e =-.(2)8319a e ≤≤.(3)345[,1)(7,5]3a e e e∈⋃. 【解析】(1)设切点为()00,x y ,()()'31xf x e x =+,则切线斜率为()0031x e x +,所以切线方程为()()000031x y y e x x x -=+-,因为切线过()2,0,所以()()()000032312x x ex e x x --=+-,化简得200380x x -=,解得080,3x =. 当00x =时,切线方程为2y x =-, 当083x =时,切线方程为8833918y e x e =-. (2)由题意,对任意x R ∈有()()322xe x a x -≥-恒成立,①当(),2x ∈-∞时,()()323222x x maxe x e x a a x x ⎡⎤--≥⇒≥⎢⎥--⎣⎦,令()()322x e x F x x -=-,则()()()2238'2x e x xF x x -=-,令()'0F x =得0x =,()()max 01F x F ==,故此时1a ≥.①当2x =时,恒成立,故此时a R ∈. ①当()2,x ∈+∞时,()()min323222x x e x e x a a x x ⎡⎤--≤⇒≤⎢⎥--⎣⎦,令()8'03F x x =⇒=,()83min 893F x F e ⎛⎫== ⎪⎝⎭,故此时839a e ≤.综上:8319a e ≤≤.(3)因为()()f x g x <,即()()322xex a x -<-,由(2)知()83,19,a e ⎛⎫∈-∞⋃+∞ ⎪⎝⎭,令()()322x e x F x x -=-,则当(),2x ∈-∞,存在唯一的整数0x 使得()()00f x g x <, 等价于()322x e x a x -<-存在唯一的整数0x 成立,因为()01F =最大,()513F e -=,()11F e =-,所以当53a e<时,至少有两个整数成立, 所以5,13a e ⎡⎫∈⎪⎢⎣⎭. 当()2,x ∈+∞,存在唯一的整数0x 使得()()00f x g x <, 等价于()322x e x a x ->-存在唯一的整数0x 成立,因为83893F e ⎛⎫= ⎪⎝⎭最小,且()337F e =,()445F e =,所以当45a e >时,至少有两个整数成立,所以当37a e ≤时,没有整数成立,所有(347,5a e e ⎤∈⎦.综上:(345,17,53a e e e ⎡⎫⎤∈⋃⎪⎦⎢⎣⎭. 【压轴选编】1.(2020·山西高三开学考试)已知函数()()()222ln ,2ln f x x ax a x a R g x x x x =--+∈=-.(1)讨论()f x 的单调性;(2)求证:当1a =时,对于任意()0,x ∈+∞,都有()()f x g x <. 【答案】(1)见解析(2)见解析【解析】(1)由题意()f x 的定义域为()0,∞+,且()()()222222x a x a a x ax a f x x a x x x--+--+'=--+==, 当0a =时,()20f x x '=-<; 当0a >时,2a x >时,()0f x '<;02ax <<时,()0f x '>; 当0a <时,x a >-时,()0f x '<;0x a <<-时,()0f x '>;综上所述,当0a =时,()f x 在()0,∞+上为减函数; 当0a >时,()f x 在0,2a ⎛⎫ ⎪⎝⎭上为增函数,在,2a ⎛⎫+∞ ⎪⎝⎭上为减函数; 当0a <时,()f x 在()0,a -上为增函数,在(),a -+∞上为减函数. (2)要证()()f x g x <,即证()21ln 0x x x -+>,当12x =时,不等式显然成立; 当12x >时,即证ln 021x x x +>-;当102x <<时,即证ln 021xx x +<-; 令()ln 21x F x x x =+-,则()()()()()22411112121x x F x x x x x ---'=+=--, 当12x >时,在1,12⎛⎫⎪⎝⎭上()0F x '<,()F x 为减函数;在()1,+∞上()0F x '>,()F x 为增函数,①()()min 110F x F ==>,①ln 021xx x +>-.当102x <<时,在10,4⎛⎫ ⎪⎝⎭上()0F x '>,()F x 为增函数;在11,42⎛⎫⎪⎝⎭上()0F x '<,()F x 为减函数, ①()max 111ln 0442F x F ⎛⎫==-<⎪⎝⎭,①ln 021x x x +<-, 综上所述,当0x >时,()()f x g x <成立.2.(2020·河南鹤壁高中高三月考)已知函数2()ln (0,)a xf x x a a R x a=++≠∈ (1)讨论函数()f x 的单调性; (2)设1()2a x g x x a a=+-+,当0a >时,证明:()()f x g x ≥. 【答案】(1)见解析;(2)证明见解析【解析】(1)22121(2)()()a x a x a f x x x a ax+-'=-+= 当0a >时,()0f x x a '>⇒>,()00f x x a '<⇒<<当0a <时,()002f x x a '>⇒<<-,()02f x x a '<⇒>- ①0a >时,()f x 在(0,)a 上递减,在(,)a +∞递增 0a <时,()f x 在(0,2)a -上递增,在(2,)a -+∞递减(2)设1()()()ln 2a F x f x g x x x a=-=++- 则221()(0)a x aF x x x x x-'=-=> Q 0a >,(0,)x a ∴∈时,()0F x '<,()F x 递减(,)x a ∈+∞,()0,F x '>()F x 递增,1()()ln 1F x F a a a∴≥=+-设1()ln 1h x x x =+-,(0)x >,则22111()(0)x h x x x x x-'=-=>1x >时,()0,h x '>时,()h x 递增, 01x <<时,()0h x '<,∴()h x 递减()(1)0h x h ∴≥=,()()0F a h a ∴=≥()0F x ∴≥,即()()f x g x ≥3.(2020·四川石室中学高三月考)已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;①若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f xg x k -≤-恒成立,求实数k 的取值范围.【答案】(①)()11f =-;(①)(①)1; (①)()34 ,2ln31,3⎛⎤-∞-+⋃+∞ ⎥⎝⎦. 【解析】(1)22(1)(1)()2(0)x x f x x x x x+-'=-+=->, 由()0{0f x x >>'得01x <<,由()0{0f x x <>'得1x >,①()f x 在(0,1)上为增函数,在(1,)+∞上为减函数, ①函数()f x 的最大值为(1)1f =-; (2)①()a g x x x=+,①2()1a g x x =-',(①)由(1)知,1x =是函数()f x 的极值点,又①函数()f x 与()ag x x x=+有相同极值点, ①1x =是函数()g x 的极值点,①(1)10g a =-=',解得1a =, 经检验,当1a =时,函数()g x 取到极小值,符合题意;(①)①211()2f e e =--,(1)1f =-,(3)92ln 3f =-+, ①2192ln 321e -+<--<-, 即1(3)()(1)f f f e <<,①1[,3]x e∀∈,min max ()(3)92ln 3,()(1)1f x f f x f ==-+==-,由(①)知1()g x x x =+,①21()1g x x =-',当1[,1)x e∈时,()0g x '<,当(1,3]x ∈时,()0g x '>,故()g x 在1[,1)e 为减函数,在(1,3]上为增函数,①11110(),(1)2,(3)333g e g g e e =+==+=,而11023e e <+<,①1(1)()(3)g g g e <<,①1[,3]x e ∀∈,min max 10()(1)2,()(3)3g x g g x g ====,①当10k ->,即1k >时,对于121,[,3]x x e ∀∈,不等式12()()11f xg x k -≤-恒成立12max 1[()()]k f x g x ⇔-≥-12max [()()]1k f x g x ⇔≥-+,①12()()(1)(1)123f x g x f g -≤-=--=-,①312k ≥-+=-,又①1k >,①1k >, ①当10k -<,即1k <时,对于121,[,]x x e e ∀∈,不等式12()()11f xg x k -≤-,12min 1[()()]k f x g x ⇔-≤-12min [()()]1k f x g x ⇔≤-+,①121037()()(3)(3)92ln 32ln 333f x g x f g -≥-=-+-=-+,①342ln 33k ≤-+,又①1k <, ①342ln 33k ≤-+.综上,所求的实数k 的取值范围为34(,2ln 3](1,)3-∞-+⋃+∞. 4.(2020·江西高三)已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值. 【答案】(1)1a =,0b =;(2)3【解析】(1)由()()ln f x x x a b =++得:()ln 1f x x a '=++ 由切线方程可知:()1211f =-=()112f a '∴=+=,()11f a b =+=,解得:1a =,0b =(2)由(1)知()()ln 1f x x x =+则()1,x ∈+∞时,()()1f x m x ≥-恒成立等价于()1,x ∈+∞时,()ln 11x x m x +≤-恒成立令()()ln 11x x g x x +=-,1x >,则()()2ln 21x x g x x --'=-. 令()ln 2hx x x =--,则()111x h x x x-'=-=∴当()1,x ∈+∞时,()0h x '>,则()h x 单调递增()31ln30h =-<Q ,()422ln20h =-> ()03,4x ∴∃∈,使得()00h x =当()01,x x ∈时,()0g x '<;()0,x x ∈+∞时,()0g x '>()()()000min0ln 11x x g x g x x +∴==-()000ln 20h x x x =--=Q 00ln 2x x ∴=- ()()()()0000min 0213,41x x g x g x x x -+∴===∈-()03,4m x ∴≤∈,即正整数m 的最大值为35.(2020·江西高三)已知函数()e 2xf x m x m =--.(1)当1m =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)若()0f x >在(0,)+∞上恒成立,求m 的取值范围. 【答案】(1)y x =-;(2)[2,)+∞【解析】(1)因为1m =,所以()e 21xf x x =--,所以()e 2xf x '=-,则(0)0,(0)1f f '==-,故曲线()y f x =在点(0,(0))f 处的切线方程为y x =-.(2)因为()e 2x f x m x m =--,所以()e 2xf x m '=-,①当2m ≥时,()0f x '>在(0,)+∞上恒成立,则()f x 在(0,)+∞上单调递增,从而()(0)0f x f >=成立,故2m ≥符合题意; ①当02m <<时,令()0f x '<,解得20lnx m <<,即()f x 在20,ln m ⎛⎫ ⎪⎝⎭上单调递减,则2ln(0)0f f m ⎛⎫<= ⎪⎝⎭,故02m <<不符合题意; ①当0m ≤时,0()e 2x f x m '-<=在(0,)+∞上恒成立,即()f x 在(0,)+∞上单调递减,则()(0)0f x f <=,故0m ≤不符合题意.综上,m 的取值范围为[2,)+∞. 6.(2020·江西高三)已知函数()()2x f x x e =-.(1)求()f x 的单调区间;(2)证明:对任意的()0,x ∈+∞,不等式()2ln 6xf x x x >-恒成立.【答案】(1)单调递增区间为()1,+?,单调递减区间为(),1-∞(2)证明见解析【解析】(1)因为()()2x f x x e =-,所以()()1x f x x e '=-,令()0f x ¢>,解得1x >;令()0f x ¢<,解得1x <.故()f x 的单调递增区间为()1,+?,单调递减区间为(),1-∞.(2)要证()2ln 6xf x x x >-,只需证()ln 32x f x x>-.由(1)可知()()min 1f x f e ==-.令()ln 3(0)2x h x x x =->,则()21ln 2xh x x -'=, 令()21ln 0ln 102xh x x x e x-'=>⇒<⇒<<, 所以当()0,x e ∈时,()0h x '>,()h x 单调递增;当(),x e ∈+∞时,()0h x '<,()h x 单调递减, 则()()max 132h x h e e==-. 因为 2.71828e =⋅⋅⋅,所以 2.75e ->-,所以1133 2.7524e -<-=-, 从而132e e->-,则当0x >时,()()min max f x h x >.故当0x >时,()()f x h x >恒成立,即对任意的()0,x ∈+∞,()2ln 6xf x x x >-.7.(2020·四川高三月考)已知函数21()(32)()2xf x m e x m R =--∈. (1)若0x =是函数()f x 的一个极值点,试讨论()ln ()()h x b x f x b R =+∈的单调性; (2)若()f x 在R 上有且仅有一个零点,求m 的取值范围.【答案】(1)当0b …时,()h x 在(0,)+∞上单调递减;当0b >时,()h x 在上单调递增,在)+∞上单调递减;(2)2222,333e ⎧⎫⎛⎫++∞⋃⎨⎬⎪⎩⎭⎝⎭. 【解析】(1)()(32)xf x m e x '=--,因为0x =是函数()f x 的一个极值点,则(0)320f m '=-=,所以23m =,则21()ln (0)2h x b x x x =->,当2()b b x h x x x x-'=-=,当0b …时,()0h x '…恒成立,()h x 在(0,)+∞上单调递减,当0b >时,2()000h x b x x '>⇒->⇒<<所以()h x 在上单调递增,在)+∞上单调递减. 综上所述:当0b …时,()h x 在(0,)+∞上单调递减;当0b >时,()h x 在上单调递增,在)+∞上单调递减. (2)()f x 在R 上有且仅有一个零点,即方程2322x x m e -=有唯一的解,令2()2xx g x e=, 可得(2)()0,()2xx x g x g x e -'>=, 由(2)()02xx x g x e -'==, 得0x =或2x =,(1)当0x …时,()0g x '…,所以()g x 在(,0]-∞上单调递减,所以()(0)0g x g =…,所以()g x 的取值范围为[0,)+∞. (2)当02x <<时,()0g x '>,所以()g x 在(0,2)上单调递增, 所以0()(2)g x g <<,即220()g x e<<, 故()g x 的取值范围为220,e ⎛⎫ ⎪⎝⎭. (3)当2x …时,()0g x '…,所以()g x 在[2,)+∞上单调递减, 所以(0)()(2)g g x g <…,即220()g x e <…, 即()g x 的取值范围为220,e ⎛⎤ ⎥⎝⎦. 所以,当320m -=或2232m e ->, 即23m =或22233m e >+时,()f x 在R 上有且只有一个零点,故m 的取值范围为2222,333e ⎧⎫⎛⎫++∞⋃⎨⎬⎪⎩⎭⎝⎭. 8.(2020·山西高三)已知函数()2ln 21f x a x x =-+(其中a R ∈). (1)讨论函数()f x 的极值;(2)对任意0x >,2()2f x a ≤-恒成立,求a 的取值范围.【答案】(1)答案不唯一,具体见解析(2)[1,)+∞ 【解析】(1)()f x 的定义域为(0,)+∞,2'()2af x x=-, ①当0a ≤时,'()0f x <,所以()f x 在(0,)+∞上是减函数,()f x 无极值. ①当0a >时,令'()0f x =,得x a =,在(0,)a 上,'()0f x >,()f x 是增函数;在(,)a +∞上,'()0f x <,()f x 是减函数. 所以()f x 有极大值()2ln 21f a a a a =-+,无极小值.(2)由(1)知,①当0a ≤时,()f x 是减函数,令2a x e =,则0(0,1]x ∈,222220()(2)21(2)320a a f x a a e a e --=-+--=->,不符合题意,①当0a >时,()f x 的最大值为()2ln 21f a a a a =-+, 要使得对任意0x >,2()(1)f x a ≤-恒成立, 即要使不等式22ln 212a a a a -+≤-成立, 则22ln 230a a a a --+≤有解.令2()2ln 23(0)g a a a a a a =--+>,所以'()2ln 2g a a a =-令()'()2ln 2h a g a a a ==-,由22'()0ah a a-==,得1a =. 在(0,1)上,'()0h a >,则()'()h a g a =在(0,1)上是增函数; 在(1,)+∞上,'()0h a <,则()'()h a g a =在(1,)+∞上是减函数. 所以max ()(1)20h a h ==-<,即'()0g a <, 故()g a 在(0,)+∞上是减函数,又(1)0g =,要使()0g a ≤成立,则1a ≥,即a 的取值范围为[1,)+∞. 9.(2020·北京高三期末)已知函数()2xf x x e =(1)求()f x 的单调区间;(2)过点()1,0P 存在几条直线与曲线()y f x =相切,并说明理由; (3)若()()1f x k x ≥-对任意x ∈R 恒成立,求实数k 的取值范围.【答案】(1)增区间为(),2-∞-,()0,∞+,单调减区间为()2,0-;(2)三条切线,理由见解析;(3)0,2⎡+⎣ 【解析】(1)()()()222xxf x x x e x x e '==++,()0f x '>得,2x <-或0x >;()0f x '<得,20x -<<;所以()f x 的单调增区间为(),2-∞-,()0,∞+;单调减区间为()2,0-; (2)过()1,0P 点可做()f x 的三条切线;理由如下:设切点坐标为()0200,x x x e,所以切线斜率()()00002xx x k x e f '=+= 所以过切点的切线方程为:()()002200002x x x e x x e x y x -=+-,切线过()1,0P 点,代入得()()0022*******x x x e x x e x -=+-,化简得(0000x x x x e=,方程有三个解,00x =,0x =0x 所以过()1,0P 点可做()f x 的三条切线. (3)设()()21xg x x e k x -=-,①0k =时,因为20x ≥,0x e >,所以显然20x x e ≥对任意x ∈R 恒成立; ①k 0<时,若0x =,则()()0001f k k =>-=-不成立, 所以k 0<不合题意.①0k >时,1x ≤时,()()210xg x x e k x -=->显然成立,只需考虑1x >时情况;转化为21xx e k x ≥-对任意()1,x ∈+∞恒成立令()21xx e h x x =-(1x >),则()min k h x ≤,()()()(()2222(2)111xx xx x x ex x e x x e h x x x +--'==--,当1x <<时,()0h x '<,()h x 单调减;当x >()0h x '>,()h x 单调增;所以()(min 2h x h==+=所以(2k ≤+综上所述,k 的取值范围(0,2+⎡⎣. 10.(2020·全国高三专题练习)已知函数()()33114ln 10f f x ax x x '=--的图象在点()()1,1f 处的切线方程为100++=x y b . (1)求a ,b 的值;(2)若()13f x m >对()0,x ∈+∞恒成立,求m 的取值范围. 【答案】(1)13a =,403=-b ;(2)2642ln 2<-m【解析】(1)()()23114310f f x ax x''=--, 因为()f x 在()()1,1f 处的切线方程为100++=x y b ,即10y x b =--,此时切线斜率10k =-,则()3(1)13141010f f a k ''=--==-,解得13a =,所以()()333101114ln 314ln 3103f x x x x x x x ⨯-=--=+-, 所以()31110113114ln13333f =⨯+⨯-=+=,则10103b =--,解得403=-b(2)由(1)知()31314ln 3f x x x x =+-, ()32143143x x f x x x x+-'=+-=, 设函数()()33140g x xx x =+->,则()2330g x x '=+>,所以()g x 在()0,∞+为增函数,因为()20g =,令()0g x <,得02x <<;令()0g x >,得2x >, 所以当02x <<时,()0f x '<;当2x >时,()0f x '>, 所以()()3min 126223214ln 214ln 233f x f ==⨯+⨯-=-, 从而12614ln 233<-m ,即2642ln 2<-m 11.(2020·天津静海一中高三月考)已知函数()ln 1()f x ax x a R =--∈.(1)讨论()f x 的单调性并指出相应单调区间; (2)若21())1(2g x x x x f ---=,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,且()()12g x g x k -≥恒成立,求实数k 的取值范围.【答案】(1)答案见解析(2)15,2ln 28⎛⎤-∞- ⎥⎝⎦【解析】(1)由()ln 1f x ax x =--,(0,)x ∈+∞, 则11()ax f x a x x'-=-=, 当0a ≤时,则()0f x '≤,故()f x 在(0,)+∞上单调递减;当0a >时,令1()0f x x a'=⇒=, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.综上所述:当0a ≤时,()f x 在(0,)+∞上单调递减; 当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增. (2)①21()ln (1)2g x x x a x =+-+, 21(1)1()(1)x a x g x x a x x-++'=+-+=, 由()0g x '=得2(1)10x a x -++=,①121x x a +=+,121=x x ,①211x x =①32a ≥①111115210x x x x ⎧+≥⎪⎪⎨⎪<<⎪⎩解得1102x <≤.①()()()()222112121211221111ln(1)2ln 22x g x g x x x a x x x x x x ⎛⎫-=+--+-=-- ⎪⎝⎭. 设22111()2ln 022h x x x x x ⎛⎫⎛⎫=--<≤ ⎪⎪⎝⎭⎝⎭,则()2233121()0x h x x x x x '--=--=<,①()h x 在10,2⎛⎤ ⎥⎝⎦上单调递减;当112x =时,min 115()2ln 228h x h ⎛⎫==- ⎪⎝⎭. ①152ln 28k ≤-,即所求k 的取值范围为15,2ln 28⎛⎤-∞- ⎥⎝⎦.12.(2020·山东高三期末)已知函数()()2sin ln 12x f x x x =+-+.(1)证明:()0f x ≥; (2)数列{}n a 满足:1102a <<,()1n n a f a +=(n *∈N ). (①)证明:1102a <<(n *∈N ); (①)证明:n *∀∈N ,1n n a a +<.【答案】(1)证明见解析(2)(i )证明见解析(ii )证明见解析 【解析】(1)由题意知,()1cos 1f x x x x'=+-+,()1,x ∈-+∞, 当()1,0x ∈-时,()1101f x x x x'<+-<<+,所以()f x 在区间()1,0-上单调递减, 当()0,x ∈+∞时,()()g x f x '=,因为()()()22111sin 011g x x x x '=+->>++所以()g x 在区间()0,∞+上单调递增,因此()()00g x g >=,故当()0,x ∈+∞时,()0f x '>,所以()f x 在区间()0,∞+上单调递增, 因此当()1,x ∈-+∞时,()()00f x f ≥=,所以()0f x ≥ (2)(①)()f x 在区间10,2⎛⎫ ⎪⎝⎭上单调递增,()()00f x f >=,因为881288311111C C 147122224e ⎛⎫⎛⎫=+=+++>++=> ⎪ ⎪⎝⎭⎝⎭L , 故83318ln ln ln 022e ⎛⎫-=-< ⎪⎝⎭,所以()1113131131sin ln sin ln 18ln 22826822822f x f π⎛⎫⎛⎫<=+-<+-=+-<⎪ ⎪⎝⎭⎝⎭因此当10,2x ⎛⎫∈ ⎪⎝⎭时,()01f x <<,又因为110,2a ⎛⎫∈ ⎪⎝⎭,所以()()()()()()12110,2n n n a f a ff a f f f a --⎛⎫====∈ ⎪⎝⎭LL L(①)函数()()h x f x x =-(102x <<),则()()11cos 11h x f x x x x''=-=+--+, 令()()x h x ϕ=',则()()0x g x ϕ''=>,所以()x ϕ在区间10,2⎛⎫ ⎪⎝⎭上单调递增;因此()()111217cos 1cos 0222326h x x ϕϕ⎛⎫'=≤=+--=-<⎪⎝⎭, 所以()h x 在区间10,2⎛⎫ ⎪⎝⎭上单调递减,所以()()00h x h <=, 因此()()10n n n n n a a f a a g a +-=-=<, 所以x *∀∈N ,1n n a a +<13.(2020·四川三台中学实验学校高三开学考试)已知函数()ln f x x x a =+,()ln ,g x x ax a =-∈R . (1)求函数()f x 的极值; (2)若10a e<<,其中e 为自然对数的底数,求证:函数()g x 有2个不同的零点; (3)若对任意的1x >,()()0f x g x +>恒成立,求实数a 的最大值. 【答案】(1)极小值为1a e-+;无极大值(2)证明过程见解析;(3)2. 【解析】(1)函数()f x 的定义域为0x >,因为()ln f x x x a =+,所以()ln 1f x x =+‘,当1x e >时,()0f x >‘,所以函数()f x 单调递增;当10x e<<时,()0f x <‘,所以函数()f x 单调递减,因此1e是函数()f x 的极小值,故函数()f x 的极值为极小值,值为11()f a e e =-+;无极大值(2)函数()g x 的定义域为0x >,因为()ln ,g x x ax =-所以'1()g x a x=-,因为10a e <<,所以当1x a >时,'()0g x <,因此函数()g x 是递减函数,当10x a<<时,'()0g x >,。
利用导数“三招”破解不等式恒成立问题

利用导数“三招”破解不等式恒成立问题不等式恒成立问题一直是高考命题的热点,把函数问题、导数问题和不等式恒成立问题交汇命制压轴题成为一个新的热点命题方向.[典例] (2017·全国卷Ⅲ)已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝⎛⎭⎫1+12·⎝⎛⎭⎫1+122·…·⎝⎛⎭⎫1+12n <m ,求m 的最小值. [方法演示]解:(1)f (x )的定义域为(0,+∞).①若a ≤0,因为f ⎝⎛⎭⎫12=-12+a ln 2<0,所以不满足题意; ②若a >0,由f ′(x )=1-a x =x -a x 知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 故x =a 是f (x )在(0,+∞)的唯一最小值点. 由于f (1)=0,所以当且仅当a =1时,f (x )≥0. 故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0. 令x =1+12n ,得ln ⎝⎛⎭⎫1+12n <12n . 从而ln ⎝⎛⎭⎫1+12+ln ⎝⎛⎭⎫1+122+…+ln ⎝⎛⎭⎫1+12n <12+122+…+12n =1-12n <1. 故⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122·…·⎝⎛⎭⎫1+12n <e. 而⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122⎝⎛⎭⎫1+123>2, 所以m 的最小值为3. [解题师说](1)对a 分类讨论,并利用导数研究f (x )的单调性,找出最小值点,从而求出a . (2)由(1)得当x >1时,x -1-ln x >0.令x =1+12n ,换元后可求出⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122·…·⎝⎛⎭⎫1+12n 的范围.[应用体验]1.已知函数f (x )=(2-a )ln x +1x +2ax . (1)当a =2时,求函数f (x )的极值; (2)当a <0时,讨论f (x )的单调性;(3)若对任意的a ∈(-3,-2),x 1,x 2∈[1,3]恒有(m +ln 3)a -2ln 3>|f (x 1)-f (x 2)|成立,求实数m 的取值范围.解:(1)函数f (x )的定义域为(0,+∞),当a =2时,函数f (x )=1x +4x ,所以f ′(x )=-1x 2+4.由f ′(x )>0,得x >12,f (x )在⎝⎛⎭⎫12,+∞上单调递增; 由f ′(x )<0,得0<x <12,f (x )在⎝⎛⎭⎫0,12上单调递减, 所以函数f (x )在x =12处取得极小值f ⎝⎛⎭⎫12=4,无极大值. (2)f ′(x )=2-a x -1x 2+2a =(2x -1)(ax +1)x 2,令f ′(x )=0,得x =12或x =-1a .①当-1a >12,即-2<a <0时,由f ′(x )>0,得12<x <-1a ;由f ′(x )<0,得0<x <12或x >-1a ,所以函数f (x )在⎝⎛⎭⎫0,12上单调递减,在⎝⎛⎭⎫12,-1a 上单调递增,在⎝⎛⎭⎫-1a ,+∞上单调递减.②当-1a <12,即a <-2时,由f ′(x )>0,得-1a <x <12;由f ′(x )<0,得0<x <-1a 或x >12,所以函数f (x )在⎝⎛⎭⎫0,-1a 上单调递减,在⎝⎛⎭⎫-1a ,12上单调递增,在⎝⎛⎭⎫12,+∞上单调递减,③当a =-2时,f ′(x )≤0,函数f (x )在(0,+∞)上单调递减.(3)由(2)知当a ∈(-3,-2),x 1,x 2∈[1,3]时,函数f (x )在区间[1,3]上单调递减; 所以当x ∈[1,3]时,f (x )max =f (1)=1+2a ,f (x )min =f (3)=(2-a )ln 3+13+6a ,故对任意的a ∈(-3,-2),恒有(m +ln 3)a -2ln 3>1+2a -(2-a )ln 3-13-6a 成立,即am >23-4a .因为a <0,所以m <23a -4,又⎝⎛⎭⎫23a -4min =-133,所以实数m 的取值范围是⎝⎛⎦⎤-∞,-133.[典例] (2018·(1)若f (x )在区间⎣⎡⎭⎫-12,1上的最大值为38,求实数b 的值; (2)若对任意的x ∈[1,e],都有g (x )≥-x 2+(a +2)x 恒成立,求实数a 的取值范围. [方法演示]解:(1)f ′(x )=-3x 2+2x =-x (3x -2), 令f ′(x )=0,得x =0或x =23.当x ∈⎝⎛⎭⎫-12,0时,f ′(x )<0,函数f (x )为减函数, 当x ∈⎝⎛⎭⎫0,23时,f ′(x )>0,函数f (x )为增函数, 当x ∈⎝⎛⎭⎫23,1时,f ′(x )<0,函数f (x )为减函数. ∵f ⎝⎛⎭⎫-12=38+b ,f ⎝⎛⎭⎫23=427+b , ∴f ⎝⎛⎭⎫-12>f ⎝⎛⎭⎫23. ∴f ⎝⎛⎭⎫-12=38+b =38, ∴b =0.(2)由g (x )≥-x 2+(a +2)x ,得(x -ln x )a ≤x 2-2x , ∵x ∈[1,e],∴ln x ≤1≤x ,由于不能同时取等号, ∴ln x <x ,即x -ln x >0,∴a ≤x 2-2x x -ln x 在x ∈[1,e]上恒成立.令h (x )=x 2-2xx -ln x ,x ∈[1,e],则h ′(x )=(x -1)(x +2-2ln x )(x -ln x )2,当x ∈[1,e]时,x -1≥0,x +2-2ln x =x +2(1-ln x )>0,从而h ′(x )≥0, ∴函数h (x )=x 2-2xx -ln x 在[1,e]上为增函数,∴h (x )min =h (1)=-1,∴a ≤-1. 故实数a 的取值范围为(-∞,-1]. [解题师说]由不等式恒成立求解参数的取值范围问题,一般采用分离参数的方法,转化为求不含参数的函数的最值问题,如本例(2)转化为a ≤x 2-2xx -ln x,从而将问题转化为求函数h (x )=x 2-2xx -ln x,x ∈[1,e]的最小值问题.[应用体验]2.(2018·湖北七市(州)联考)函数f (x )=ln x +12x 2+ax (a ∈R),g (x )=e x +32x 2.(1)讨论f (x )的极值点的个数;(2)若对任意的x ∈(0,+∞),总有f (x )≤g (x )成立,求实数a 的取值范围.解:(1)法一:由题意得f ′(x )=x +1x +a =x 2+ax +1x (x >0),令f ′(x )=0,即x 2+ax +1=0,Δ=a 2-4.①当Δ=a 2-4≤0,即-2≤a ≤2时,x 2+ax +1≥0对x >0恒成立,即f ′(x )=x 2+ax +1x≥0对x >0恒成立,此时f (x )没有极值点.②当Δ=a 2-4>0,即a <-2或a >2时.若a <-2,设方程x 2+ax +1=0的两个不同实根为x 1,x 2,不妨设x 1<x 2,则x 1+x 2=-a >0,x 1x 2=1>0,故x 2>x 1>0,∴当0<x <x 1或x >x 2时,f ′(x )>0; 当x 1<x <x 2时,f ′(x )<0,故x 1,x 2是函数f (x )的两个极值点.若a >2,设方程x 2+ax +1=0的两个不同实根为x 3,x 4, 则x 3+x 4=-a <0,x 3x 4=1>0,故x 3<0,x 4<0. ∴当x >0时,f ′(x )>0,故函数f (x )没有极值点. 综上,当a <-2时,函数f (x )有两个极值点, 当a ≥-2时,函数f (x )没有极值点. 法二:f ′(x )=x +1x +a , ∵x >0,∴f ′(x )∈[a +2,+∞).①当a +2≥0,即a ∈[-2,+∞)时,f ′(x )≥0对∀x >0恒成立,f (x )在(0,+∞)上单调递增,f (x )没有极值点.②当a +2<0,即a ∈(-∞,-2)时,f ′(x )=0有两个不等正数解,设为x 1,x 2,∴f ′(x )=x +1x +a =x 2+ax +1x =(x -x 1)(x -x 2)x(x >0). 不妨设0<x 1<x 2,则当x ∈(0,x 1)时,f ′(x )>0,f (x )单调递增,当x ∈(x 1,x 2)时,f ′(x )<0,f (x )单调递减,当x ∈(x 2,+∞)时,f ′(x )>0,f (x )单调递增,所以x 1,x 2分别为f (x )极大值点和极小值点,故f (x )有两个极值点.综上所述,当a ∈[-2, +∞)时,f (x )没有极值点, 当a ∈(-∞,-2)时,f (x )有两个极值点. (2)f (x )≤g (x )⇔e x -ln x +x 2≥ax ,因为x >0,所以a ≤e x +x 2-ln xx 对∀x >0恒成立. 设φ(x )=e x +x 2-ln x x(x >0), 则φ′(x )=⎝⎛⎭⎫e x +2x -1x x -(e x +x 2-ln x )x 2=e x (x -1)+ln x +(x +1)(x -1)x 2,当x ∈(0,1)时,φ′(x )<0,φ(x )单调递减,当x ∈(1,+∞)时,φ′(x )>0,φ(x )单调递增, ∴φ(x )≥φ(1)=e +1,∴a ≤e +1. 故实数a 的取值范围为(-∞,e +1].导数应用的问题,其中求参数的取值范围是重点考查题型.在平常教学中,教师往往介绍利用变量分离法来求解.但部分题型利用变量分离法处理时,会出现“00”型的代数式,而这是大学数学中的不定式问题,解决这类问题的有效方法就是洛必达法则.[洛必达法则]法则1 若函数f (x )和g (x )满足下列条件: (1)li m x →af (x )=0及li m x →ag (x )=0; (2)在点a 的去心邻域内,f (x )与g (x )可导且g ′(x )≠0; (3)li m x →af ′(x )g ′(x )=l ,那么li m x →a f (x )g (x )=li m x →a f ′(x )g ′(x )=l .法则2 若函数f (x )和g (x )满足下列条件: (1)li m x →af (x )=∞及li m x →ag (x )=∞; (2)在点a 的去心邻域内,f (x )与g (x )可导且g ′(x )≠0; (3)li m x →af ′(x )g ′(x )=l ,那么li m x →a f (x )g (x )=li m x →a f ′(x )g ′(x )=l .[典例] 已知函数f (x )=a ln x x +1+bx,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0.(1)求a ,b 的值;(2)如果当x >0,且x ≠1时,f (x )>ln x x -1+kx ,求k 的取值范围.[方法演示]解:(1)f ′(x )=a x +1x -ln x(x +1)2-bx 2. 由于直线x +2y -3=0的斜率为-12,且过点(1,1),故⎩⎪⎨⎪⎧ f (1)=1,f ′(1)=-12,即⎩⎪⎨⎪⎧b =1,a 2-b =-12,解得⎩⎪⎨⎪⎧a =1,b =1. (2)法一:由(1)知f (x )=ln x x +1+1x,所以 f (x )-ln x x -1+k x =11-x 22ln x +(k -1)(x 2-1)x .设h (x )=2ln x +(k -1)(x 2-1)x (x >0), 则h ′(x )=(k -1)(x 2+1)+2x x 2.①设k ≤0,由h ′(x )=k (x 2+1)-(x -1)2x 2知,当x ≠1时,h ′(x )<0,h (x )单调递减. 而h (1)=0,故当x ∈(0,1)时,h (x )>0,可得11-x 2h (x )>0; 当x ∈(1,+∞)时,h (x )<0,可得11-x 2h (x )>0.从而当x >0,且x ≠1时,f (x )-ln x x -1+kx>0, 即f (x )>ln x x -1+kx. ②设0<k <1.由于y =(k -1)(x 2+1)+2x =(k -1)x 2+2x +k -1的图象开口向下,且Δ=4-4(k -1)2>0,对称轴x =11-k >1,所以当x ∈1,11-k时,(k -1)(x 2+1)+2x >0, 故h ′(x )>0,而h (1)=0,故当x ∈⎝⎛⎭⎫1,11-k 时,h (x )>0,可得11-x 2h (x )<0,与题设矛盾,③设k ≥1.此时h ′(x )>0,而h (1)=0,故当x ∈(1,+∞)时,h (x )>0,可得11-x 2h (x )<0,与题设矛盾.综上所述,k 的取值范围为(-∞,0].(法一在处理第(2)问时很难想到,现利用洛必达法则处理如下) 法二:由题设可得,当x >0,x ≠1时,k <2x ln x1-x 2+1恒成立.令g (x )=2x ln x1-x 2+1(x >0,x ≠1), 则g ′(x )=2·(x 2+1)ln x -x 2+1(1-x 2)2,再令h (x )=(x 2+1)ln x -x 2+1(x >0,x ≠1), 则h ′(x )=2x ln x +1x -x ,又h ″(x )=2ln x +1-1x 2,易知h ″(x )=2ln x +1-1x 2在(0,+∞)上为增函数,且h ″(1)=0,故当x ∈(0,1)时,h ″(x )<0,当x ∈(1,+∞)时,h ″(x )>0,∴h ′(x )在(0,1)上为减函数,在(1,+∞)上为增函数,故h ′(x )>h ′(1)=0, ∴h (x )在(0,+∞)上为增函数.又h (1)=0,∴当x ∈(0,1)时,h (x )<0,当x ∈(1,+∞)时,h (x )>0, ∴当x ∈(0,1)时,g ′(x )<0,当x ∈(1,+∞)时,g ′(x )>0, ∴g (x )在(0,1)上为减函数,在(1,+∞)上为增函数. 由洛必达法则知, li m x →1g (x )=2li m x →1x ln x 1-x 2+1=2li m x →1 1+ln x -2x+1=2×⎝⎛⎭⎫-12+1=0,∴k ≤0, 故k 的取值范围为(-∞,0]. [解题师说]解决本题第(2)问时,如果直接讨论函数的性质,相当繁琐,很难求解.采用参数与变量分离较易理解,但是分离出来的函数式的最值无法求解,而利用洛必达法则却较好的处理了它的最值,这是一种值得借鉴的方法.[应用体验]3.已知函数f (x )=x (e x -1)-ax 2,若当x ≥0时,f (x )≥0,求a 的取值范围. 解:当x ≥0时,f (x )≥0,即x (e x -1)≥ax 2. ①当x =0时,a ∈R ;②当x >0时,x (e x-1)≥ax 2等价于a ≤⎝⎛⎭⎫e x-1x min .记g (x )=e x -1x ,x ∈(0,+∞),则g ′(x )=(x -1)e x +1x 2.记h (x )=(x -1)e x +1,x ∈[0,+∞),则h ′(x )=x e x >0.因此h (x )=(x -1)e x +1在[0,+∞)上单调递增,且h (x )>h (0)=0,所以g ′(x )=h (x )x 2>0, 从而g (x )=e x -1x 在(0,+∞)上单调递增.由洛必达法则有li m x →0g (x )=li m x →0 e x -1x =li m x →0 e x1=1,所以g (x )>1,即有a ≤1. 故实数a 的取值范围为(-∞,1].1.(2017·全国卷Ⅱ)设函数f (x )=(1-x 2)e x . (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围. 解:(1)f ′(x )=(1-2x -x 2)e x .令f ′(x )=0,得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.(2)f (x )=(1+x )(1-x )e x . ①当a ≥1时,设函数h (x )=(1-x )e x ,则h ′(x )=-x e x <0(x >0). 因此h (x )在[0,+∞)上单调递减, 又h (0)=1,故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1. ②当0<a <1时,设函数g (x )=e x -x -1,则g ′(x )=e x -1>0(x >0), 所以g (x )在[0,+∞)上单调递增,而g (0)=0, 故e x ≥x +1.当0<x <1时,f (x )>(1-x )(1+x )2, (1-x )(1+x )2-ax -1=x (1-a -x -x 2), 取x 0=5-4a -12, 则x 0∈(0,1),(1-x 0)(1+x 0)2-ax 0-1=0, 故f (x 0)>ax 0+1.当a ≤0时,取x 0=5-12, 则x 0∈(0,1),f (x 0)>(1-x 0)(1+x 0)2=1≥ax 0+1. 综上,a 的取值范围是[1,+∞). 2.已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)若对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围. (2)证明:对一切x ∈(0,+∞),ln x >1e x -2e x恒成立.解:(1)由题意知2x ln x ≥-x 2+ax -3对一切x ∈(0,+∞)恒成立, 则a ≤2ln x +x +3x.设h (x )=2ln x +x +3x (x >0),则h ′(x )=(x +3)(x -1)x 2.当x ∈(0,1)时,h ′(x )<0,h (x )单调递减; 当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增. 所以h (x )min =h (1)=4,因为对一切x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4,故实数a 的取值范围是(-∞,4]. (2)问题等价于证明x ln x >x e x -2e (x >0).又f (x )=x ln x (x >0),f ′(x )=ln x +1, 当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0,f (x )单调递增, 所以f (x )min =f ⎝⎛⎭⎫1e =-1e . 设m (x )=x e x -2e (x >0),则m ′(x )=1-xe x, 当x ∈(0,1)时,m ′(x )>0,m (x )单调递增, 当x ∈(1,+∞)时,m ′(x )<0,m (x )单调递减, 所以m (x )max =m (1)=-1e ,从而对一切x ∈(0,+∞),f (x )>m (x )恒成立,即x ln x >x e x -2e恒成立.所以对一切x ∈(0,+∞),ln x >1e x -2e x 恒成立.3.已知函数f (x )=bx 2-2ax +2ln x .(1)若曲线y =f (x )在(1,f (1))处的切线为y =2x +4,求实数a ,b 的值;(2)当b =1时,若y =f (x )有两个极值点x 1,x 2,且x 1<x 2,a ≥52,若不等式f (x 1)≥mx 2恒成立,求实数m 的取值范围.解:(1)由题可知f (1)=b -2a =6,∵f ′(x )=2bx -2a +2x ,∴f ′(1)=2b -2a +2=2,联立可得a =b =-6. (2)当b =1时,f (x )=x 2-2ax +2ln x ,∴f ′(x )=2x -2a +2x =2(x 2-ax +1)x. ∵f (x )有两个极值点x 1,x 2,且x 1<x 2, ∴x 1,x 2是方程x 2-ax +1=0的两个正根, ∴x 1+x 2=a ≥52,x 1·x 2=1,∴x 1+1x 1≥52,∴0<x 1≤12.不等式f (x 1)≥mx 2恒成立,即m ≤f (x 1)x 2恒成立. f (x 1)x 2=x 21-2ax 1+2ln x 1x 2=x 31-2ax 21+2x 1ln x 1 =x 31-2(x 1+x 2)x 21+2x 1ln x 1=-x 31-2x 1+2x 1ln x 1.令h (x )=-x 3-2x +2x ln x ⎝⎛⎭⎫0<x ≤12, 则h ′(x )=-3x 2+2ln x <0, ∴h (x )在⎝⎛⎦⎤0,12上是减函数, ∴h (x )≥h ⎝⎛⎭⎫12=-98-ln 2,故m ≤-98-ln 2, ∴实数m 的取值范围为⎝⎛⎦⎤-∞,-98-ln 2. 4.(2018·张掖诊断)已知函数f (x )=mxln x,曲线y =f (x )在点(e 2,f (e 2))处的切线与直线2x +y =0垂直(其中e 为自然对数的底数).(1)求f (x )的解析式及单调递减区间;(2)是否存在最小的常数k ,使得对任意x ∈(0,1),f (x )>k ln x+2x 恒成立?若存在,求出k 的值;若不存在,请说明理由.解:(1)f ′(x )=m (ln x -1)(ln x )2, 由f ′(e 2)=m 4=12,得m =2,故f (x )=2x ln x, 此时f ′(x )=2(ln x -1)(ln x )2. 由f ′(x )<0,得0<x <1或1<x <e ,所以函数f (x )的单调递减区间为(0,1),(1,e).(2)f (x )>k ln x +2x 恒成立,即2x ln x >k ln x +2x 恒成立⇔k ln x <2x ln x-2x 恒成立, 当x ∈(0,1)时,ln x <0,则有k >2x -2x ·ln x 恒成立.令g (x )=2x -2x ·ln x ,则g ′(x )=2x -ln x -2x. 再令h (x )=2x -ln x -2,则h ′(x )=x -1x <0, 所以h (x )在(0,1)上单调递减,所以h (x )>h (1)=0,故g ′(x )=h (x )x>0, 所以g (x )在(0,1)上单调递增,g (x )<g (1)=2⇒k ≥2.故存在常数k =2满足题意.。
专题3 导数解决不等式的恒成立和证明

第三章 导数专题3 导数解决不等式的恒成立和证明【三年高考精选】(2021年全国新高考Ⅰ卷数学试题) 1. 已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析. 【解析】【分析】(1) 首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.(2)方法二:将题中的等式进行恒等变换,令11,m n a b==,命题转换为证明:2m n e <+<,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论.【详解】(1)()f x 的定义域为()0,∞+. 由()()1ln f x x x =-得,()ln f x x '=-,当1x =时,()0f x '=;当()0,1x ∈时()0f x >′;当()1,x ∈+∞时,()'0f x <. 故()f x 在区间(]0,1内为增函数,在区间[)1,+∞内为减函数, (2)[方法一]:等价转化由ln ln b a a b a b -=-得1111(1ln )(1ln )a a b b -=-,即11()()f f a b=.由a b ,得11a b ≠.由(1)不妨设11(0,1),(1,)b a ∈∈+∞,则1()0f a >,从而1()0f b >,得1(1,)e b∈,①令()()()2g x f x f x =--,则22()(2)()ln(2)ln ln(2)ln[1(1)]g x f x f x x x x x x ''=---'=-+=-=--,当()0,1x ∈时,()0g x '<,()g x 在区间()0,1内为减函数,()()10g x g >=,从而()()2f x f x ->,所以111(2)()()f f f a a b->=,由(1)得112a b -<即112a b<+.①令()()h x x f x =+,则()()'11ln h x f x x '=+=-,当()1,x e ∈时,()0h x '>,()h x 在区间()1,e 内为增函数,()()h x h e e <=,从而()x f x e +<,所以11()f e b b +<.又由1(0,1)a ∈,可得11111(1ln )()()f f a a a a b <-==,所以1111()f e a b b b+<+=.②由①②得112e a b<+<. [方法二]【最优解】:ln ln b a a b a b -=-变形为ln ln 11a b a b b a-=-,所以ln 1ln 1a b a b ++=. 令11,m n a b ==.则上式变为()()1ln 1ln m m n n -=-, 于是命题转换为证明:2m n e <+<.令()()1ln f x x x =-,则有()()f m f n =,不妨设m n <. 由(1)知01,1m n e <<<<,先证2m n +>.要证:()()()222)2(m n n m f n f m f m f m +>⇔>-⇔<-⇔<-()()20f m f m ⇔--<.令()()()()2,0,1g x f x f x x =--∈,则()()()()()2ln ln 2ln 2ln10g x f x f x x x x x '='+'-=---=⎡⎤⎣≥-⎦--=, ()g x ∴在区间()0,1内单调递增,所以()()10g x g <=,即2m n +>.再证m n e +<.因为()()1ln 1ln m n n m m -=⋅->,所以()1ln n n n e m n e -+<⇒+<.令()()()1ln ,1,h x x x x x e =-+∈,所以()'1ln 0h x x =->,故()h x 在区间()1,e 内单调递增. 所以()()h x h e e <=.故()h n e <,即m n e +<. 综合可知112e a b<+<. [方法三]:比值代换 证明112a b+>同证法2.以下证明12x x e +<. 不妨设21x tx =,则211x t x =>, 由1122(1ln )(1ln )x x x x -=-得1111(1ln )[1ln()]x x tx tx -=-,1ln 1n 1l t x t t=--, 要证12x x e +<,只需证()11t x e +<,两边取对数得1ln(1)ln 1t x ++<,即ln(1)1ln 11t t t t++-<-, 即证ln(1)1ln t t t t+<-. 记ln(1)(),(0,)s g s ss ∈=+∞+,则2ln(1)1()s s s g s s '-++=. 记()ln(1)1sh s s s=-++,则211()0(1)1h s s s '=-<++, 所以,()h s 在区间()0,∞+内单调递减.()()00h s h <=,则()'0g s <, 所以()g s 在区间()0,∞+内单调递减.由()1,t ∈+∞得()10,t -∈+∞,所以()()1g t g t <-, 即ln(1)1ln t t t t+<-. [方法四]:构造函数法 由已知得ln ln 11a b a b b a-=-,令1211,x x a b ==,不妨设12x x <,所以()()12f x f x =.由(Ⅰ)知,1201x x e <<<<,只需证122x x e <+<. 证明122x x +>同证法2.再证明12x x e +<.令2ln 21()(0)()(ln ,)exh x x e h x x e x xe x '-++-=<<=--. 令()ln 2(0)e x x x e x ϕ=+-<<,则221()0e x ex x x xϕ-'=-=<. 所以()()()0,0x e h x ϕϕ>='>,()h x 在区间()0,e 内单调递增.因为120x x e <<<,所以122111ln ln x e x e x x --<--,即112211ln ln x x x ex e -->-- 又因为()()12f x f x =,所以12212112ln ln 1,1x x x ex x x ex x --=>--,即()()2222111212,0x ex x ex x x x x e -<--+->.因为12x x <,所以12x x e +<,即11e a b+<. 综上,有112e a b<+<结论得证. 【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.方法四:构造函数之后想办法出现关于120e x x +-<的式子,这是本方法证明不等式的关键思想所在.视频(2020年高考全国Ⅰ卷文数20) 2. 已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【答案】(1)()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)1(,)e+∞.【解析】【分析】(1)将1a =代入函数解析式,对函数求导,分别令导数大于零和小于零,求得函数的单调增区间和减区间;(2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,将其转化为2xea x =+有两个解,令()(2)2xe h x x x =≠-+,求导研究函数图象的走向,从而求得结果.【详解】(1)当1a =时,()(2)x f x e x =-+,'()1xf x e =-,令'()0f x <,解得0x <,令'()0f x >,解得0x >, 所以()f x 的减区间为(,0)-∞,增区间为(0,)+∞; (2)若()f x 有两个零点,即(2)0x e a x -+=有两个解,从方程可知,2x =-不成立,即2x e a x =+有两个解,令()(2)2x e h x x x =≠-+,则有'22(2)(1)()(2)(2)x x x e x e e x h x x x +-+==++, 令'()0h x >,解得1x >-,令'()0h x <,解得2x <-或21x -<<-, 所以函数()h x 在(,2)-∞-和(2,1)--上单调递减,在(1,)-+∞上单调递增, 且当2x <-时,()0h x <,而2x +→-时,()h x →+∞,当x →+∞时,()h x →+∞,所以当2xe a x =+有两个解时,有1(1)a h e >-=,所以满足条件的a 的取值范围是:1(,)e+∞.【点睛】本题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线x y e =和直线(2)y a x =+有两个交点,利用过点(2,0)-的曲线x y e =的切线斜率,结合图形求得结果. 【三年高考刨析】【2022年高考预测】预测2022年高考仍是考查函数的单调性,根据不等式恒成立求参数的取值范围或不等式的证明..【2022年复习指引】由前三年的高考命题形式,在2022年的高考备考中同学们只需要稳扎稳打,加强常规题型的练习,关于集合2022高考备考主要有以下几点建议:1.涉及本单元知识点的高考题,综合性强.所以在复习中要熟记相关的定义,法则;2.利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.3.将不等式的证明、方程根的个数的判定转化为函数的单调性、极值问题处理.4.要深入体会导数应用中蕴含的数学思想方法.数形结合思想,如通过从导函数图象特征解读函数图象的特征,或求两曲线交点个数等;等价转化思想,如将证明的不等式问题等价转化为研究相应问题的最值等.【2022年考点定位】 考点1 证明不等式典例1 (安徽省蚌埠市2021-2022学年高三上学期第一次教学质量检查)已知函数()()212,2e 21x x f x x x g x x =+-=---. (1)求()f x 的单调区间;(2)当(),1x ∈-∞时,求证:()()g x f x .【答案】(1)在(),1-∞单调递增,在()1,+∞上单调递减;(2)证明见解析. 【分析】(1)由题可以求函数的导函数,则可得()f x 的单调区间; (2)由题知要证()()g x f x ,即证2201e 2x x x x x x ---+≥-,然后利用导函数判断函数的单调性,最后利用单调性证明即可. 【详解】 (1)因为()21e 2x x f x x x =+-, 所以()()()21e 1e e 1e ex x x x x x x f x x +--=+-=', 令()0f x '=,解得1x =,∴当(),1x ∈-∞时,()()0,1,f x x ∞∈'>+时,()0f x '< 所以()f x 在(),1-∞单调递增,在()1,+∞上单调递减; (2)要证()()g x f x即证22121e 2x x x x x --+--, 即22e 0112x x x x x x --+-≥-, 设2()11e 21x F x x x=---+-,即证()0xF x .因为()2211(1)e 2xF x x =++-' 所以当(),1x ∈-∞时,()0F x '>恒成立,()F x 单调递增, 又当0x =时,()0F x =,所以当01x <<时,()0F x >,当0x <时,()0F x <; 所以当()(),1,0x xF x ∞∈-, 即当(),1x ∈-∞时,()()g x f x .【规律方法技巧】利用导数证明不等式f (x )>g (x )的基本方法 (1)若f (x )与g (x )的最值易求出,可直接转化为证明f (x )min >g (x )max ;(2)若f (x )与g (x )的最值不易求出,可构造函数h (x )=f (x )-g (x ),然后根据函数h (x )的单调性或最值,证明h (x )>0. 2.证明不等式时的一些常见结论(1)ln x ≤x -1,等号当且仅当x =1时取到; (2)e x ≥x +1,等号当且仅当x =0时取到; (3)ln x <x <e x ,x >0; (4)≤ln(x +1)≤x ,x >-1,等号当且仅当x =0时取到.【考点针对训练】(2022贵州省贵阳市五校联考)3. 已知函数()xe f x x =.(1)函数()()f xg x x=,求()g x 的单调区间和极值. (2)求证:对于()0,x ∀∈+∞,总有()13ln 44f x x >-. 【答案】(1)()g x 在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;极小值()2e 24g =,无极大值;(2)证明见解析. 【解析】【分析】(1)写出()g x 的函数表达式,通过求导写出单调区间和极值即可(2)证明()13ln 44f x x >-恒成立,结合(1)得,等价于2e 1(ln 3)4x x x x >-恒成立,且已知左式的最小值,只要大于右式的最大值,则不等式恒成立【详解】(1)解:2243e e 2e e (2)()()x x x x x x x g x g x x x x --'=⇒==,当02x <<时,()0g x '<; 当0x <或2x >时,()0g x '>,()g x ∴在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;故()g x 有一个极小值2e (2)4g =,无极大值.(2)证明:要证13()ln 44f x x >-成立,只需证e 13ln 44x x x >-成立,即证2e 1(ln 3)4x x x x>-成立,令1()(ln 3)4h x x x =-,则24ln ()=4xh x x -',当40e x <<时,()0h x '>; 当4e x >时,()0h x '<,()h x ∴在()40,e 上单调递增,在()4e ,+∞上单调递减,()4max 41()e 4e h x h ==∴, 2e ()x g x x =∵由(1)可知2min e ()(2)4g x g ==,min max ()()g x h x >∴,()()g x h x >∴,13()ln 44f x x >-∴.【点睛】题目比较综合,第一小题是已知函数求单调性极值的问题,属于常规题目;第二小题证明不等式成立,有两种类型,一种是构造左右两个函数,若最小值大于最大值,则不等式恒成立,但是只能做证明题;若最小值不大于最大值,不能说明不等式不成立;另外一种是构造一个函数,证明最小值大于0恒成立,这种的函数会比较困难,所以优先用第一种尝试,再选取第二种方法考点2 不等式恒成立问题典例2 (2020辽宁省沈阳市2019届高三一模)已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( )A.2a ≤B.2a ≥C.0a ≤D.02a ≤≤ 【答案】A【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围. 【详解】设()1,x g x e x =--则()1x g x e '=-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【规律方法技巧】利用导数解决恒成立问题主要涉及以下方面:(1)已知不等式在某一区间上恒成立,求参数的取值范围:一般先分离参数,再转化为求函数在给定区间上的最值问题求解;(2)如果无法分离参数可以考虑对参数a 或自变量进行分类求解,如果是二次不等式恒成立的问题,可以考虑限制二次项系数或判别式的方法求解.(3)已知函数的单调性求参数的取值范围:转化为f ′(x )≥0(或f ′(x )≤0)恒成立的问题. 【考点针对训练】(山西省运城市2021届高三检测)4. 当0x <时,不等式()2e e 3xxx x k k -≥恒成立,则实数k 的取值范围是__. 【答案】[]3e,0- 【解析】 【分析】由题意可得()232e 3x k x x +≤对0x <恒成立,讨论320x +=,320x +>,320x +<,运用参数分离和构造函数,利用导数判断单调性,求最值,可得所求范围.【详解】解:当0x <时,不等式()2e e 3xxx x k k -≥恒成立, 即为()232e 3x k x x +≤对0x <恒成立,Ⅰ当320x +=即23x =-时,403≤恒成立;Ⅰ当320x +<,即23x <-时,()2332e x x k x +≥恒成立,等价为()2max 332e x x k x ⎡⎤⎢⎥+⎣⎦≥, 设()()2332e x x f x x =+,()()()()()232222632e 335e 931232e 32e x x x x x x x x x x x f x x x +-+-++'==++ ()()()2313432exx x x x -+-=+,可得1x <-时,()0f x >′,()f x 递增;213x -<<-时,()0f x <′,()f x 递减, 可得()f x 在1x =-处取得最大值,且为3e -, 则3e k ≥-;Ⅰ当320x +>,即203x -<<时,()2332e x x k x +≤恒成立, 等价为()2min332e x x k x ⎡⎤⎢⎥+⎣⎦≤,设()()2332e x x f x x =+,()()()()2313432e x f x x x x x -+-'=+, 可得203x -<<时,()0f x <′,()f x 递减, 可得()0f x >, 则0k ≤,综上可得,k 的范围是[]3e,0-.【点睛】本题考查不等式恒成立问题解法,参变分离是常用的解题方法,属于中档题.方法点睛:(1)将参数和变量分离,转化为求最值问题; (2)构造函数,求导数,分析单调性; (3)求函数的最值,求出参数的范围.考点3 不等式存在成立问题典例3 (黑龙江省大庆铁人中学2021届高三第三次模拟)若函数()2ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是( )A.(],2-∞B.1,8⎛⎫-+∞ ⎪⎝⎭C.12,8⎛⎫-- ⎪⎝⎭ D.()2,-+∞【答案】D 【分析】将函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间,转化1()20f x ax x '=+>在区间1()22,成立,再转化为min 212()a x>-,进而可求出结果. 【详解】因为函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间, 所以1()20f x ax x '=+>在区间1()22,上成立, 即min 212()a x>-在区间1()22,上成立,又函数2yx 在1()22,上单调递增, 所以函数21y x =-在1()22,上单调递增, 故当12x =时21y x =-最小,且min 21()=4x --,即24a >-,得2a >-. 故选:D【规律方法技巧】1.有关存在成立问题的解题方法∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2)等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值,即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.2.注意不等式恒成立与存在成立的异同不等式在某区间上能成立与不等式在某区间上恒成立问题是既有联系又有区别的两种情况,解题时应特别注意,两者都可转化为最值问题,但f (a )≥g (x )(f (a )≤g (x ))对存在x ∈D 能成立等价于f (a )≥g (x )min (f (a )≤g (x )max ),f (a )≥g (x )(f (a )≤g (x ))对任意x ∈D 都成立等价于f (a )≥g (x )max (f (a )≤g (x )min ),应注意区分,不要搞混. 【考点针对训练】 (2019·吉林白山联考)5. 设函数f (x )=e x 33x x ⎛⎫+- ⎪⎝⎭-ax (e 为自然对数的底数),若不等式f (x )≤0有正实数解,则实数a 的最小值为________. 【答案】e 【解析】【分析】已知不等式转化为2(33)x a e x x ≥-+,此不等式有正数解,只要求得2()(33)x g x e x x =-+在(0,)+∞上的最小值即可得a 的范围.【详解】原问题等价于存在x Ⅰ(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=x e (x 2-3x +3),x Ⅰ(0,+∞),则a ≥g (x )min ,而g ′(x )=x e (x 2-x ),由g ′(x )>0,得x Ⅰ(1,+∞),此时()g x 递增,由g ′(x )<0,得x Ⅰ(0,1),此时()g x 递减,Ⅰ函数g (x )在区间(0,+∞)上的极小值也是最小值为g (1)=e , Ⅰa ≥e ,即实数a 的最小值为e . 故答案为:e .【点睛】本题考查不等式有解问题,解题关键是用分离参数法转化为求函数的最值.只是求解时要注意与不等式恒成立区分开来,不等式恒成立也常常用分离参数法转化为求函数的最值,但两者所求最值一个是最大值,一个是最小值,要根据题意确定.考点4 利用导数研究方程的根(或函数的零点)典例4 (河南省郑州市商丘市名师联盟 2020-2021学年高三质量检测)已知函数()2ln f x x x =-,()33g x x xm =-+,方程()()f x g x =在区间1,e e ⎡⎤⎢⎥⎣⎦内有两个不同的实根,则m 的取值范围是( )A.2121,333e ⎛⎤+ ⎥⎝⎦ B.2221e -2,33e 3⎡⎤+⎢⎥⎣⎦ C.221,133e ⎡⎫+⎪⎢⎣⎭ D.21e 2,33⎛⎤- ⎥⎝⎦【答案】A 【分析】由题可得232ln m x x =-,构造函数()22ln h x x x =-,讨论其在1,e e ⎡⎤⎢⎥⎣⎦的变化情况即可得出答案. 【详解】由()()f x g x =,得232ln m x x =-,令()22ln h x x x =-,则()()()211x x h x x-+'=,所以()h x 在1,1e ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,e 上单调递增,所以()()min 11h x h ==,()221122h e e h e e ⎛⎫=->=+ ⎪⎝⎭,则21132m e <≤+,即2121333m e <≤+. 故选:A.【规律方法技巧】求解涉及函数零点或方程根的问题的注意点 (1)利用函数零点存在性定理求解.(2)分离参数a 后转化为函数的值域(最值)问题求解,如果涉及多个零点,还需考虑函数的图象与直线y =a 的交点个数.(3)转化为两个熟悉的函数的图象的上、下位置关系问题,从而构建不等式求解. 【考点针对训练】(重庆市秀山高级中学校2022届高三上学期9月月考) 6. 已知函数2eln ()x f x x =,若关于x 的方程21[()]()08f x mf x -+=有4个不同的实数根,则实数m 的取值范围为___________.【答案】324⎛⎫⎪ ⎪⎝⎭【解析】【分析】利用导数求出函数()f x 的单调区间和最值,设()f x t =,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,故12121201102201t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,从而可求出实数m 的取值范围 【详解】依题意,求导243e 2eln e(12ln )()x x xx x f x x x ⋅--'==,令()0f x '=,解得:x =当x ∈时,()0f x '>,()f x 单调递增;当)x ∈+∞,()0f x '<,函数单调递减,且max 1()e 2f x f ===, 又0x →时,()f x →-∞;又x →+∞时,()0f x →;设()f x t =,显然当10,2t ⎛⎫∈ ⎪⎝⎭时,方程()f x t =有两个实数根,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根, 故121212011022010t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,210211082401m m m ⎧->⎪⎪⎪-+>⎨⎪<<⎪⎪⎩,解得:324m ⎛⎫∈ ⎪ ⎪⎝⎭.故答案为:3,24⎛⎫⎪ ⎪⎝⎭【点睛】关键点点睛:此题考查函数与方程的综合应用,考查导数的应用,解题的关键是利用导数判断出函数()f x 的单调区间和最值,设()f x t =,将问题转化为方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,然后利用一元二次方程根的分布情况求解即可,考查数学转化思想和计算能力,属于中档题【二年模拟精选】(2020河北省衡水市第二中学高三检测) 7. 已知函数21()ln 2f x x a x =+,若对任意两个不等的正数1x ,2x ,都有()()12124f x f x x x ->-恒成立,则a 的取值范围为A. [4,)+∞B. (4.?)+∞C. (,4]-∞D. (,4)-∞【答案】A 【解析】【分析】根据题意先确定g (x )=f (x )﹣4x 在(0,+∞)上单增,再利用导数转化,可得24x a x ≥-恒成立,令()24h x x x =-,求得()h x max ,即可求出实数a 的取值范围.【详解】令()()4g x f x x =-,因为()()12124f x f x x x ->-,所以()()12120g x g x x x ->-,即()g x 在()0,+∞上单调递增,故()40ag x x x=-'+≥在()0,+∞上恒成立, 即24x a x ≥-,令()()24,0,h x x x x =-∈+∞.则()()2424h x x x h =-≤=,()h x max 4=,即a 的取值范围为[4,+∞).故选A.【点睛】本题考查了函数单调性的判定及应用,考查了原函数单调与导函数正负的关系,确定g (x )在(0,+∞)上单增是关键,属于中档题. (2020辽宁省沈阳市高三上学期一模)8. 已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( ) A. 2a ≤ B. 2a ≥C. 0a ≤D. 02a ≤≤【答案】A 【解析】【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围.【详解】设()1,x g x e x =--则()'1x g x e =-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【点睛】本题考查了构造新函数,也考查了导数的应用以及由单调性求参数的问题,属于中档题.(江西省萍乡市2021届高三上期数学期中复习试卷)9. 已知函数222,0()11,0x x x f x x x ⎧++≤⎪=⎨-+>⎪⎩,若()f x ax ≥恒成立,则实数a 的取值范围是( )A. 2⎡⎤-⎣⎦B. (],1-∞C. ()2-D. 2⎡⎤-⎣⎦【答案】A 【解析】 【分析】作出函数()f x 的图象,利用数形结合的思想判断a 的范围,找出临界点即相切时a 的取值,进而得出a 的范围. 【详解】作出()f x 的图象,如图,由图象可知:要使()f x ax 恒成立,只需函数()g x ax =的图象恒在图象()f x 的下方, 可得1a ,设()g x ax =与函数2()22(0)f x x x x =++相切于点(),(0)P m n m <, 由()f x 的导数为22x +,可得切线的斜率为22m +, 即有22a m =+,222am m m =++,解得m =2a =-由图象可得222a -,综上可得a 的范围是[2-1]. 故选:A【点睛】解决此类问题的关键是作出函数图象,根据数形结合的思想处理问题,本题关键找出相切时刻这一临界位置,利用直线与抛物线相切即可求解. (四川省内江市威远中学2020-2021学年高三月考)10. 已知函数32()f x x x ax b =-++,12,(0,1)x x ∀∈且12x x ≠,都有1212|()()|||f x f x x x -<-成立,则实数a 的取值范围是( )A. 2(1,]3--B. 2(,0]3-C. 2[,0]3-D. [1,0]-【答案】C 【解析】 【分析】原不等式等价于()()211212x x f x f x x x --<-<恒成立,得到()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++在()0,1上严格单调,转化为()0g x '≤在()0,1上恒成立,()0h x '≥在()0,1上恒成立,利用分离参数思想转化为求最值问题即可. 【详解】不妨设1210x x >>>,则1212|()()|||f x f x x x -<-等价于()()211212x x f x f x x x --<-<,即()()()()11221122 f x x f x x f x x f x x ⎧-<-⎪⎨+>+⎪⎩,设()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++,依题意,函数()g x 在()0,1上为严格的单调递减函数, 函数()h x 在()0,1上为严格的单调递增函数,Ⅰ()23210g x x x a '=-+-≤在()0,1上恒成立,()23210h x x x a '=-++≥在()0,1上恒成立,Ⅰ2321a x x ≤-++在()0,1上恒成立,2321a x x ≥-+-在()0,1上恒成立, 而二次函数2321y x x =-++在[0,1]上的最小值在1x =时取得,且最小值为0, 二次函数2321y x x =-+-在[0,1]上的最大值在13x =时取得,其最大值为23-, 综上,实数a 的取值范围是2[,0]3-, 故选:C.【点睛】关键点点睛:去绝对值,得到两个函数的单调性,结合导数与单调性的关系,利用分离参数的思想转化为求二次函数最值问题. (2020湖南省益阳市高三上学期期末)11. 已知变量()()12,0,0x x m m ∈>,且12x x <,若2112x x x x <恒成立,则m 的最大值为(e 2.71828=为自然对数的底数)( ) A. eB.C.1eD. 1【答案】A 【解析】 【分析】不等式两边同时取对数,然后构造函数()ln xf x x=,求函数的导数,研究函数的单调性即可得到结论. 【详解】21122112ln ln x x x x x x x x <⇒<,()12,0,,0x x m m ∈>,1212ln ln x x x x ∴<恒成立, 设函数()ln xf x x=,12x x <,()()12f x f x <,()f x ∴在()0,m 上为增函数,函数的导数()21ln xf x x -'=, ()00f x x e '>⇒<<,即函数()f x 的增区间是()0,e ,则m 的最大值为e . 故选:A【点睛】关键点点睛:本题考查利用函数研究函数的单调性,本题的关键点是对已知等式变形,211212211212ln ln ln ln x x x x x x x x x x x x <⇒<⇒<,转化为求函数()ln xf x x=的单调区间. (山东省泰安肥城市2021届高三高考适应性训练)12. 已知函数()ln f x x x x =+,()g x kx k =-,若k Z ∈,且()()f x g x >对任意2x e >恒成立,则k 的最大值为( ) A. 2 B. 3C. 4D. 5【答案】B 【解析】【分析】由不等式,参变分离为ln 1x x x k x +⎛⎫< ⎪-⎝⎭,转化为求函数()ln 1x x x u x x +=-,()2,x e ∈+∞的最小值,利用导数求函数的最小值.【详解】()()f x g x >,即ln x x x kx k +>-.由于()()f x g x >对任意()2,x e ∈+∞恒成立,所以ln 1x x x k x +⎛⎫< ⎪-⎝⎭,即min ln 1x x x k x +⎛⎫< ⎪-⎝⎭.令()ln 1x x x u x x +=-,()2,x e ∈+∞,()()2ln 21x x u x x --'=-.令()ln 2h x x x =--,()1110x h x x x='-=->, 所以()h x 在()2,x e ∈+∞上单调递增,所以()()22e e 40h x h >=->,可得()0u x '>,所以()u x 在()2,e +∞上单调递增.所以()()()22223e 3e 33,4e 1e 1u x u >==+∈--.又k Z ∈,所以max 3k =. 故选:B.(广西柳州市2021届高三摸底考试)13. 已知函数212,(0)()2ln ,(0)x x x f x x x x ⎧++≤⎪=⎨⎪>⎩,若存在0x R ∈,使得()2012f x m m ≤-成立,则实数m 的取值范围是( )A. 1,12⎡⎤-⎢⎥⎣⎦B. 11,2⎡⎤-⎢⎥⎣⎦C. 11,2⎡⎤⎢⎥⎣⎦D. 1,02⎡⎤-⎢⎥⎣⎦【答案】A 【解析】【分析】分析函数()f x 的最小值,只需使()2min 12f x m m ≤-成立即可. 【详解】当0x ≤时,()2122f x x x =++,根据二次函数的性质可知,当1x =-时,()f x 有最小值12-;当0x >时,()ln f x x x =,由()ln 10f x x '=+=得1=x e当10,e x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>, 所以()ln f x x x =在10,e x ⎛⎫∈ ⎪⎝⎭上单调递减,在1,x e ⎛⎫∈+∞ ⎪⎝⎭上单调递增,所以()ln f x x x =最小值为11111ln 2f e e ee ⎛⎫==->- ⎪⎝⎭,则()min 12f x =-若存在0x R ∈,使得()2012f x m m ≤-成立,则()2min 12f x m m ≤- 所以21122m m -≤-,解得112m -≤≤故选:A .(重庆实验外国语学校2022届高三上学期入学考试)14. 关于函数()xf x e =,()lng x x =下列说法正确的是( )A. 对0x ∀>,()1g x x ≤-恒成立B. 对x R ∀∈,()f x ex ≥恒成立C. 若a b e >>,()()ag b bg a <D. 若不等式()()f ax ax x g x -≥-对1x ∀>恒成立,则正实数a 的最小值为1e【答案】ABD 【解析】【分析】选项A :构造函数()()ln 10h x x x x =-+>,根据导数判断函数的单调性并求最大值,从而判断选项正确;选项B :构造函数()()x f x ex ϕ=-,根据导数判断函数的单调性并求最小值,从而判断选项正确; 选项C :构造函数()()()0g x m x x x=>,根据导数判断函数在(),e +∞内单调递减,从而判断选项错误;选项D :把不等式()()f ax ax x g x -≥-变形为ln ln ax x e ax e x -≥-,所以只需研究函数()xF x e x =-的单调性即可求出答案,从而判断选项正确.【详解】选项A :令()()ln 10h x x x x =-+>,则()111xh x x x -'=-=,因为0x >,所以由()0h x '>得01x <<;由()0h x '<得1x >, 所以()h x 在()0,1内单调递增,在()1,+∞内单调递减,所以()h x 的最大值为()10h =,所以对0x ∀>,()0h x ≤恒成立, 即对0x ∀>,()1g x x ≤-恒成立,故选项A 正确;选项B :令()()x x f x ex e ex ϕ=-=-,则()xx e e ϕ'=-,由()0x ϕ'>得1x >;由()0x ϕ'<得1x <,所以()x ϕ在()1,+∞内单调递增,在(),1-∞内单调递减,所以()x ϕ的最小值为()10ϕ=,所以对x R ∀∈,()0x ϕ≥恒成立,即对x R ∀∈,()f x ex ≥恒成立,故选项B 正确;选项C :令()()ln ()0g x x m x x x x==>,则21ln ()xm x x -'=,所以由()0m x '>得0x e <<;由()0m x '<得x e >,所以()m x 在()0,e 内单调递增,在(),e +∞内单调递减, 所以当a b e >>时,()()m a m b <,即()()g a g b a b<, 所以a b e >>,()()ag b bg a >成立,故选项C 错误; 选项D :因为不等式()()f ax ax x g x -≥-对1x ∀>恒成立,即不等式ln ax e ax x x -≥-对1x ∀>恒成立,又因为ln ln ln x x x e x -=-, 所以不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立;令()xF x e x =-,则 ()1x F x e '=-,当0x >时,()10x F x e '=->恒成立,所以()xF x e x =-在()0,∞+单调递增,所以由不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立,得ln ax x ≥对1x ∀>恒成立,即ln xa x≥对1x ∀>恒成立, 由选项C 知,()ln ()1xm x x x=>在()1,e 内单调递增,在(),e +∞内单调递减,所以()m x 的最大值为1()m e e =,所以只需1a e ≥,即正实数a 的最小值为1e .故选:ABD.【点睛】利用导数研究不等式恒成立问题,通常要构造函数,然后利用导数研究函数的单调性,求出最值进而得到结论或求出参数的取值范围;也可分类变量构造函数,把问题转化为函数的最值问题.恒成立问题常见的处理方式有:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)()f x a >恒成立型的可转化为min ()f x a >;(3)()()f x g x >恒成立型的可以通过作差法构造函数()()()h x f x g x =-,然后求min ()0h x >,或者转化为min max ()()f x g x >.(T 8联考八校2020-2021学年高三上学期第一次联考) 15. 已知函数()()ln 202x af x ae a x =+->+,若()0f x >恒成立,则实数a 的取值范围为______. 【答案】(),e +∞ 【解析】 【分析】根据()0f x >恒成立,可得到含有x a ,的不等式,再进行分离变量,将“恒成立”’转化为求函数的最大值或最小值,最后得出a 的范围. 【详解】()ln202x af x ae x =+->+,则()ln ln ln 22x a e a x ++>++, 两边加上x 得到()()()ln 2ln ln 2ln 2ln 2x x aex a x x ex ++++>+++=++,x y e x =+单调递增,()ln ln 2x a x ∴+>+,即()ln ln 2a x x >+-, 令()()ln 2g x x x =+-,则()11121x g x x x --'=-=++,因为()f x 的定义域为()2,-+∞()2,1x ∴∈--时,()0g x '>,()g x 单调递增,()1,x ∈-+∞,()0g x '<,()g x 单调递减,()()max ln 11a g x g ∴>=-=,a e ∴>.故答案为:(),e +∞【点睛】对于“恒成立问题”,关键点为:对于任意的x ,使得()f x a >恒成立,可得出()min f x a >; 对于任意的x ,使得()f x a <恒成立,可得出()max f x a <. (浙江省百校2020-2021学年高三上学期12月联考)16. 已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln xx x a a -≤-恒成立,则a 的最小值为______.【答案】3e【解析】 【分析】不等式等价变形()()()4ln 3ln 3ln 3ln x x xe x x a a x x a a e e -≤-⇔-≤-,利用同构函数()ln f x x x =-的单调性得解【详解】()()4ln 3ln 3ln 3ln x xe x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤- 令()ln f x x x =-,()111x f x x x-'=-=, Ⅰ()f x 在[)1,+∞上单调递增.Ⅰ1a >,1[,)3x ∈+∞,Ⅰ[)3,1,xe x a ∈+∞,Ⅰ33x x eae x x a ⇔≤⇔≤恒成立,令()3x x g x e =,只需max ()a g x ≥,()33xxg x e -'=,Ⅰ1[,1),()0,()3x g x g x ∈'>单调递增,Ⅰ(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e,Ⅰ3a e ≥,Ⅰa 的最小值为3e.故答案为:3e【点睛】不等式等价变形,同构函数()ln f x x x =-是解题关键. (河北省部分学校2022届高三上学期第一次月考)17. 已知函数()32f x x x ax =--在R 上单调递增,则a 的取值范围是____________.【答案】1(,]3-∞-【解析】【分析】求出函数()f x 的导函数()f x ',再由()0f x '≥恒成立即可得解.【详解】依题意:()232x x a f x '=--,因函数()32f x x x ax =--在R 上单调递增,于是得2320x x a --≥对x ∈R 恒成立,则4120a ∆=+≤,解得13a ≤-,所以a 的取值范围是1(,]3-∞-.故答案为:1(,]3-∞-18. 已知函数()f x 的定义域为R ,()12f -=,对任意(),2x R f x '∈>,则()24f x x >+的解集为____________.【答案】(1,)-+∞. 【解析】【分析】构造()()24g x f x x =--,根据题意得到()g x 在R 为单调递增函数,又由()12f -=,得到()10g -=,进而得到1x >-时,()0g x >,即可求解.【详解】设()()24g x f x x =--,可得()()2g x f x ''=-,因为对任意(),2x R f x '∈>,所以()0g x '>,所以()g x 在R 为单调递增函数, 又由()12f -=,可得()12240g -=+-=,所以当1x >-时,()0g x >,即不等式()24f x x >+的解集为(1,)-+∞. 故答案为:(1,)-+∞.(浙江省宁波市北仑中学2021-2022学年高三上学期返校考试) 19. 设函数()ln 2ef x x mx n x=--+,若不等式()0f x ≤对任意(0,)x ∈+∞恒成立,则nm的最大值为______________. 【答案】2e 【解析】【分析】根据()0ln 22e n f x x m x x m ⎛⎫≤⇒-≤- ⎪⎝⎭转化成两个函数比较大小的问题.【详解】不等式()0f x ≤对任意(0,)x ∈+∞恒成立,即ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭,0x >恒成立, 设()()'21ln 0e e g x x g x x x x=-⇒=+> 所以()g x 在()0,∞+单调递增,且()0g e =,当0x →时()g x →-∞ 当x →+∞时()g x →+∞ 作出()g x 的图像如图,再设()22n h x m x m ⎛⎫=- ⎪⎝⎭,当0x >可得()h x 表示过点,02n m ⎛⎫⎪⎝⎭,斜率为2m 的一条射线(不含端点),要求nm 的最大值且满足不等式恒成立,可求2n m的最大值,由点,02n m ⎛⎫⎪⎝⎭在x 轴上方移动,只需找到合适的0m >,且()h x 与()g x 图像相切于点,02n m ⎛⎫⎪⎝⎭,如图所示,此时22n n e e m m =⇒= 故答案为:2e(江苏省扬州市仪征市精诚高级中学2021-2022学年高三上学期9月月考) 20. 已知函数()ln ()f x x ax a R =-∈. (1)讨论函数()f x 的单调性; (2)证明不等式2()x e ax f x --≥恒成立. 【答案】(1)答案见解析;(2)证明见解析. 【解析】 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性;(2)构造函数2()ln x x e x ϕ-=-,利用导数可得()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则可得()0()0x x ϕϕ≥>,即得证.【详解】(1)11()(0)axf x a x x x-'=-=>, 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当1,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.(2)设函数2()ln x x e x ϕ-=-,则21()x x e xϕ-'=-,可知()x ϕ'在(0,)+∞上单调递增.又由(1)0ϕ'<,(2)0ϕ'>知,()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则()020010x x ex ϕ-'=-=,即0201x e x -=.当()00,x x ∈时,()0x ϕ'<,()ϕx 单调递减; 当()0x x ∈+∞时,()0x ϕ'>,()ϕx 单调递增;所以()0200()ln x x x ex ϕϕ-≥=-,结合021x e x -=,知002ln x x -=-, 所以()()22000000001211()20x x x x x x x x x ϕϕ--+≥=+-==>,则2()ln 0x x e x ϕ-=->, 即不等式2()x e ax f x --≥恒成立.【点睛】关键点睛:本题考查不等式恒成立的证明,解题的关键是转化为证明2()ln x x e x ϕ-=-的最小值大于0.(贵州省铜仁市思南中学2021届高三第十次月考)21. 已知函数()e (0)x f x ax a -=≠存在极大值1e .(1)求实数a 的值;(2)若函数F (x )=f (x )﹣m 有两个零点x 1,x 2(x 1≠x 2),求实数m 的取值范围,并证明:x 1+x 2>2.【答案】(1)a =1 (2)10e m <<,证明见解析【解析】【分析】(1)利用极值的定义,列式求出a 的值,然后进行验证即可; (2)利用(1)中的结论,确定()f x 的单调性、极值以及函数的取值情况,由零点的定义,即可得到m 的取值范围,利用12()()F x F x =,得到2211lnx x x x -=,将问题转化为证明2122111ln 2x x x x x x -<+,即证明21221111ln 21x x x x x x -<+,不妨设12x x <,令21x t x =,则1t >,从而将问题转化为证明1112t lnt t -<+对于1t >恒成立,构造函数11()ln 21t g t t t -=-+,利用导数研究函数的单调性,求解函数的取值情况,即可证明.【小问1详解】解:函数()e (0)x f x ax a -=≠, 则(1)()e xa x f x -'=, 令()0f x '=,解得1x =, 所以f (1)1e ea ==,解得1a =, 此时1()e xxf x -'=, 当1x <时,()0f x '>,则()f x 单调递增, 当1x >时,()0f x '<,则()f x 单调递减, 所以当1x =时,函数()f x 取得极大值f (1)1e=,符合题意,。
压轴题高分策略之导数与不等式结合

导数在不等式中的应用问题是每年高考的必考内容,且以解答题的形式考查,难度较大,属中高档题. 常见的命题角度有:(1)证明不等式;(2)不等式恒成立问题1、恒成立不等式的来源:(1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式。
(2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向。
其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式 2、常见恒成立不等式:(1)ln 1x x <- 对数→多项式 (2)1xe x >+ 指数→多项式3、什么情况下会考虑到数形结合?利用数形结合解决恒成立问题,往往具备以下几个特点:(1)所给的不等式运用代数手段变形比较复杂,比如分段函数,或者定义域含参等,而涉及的函数便于直接作图或是利用图像变换作图(2)所求的参数在图像中具备一定的几何含义 (3)题目中所给的条件大都能翻译成图像上的特征一、利用导数证明不等式【典例1】【2016高考新课标Ⅲ文数】设函数()ln 1f x x x =-+.(I )讨论()f x 的单调性; (II )证明当(1,)x ∈+∞时,11ln x x x-<<; (III )设1c >,证明当(0,1)x ∈时,1(1)xc x c +->.【答案】(Ⅰ)当01x <<时,()f x 单调递增;当1x >时,()f x 单调递减;(Ⅱ)见解析;(Ⅲ)见解析.考点:1、利用导数研究函数的单调性;2、不等式的证明与解法.【思路点拨】求解导数中的不等式证明问题可考虑:(1)首先通过利用研究函数的单调性,再利用单调性进行证明;(2)根据不等式结构构造新函数,通过求导研究新函数的单调性或最值来证明. 【典例2】【2015高考新课标1,文21】设函数()2ln xf x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数; (II )证明:当0a >时()22lnf x a a a≥+. 【答案】(I )当0a £时,()f x ¢没有零点;当0a >时,()f x ¢存在唯一零点.(II )见解析 【解析】试题分析:(I )先求出导函数,分0a £与0a >考虑()f x '的单调性及性质,即可判断出零点个数;(II )由(I )可设()f x ¢在()0+¥,的唯一零点为0x ,根据()f x '的正负,即可判定函数的图像与性质,求出函数的最小值,即可证明其最小值不小于22lna a a+,即证明了所证不等式. 试题解析:(I )()f x 的定义域为()0+¥,,()2()=20x af x e x x¢->.考点:常见函数导数及导数运算法则;函数的零点;利用导数研究函数图像与性质;利用导数证明不等式;运算求解能力.【思路点拨】导数的综合应用是高考考查的重点和热点,解决此类问题,要熟练掌握常见函数的导数和导数的运算法则、掌握通过利用导数研究函数的单调性、极值研究函数的图像与性质.对函数的零点问题,利用导数研究函数的图像与性质,画出函数图像草图,结合图像处理;对恒成立或能处理成立问题,常用参变分离或分类讨论来处理.【典例3】【2016高考天津文数】设函数b ax x x f --=3)(,R x ∈,其中R b a ∈,(Ⅰ)求)(x f 的单调区间;(Ⅱ)若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:0201=+x x ; (Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]1,1[-上的最大值不小于...41.【答案】(Ⅰ)递减区间为(33-,递增区间为(,)3-∞-,()3-+∞.(Ⅱ)详见解析(Ⅲ)详见解析 【解析】当x 变化时,()f x '、()f x 的变化情况如下表:所以()f x 的单调递减区间为(,单调递增区间为(,-∞,()+∞. (2)证明:因为()f x 存在极值点,所以由(1)知0a >且00x ≠.由题意得200()30f x x a '=-=,即203a x =, 进而300002()3af x x ax b x b =--=--, 又3000000082(2)822()33a a f x x axb x ax b x b f x -=-+-=-+-=--=,且002x x -≠,②当334a ≤<时,11≤-<<<≤由(1)和(2)知(1)())33f f f -≥-=,(1)((33f f f ≤=-,所以()f x 在区间[1,1]-上的取值范围为[(f f ,所以max{||,|(|}max{||,||}f f b b =231max{||,||}||944b b b ==≥⨯=.③当304a <<时,11-<<<,由(1)和(2)知,(1)(f f f -<=,(1)(f f f >=, 所以()f x 在区间[1,1]-上的取值范围为[(1),(1)]f f -,因此,max{[(1),(1)]}max{|1|,|1|}M f f a b a b =-=-+---max{|1|,|1|}a b a b =-+--11||4a b =-+>. 综上所述,当0a >时,()g x 在区间[1,1]-上的最大值不小于14.考点:导数的运算,利用导数研究函数的性质、证明不等式 二、利用导数解决不等式恒成立问题【典例4】【2016高考新课标2文数】已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 【答案】(Ⅰ)220x y +-=;(Ⅱ)(],2.-∞综上,a 的取值范围是(],2.-∞考点: 导数的几何意义,函数的单调性.【典例5】【2016高考四川文科】 设函数2()ln f x ax a x =--,1()x eg x x e=-,其中q R ∈,e=2.718…为自然对数的底数. (Ⅰ)讨论f(x)的单调性; (Ⅱ)证明:当x >1时,g(x)>0;(Ⅲ)确定a 的所有可能取值,使得()()f x g x >在区间(1,+∞)内恒成立.【答案】(1)当x ∈(时,'()f x <0,()f x 单调递减;当x ∈+)∞时,'()f x >0,()f x 单调递增;(2)证明详见解析;(3)a ∈1+)2∞[,.又因为(1)h =0,所以当1x >时,()h x =()f x -()g x >0,即()f x >()g x 恒成立.综上,a ∈1+)2∞[,. 考点:导数的计算、利用导数求函数的单调性,最值、解决恒成立问题.【思路点拨】本题考查导数的计算、利用导数求函数的单调性,最值、解决恒成立问题,考查学生的分析问题解决问题的能力和计算能力.求函数的单调性,基本方法是求'()f x ,解方程'()0f x =,再通过'()f x 的正负确定()f x 的单调性;要证明函数不等式()()f x g x >,一般证明()()f x g x -的最小值大于0,为此要研究函数()()()h x f x g x =-的单调性.本题中注意由于函数()h x 有极小值没法确定,因此要利用已经求得的结论缩小参数取值范围.比较新颖,学生不易想到.有一定的难度.【典例6】【2015高考福建,文22】已知函数2(1)()ln 2x f x x -=-.(Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)证明:当1x >时,()1f x x <-;(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-.【答案】(Ⅰ) 10,2⎛+ ⎝⎭;(Ⅱ)详见解析;(Ⅲ)(),1-∞.1.利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,f(x)≥a恒成立,只需f(x)min≥a即可;f(x)≤a恒成立,只需f(x)max≤a 即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.。
2024届高考数学专项练习压轴题型03 函数与导数经典常考压轴小题(解析版)

压轴题型03 函数与导数经典常考压轴小题命题预测有关函数与导数常见经典压轴小题的高考试题,考查重点是零点、不等式、恒成立等问题,通常与函数性质、解析式、图像等均相关,需要考生具有逻辑推理、直观想象和数学运算核心素养. 同时,对于实际问题,需要考生具有数据分析、数学建模核心素养.预计预测2024年高考,多以小题形式出现,也有可能会将其渗透在解答题的表达之中,相对独立.具体估计为:(1)导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.(2)应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题. 高频考法(1)函数嵌套、零点嵌套问题 (2)零点问题(3)导数的同构思想 (4)双重最值问题 (5)构造函数解不等式01函数嵌套、零点嵌套问题解决嵌套函数零点个数的一般步骤(1)换元解套,转化为()t g x =与()y f t =的零点.(2)依次解方程,令()0f t =,求t ,代入()t g x =求出x 的值或判断图象交点个数.【典例1-1】(上海市浦东新区上海市实验学校2024届高三学期第三次月考数学试题)已知函数()f x 是2024届高考数学专项练习定义在R 的偶函数,当0x ≥时,()()3πcos 1,012211,12xx x f x x ⎧⎡⎤−≤≤⎪⎢⎥⎣⎦⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若函数()()()()()25566g x f x a f x a a ⎡⎤=−++∈⎣⎦R 有且仅有6个不同的零点,则实数a 取值范围 .【答案】(]30,12⎧⎫⎨⎬⎩⎭【解析】因为()()()()()()25566560g x f x a f x a f x f x a =−++=−⋅−=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦, 由()0g x =,可得()65f x =或()f x a =, 由函数()f x 是定义在R 上的偶函数,当0x ≥时,()3πsin ,012211,12xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩, 当01x ≤≤时,ππ022x ≤≤,如下图所示:因为1112x⎛⎫+> ⎪⎝⎭,由图可知,直线65y =与函数()f x 的图象有4个交点,所以,直线y a =与函数()f x 的图象有2个交点,由图可得(]30,12a ⎧⎫∈⋃⎨⎬⎩⎭.综上所述,实数a 的取值范围是(]30,12⎧⎫⎨⎬⎩⎭.故答案为:(]30,12⎧⎫⎨⎬⎩⎭.【典例1-2】(安徽省合肥市六校联盟2023-2024学年高三学期期中联考数学试题)已知函数()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩,()22g x x ax =++,若函数()()y g f x =有6个零点,则实数a 的取值范围为 .【答案】(3,2−−【解析】画出()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩的图象如下:因为()22g x x ax =++最多两个零点,即当280a ∆=−>,2a >22a <−时,()22g x x ax =++有两个不等零点12,t t ,要想()()y g f x =有六个零点,结合函数图象,要()1f x t =和()2f x t =分别有3个零点, 则()12,0,2t t ∈且12t t ≠,即()22g x x ax =++的两个不等零点()12,0,2t t ∈,则要满足()()2Δ800222000a a g g ⎧=−>⎪⎪<−<⎪⎨⎪>⎪>⎪⎩,解得322a −<<− 故实数a 的取值范围为(3,2−− 故答案为:(3,22−−【变式1-1】(海南省琼中黎族苗族自治县琼中中学2024届高三高考全真模拟卷(二)数学试题)已知函数()23,369,3x x f x x x x ⎧−≤=⎨−+−>⎩,若函数()()()22g x f x af x ⎡⎤=−+⎣⎦有6个零点,则a 的值可能为( ) A .1− B .2−C .3−D .4−【答案】C【解析】由题可得,()()330f f =−=,()f x 在()(),0,3,−∞+∞上单调递减,在()0,3上单调递增,则据此可作出函数()f x 大致图象如图所示,令()f x t =,则由题意可得220t at −+=有2个不同的实数解1t ,2t ,且()12,3,0t t ∈−,则()()2121212Δ80601122203331130a t t a a t t t t a ⎧=−>⎪−<+=<⎪⇒−<<−⎨=>⎪⎪++=+>⎩3a =−满足题意. 故选:C .【变式1-2】(河南省部分重点高中2023-2024学年高三阶段性考试(四)数学试题)已知函数()2ln ,0,43,0,x x f x x x x ⎧>=⎨++≤⎩若函数()()()241g x f x f x m =−++⎡⎤⎣⎦恰有8个零点,则m 的最小值是( ) A .1 B .2 C .3 D .4【答案】B【解析】设()f x t =,因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得2410t t m −++=在(]0,3内有4个不同的实根,即214m t t +=−+在(]0,3内有2个不同的实根,可知314m ≤+<,即可求得结果.画出函数()2ln ,043,0x x f x x x x ⎧>=⎨++≤⎩,,的图像如图所示,设()f x t =,由()()()2410g x f x f x m =−++=⎡⎤⎣⎦,得2410t t m −++=.因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得在(]03t ∈,内有4个不同的实根.所以方程2410t t m −++=必有两个不等的实数根,即214m t t +=−+在(]03t ∈,内有2个不同的实根,结合图像由图可知,314m ≤+<,故23m ≤<,即m 的最小值是2. 故选:B02 零点问题(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 【典例2-1】(2024·海南省直辖县级单位·模拟预测)已知函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,则t 的值可以是( )A .4B .5C .6D .7【答案】C【解析】令()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩,()lg m x x =,因为()lg m x x =与()lg y x =−的图象关于y 轴对称,因为函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,所以问题转化为()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象在()0,(0)t t >内有5个不同的交点,在同一平面直角坐标系中画出()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象如下所示:因为()10lg101m ==,当10x >时()1m x >,()()()()()()13579111g g g g g g ======, 结合图象及选项可得t 的值可以是6,其他值均不符合要求,. 故选:C【典例2-2】(2024·四川成都·三模)若函数()2e xf x kx =−大于0的零点有且只有一个,则实数k 的值为( ) A .4 B .2e C .e 2D .2e 4【答案】D【解析】函数()f x 有且仅有一个正零点,即方程2ex k x=有且仅有一个正根,令()2e xg x x =,则()()3e 2x x g x x ='−,当0x <时,()0g x '>,当02x <<时,()0g x '<,当2x >时,()0g x '>,即函数()g x 在(),0∞−和()2,∞+上单调递增,在()0,2上单调递减,且()2e24g =,0x →时,()g x ∞→+,x →−∞时,()0g x →,x →+∞时,()g x ∞→+,可作出图象如下,方程2e x k x =有且仅有一个正根,所以2e 4k =.故选:D.【变式2-1】(2024·北京海淀·一模)已知()()3,0lg 1,0x x f x x x ⎧≤⎪=⎨+>⎪⎩,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为( ) A .1,1 B .1,2 C .2,1 D .2,2【答案】B【解析】令()0f x =,即0x ≤时,30x =,解得0x =, 0x >时,()lg 10x +=,无解,故1m =,设过点(0,2)与曲线()y f x =相切的直线的切点为()00,x y ,当0x <时,()23f x x '=,则有()320003y x x x x −=−,有()3200023x x x −=−,整理可得301x =−,即01x =−,即当00x <时,有一条切线,当0x >时,()lg e1f x x '=+,则有()()000lg 1e lg 1y x x x x −=−++, 有()()000l 2g elg 11x x x −+=−+,整理可得()()()000221lg 10lg e x x x ++−++=, 令()()()()()2l 0g 2l 1e 1g g x x x x x =++−++>, 则()()2lg 1g x x '=−+, 令()0g x '=,可得99x =,故当()0,99x ∈时,()0g x '>,即()g x 在()0,99上单调递增, 当()99,x ∈+∞时,()0g x '<,即()g x 在()99,∞+上单调递减, 由()()992lg e 99220099lg e 0g =+⨯+−=>,()02020g =−=>,故()g x 在()0,99x ∈上没有零点, 又()()9992lg e 999210003999lg e 10000g =+⨯+−⨯=−<, 故()g x 在()99,999上必有唯一零点, 即当00x >时,亦可有一条切线符合要求, 故2n =.故选:B.【变式2-2】(2024·甘肃武威·模拟预测)已知函数()4ln 12f x ax a x ⎛⎫=−−+ ⎪⎝⎭有3个零点,则实数a 的取值范围是( )A .()1,+∞B .()2,+∞C .(),1−∞−D .(),2−∞−【答案】C【解析】将()y f x =的图象向左平移2个单位长度,可得函数()()22ln 2xg x f x ax x−=+=−+的图象, 所以原题转化为“函数()2ln2xg x ax x−=−+有3个零点”, 即研究直线y ax =与函数()2ln2xh x x−=+图象交点的个数问题. 因为()h x 的定义域为()2,2−,且()()22ln ln ln1022x xh x h x x x+−−+=+==−+, 所以()h x 为奇函数.因为()22222440222(2)4x x x h x x x x x x '+−+−⎛⎫=⋅=⨯=< ⎪−+−+−⎝⎭', 所以()h x 在区间()2,2−上为减函数,且曲线()y h x =在点()0,0处的切线方程为y x =−. 当0x =时,2112xx x−+⨯=−+; 当02x <<时,2ln2xx x−<−+; 当20x −<<的,2ln2xx x−>−+, 作出()h x 的图象.如图:由图知:当1a <−时,直线y ax =与函数()2ln2xh x x−=+的图象有3个交点.故实数a 的取值范围是(),1∞−−. 故选:C.03 导数的同构思想同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系。
高三数学函数与导数压轴题训练——函数不等式问题

高三数学函数与导数压轴题训练——函数不等式问题在近几年的高考试题中,出现了一类抽象函数与导数交汇的重要题型,这类问题由于比较抽象,很多学生解题时,突破不了由抽象而造成的解题障碍.实际上,根据所解不等式,联想导数的运算法则,构造适当的辅助函数,然后利用导数判断其单调性是解决此类问题的通法.[典例]设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)[思路点拨]观察xf′(x)-f(x)<0这个式子的特征,不难想到商的求导公式,尝试构造函数F(x)=f(x)x求解.[方法演示]法一:构造抽象函数求解设F(x)=f(x)x.因为f(x)是奇函数,故F(x)是偶函数,F′(x)=xf′(x)-f(x)x2,易知当x>0时,F′(x)<0,所以函数F(x)在(0,+∞)上单调递减.又f(-1)=0,则f(1)=0,于是F(-1)=F(1)=0,f(x)=xF(x),解不等式f(x)>0,即找到x与F(x)的符号相同的区间,易知当x∈(-∞,-1)∪(0,1)时,f(x)>0,故选A.法二:构造具体函数求解设f(x)是多项式函数,因为f(x)是奇函数,所以它只含x的奇次项.又f(1)=-f(-1)=0,所以f(x)能被x2-1整除.因此可取f(x)=x-x3,检验知f(x)满足题设条件.解不等式f(x)>0,得x∈(-∞,-1)∪(0,1),故选A.答案:A[解题师说]抽象函数的导数问题在高考中常考常新,可谓变化多端,解决此类问题的关键是构造函数,常见的构造函数方法有如下几种:(1)利用和、差函数求导法则构造函数①对于不等式f′(x)+g′(x)>0(或<0),构造函数F(x)=f(x)+g(x);②对于不等式f′(x)-g′(x)>0(或<0),构造函数F(x)=f(x)-g(x);特别地,对于不等式f′(x)>k(或<k)(k≠0),构造函数F(x)=f(x)-kx.(2)利用积、商函数求导法则构造函数①对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ); ②对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x )(g (x )≠0). (3)利用积、商函数求导法则的特殊情况构造函数①对于不等式xf ′(x )+f (x )>0(或<0),构造函数F (x )=xf (x ); ②对于不等式xf ′(x )-f (x )>0(或<0),构造函数F (x )=f (x )x(x ≠0); ③对于不等式xf ′(x )+nf (x )>0(或<0),构造函数F (x )=x n f (x ); ④对于不等式xf ′(x )-nf (x )>0(或<0),构造函数F (x )=f (x )x n (x ≠0); ⑤对于不等式f ′(x )+f (x )>0(或<0),构造函数F (x )=e x f (x ); ⑥对于不等式f ′(x )-f (x )>0(或<0),构造函数F (x )=f (x )e x; ⑦对于不等式f (x )+f ′(x )tan x >0(或<0),构造函数F (x )=sin xf (x ); ⑧对于不等式f (x )-f ′(x )tan x >0(或<0),构造函数F (x )=f (x )sin x (sin x ≠0);⑨对于不等式f ′(x )-f (x )tan x >0(或<0),构造函数F (x )=cos xf (x ); ⑩对于不等式f ′(x )+f (x )tan x >0(或<0),构造函数F (x )=f (x )cos x (cos x ≠0).⑪(理)对于不等式f ′(x )+kf (x )>0(或<0),构造函数F (x )=e kx f (x ); ⑫(理)对于不等式f ′(x )-kf (x )>0(或<0),构造函数F (x )=f (x )e kx ;[应用体验]1.定义在R 上的函数f (x ),满足f (1)=1,且对任意x ∈R 都有f ′(x )<12,则不等式f (lg x )>lg x +12的解集为__________.解析:构造函数g (x )=f (x )-x +12, 则g ′(x )=f ′(x )-12<0,∴g (x )在定义域上是减函数. 又g (1)=f (1)-1=0,∴原不等式可化为g (lg x )>g (1), ∴lg x <1,解得0<x <10.∴原不等式的解集为{x |0<x <10}. 答案:(0,10)2.已知定义在⎝⎛⎭⎫0,π2内的函数f (x )的导函数为f ′(x ),且对任意的x ∈⎝⎛⎭⎫0,π2,都有f ′(x )sin x <f (x )cos x ,则不等式f (x )<2f ⎝⎛⎭⎫π6sin x 的解集为__________.解析:构造函数g (x )=f (x )sin x ,则g ′(x )=f ′(x )sin x -f (x )cos xsin 2x <0,∴g (x )在⎝⎛⎭⎫0,π2内为减函数. 由f (x )<2f ⎝⎛⎭⎫π6sin x , 得f (x )sin x <2f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π6sin π6, 即g (x )<g ⎝⎛⎭⎫π6,∴π6<x <π2, ∴原不等式的解集为⎩⎨⎧⎭⎬⎫x π6<x <π2.答案:⎝⎛⎭⎫π6,π2一、选择题1.已知函数f (x )的定义域为R ,f ′(x )为其导函数,函数y =f ′(x )的图象如图所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为( )A .(-3,-2)∪(2,3)B .(-2,2)C .(2,3)D .(-∞,-2)∪(2,+∞)解析:选A 由y =f ′(x )的图象知,f (x )在(-∞,0]上单调递增,在(0,+∞)上单调递减,又f (-2)=1,f (3)=1,∴f (x 2-6)>1可化为-2<x 2-6<3,解得-3<x <-2或2<x <3.2.已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)f (x 2-1)的解集为( )A .(0,1)B .(1,+∞)C .(1,2)D .(2,+∞)解析:选D 因为f (x )+xf ′(x )<0,所以[xf (x )]′<0,故xf (x )在(0,+∞)上为单调递减函数,又(x +1)f (x +1)>(x 2-1)f (x 2-1),所以x +1<x 2-1,解得x >2.3.已知定义域为{x |x ≠0}的偶函数f (x ),其导函数为f ′(x ),对任意正实数x 满足xf ′(x )>-2f (x ),若g (x )=x 2f (x ),则不等式g (x )<g (1)的解集为( )A .(-∞,1)B .(-1,1)C .(-∞,0)∪(0,1)D .(-1,0)∪(0,1)解析:选D 因为g (x )=x 2f (x ),所以g ′(x )=x 2f ′(x )+2xf (x )=x [xf ′(x )+2f (x )].由题意知,当x >0时,xf ′(x )+2f (x )>0,所以g ′(x )>0,所以g (x )在(0,+∞)上单调递增,又f (x )为偶函数,则g (x )也是偶函数,所以g (x )=g (|x |),由g (x )<g (1),得g (|x |)<g (1),所以⎩⎪⎨⎪⎧|x |<1,x ≠0,所以x ∈(-1,0)∪(0,1). 4.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数.当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)解析:选D 设F (x )=f (x )g (x ),当x <0时, ∵F ′(x )=f ′(x )g (x )+f (x )g ′(x )>0, ∴F (x )在(-∞,0)上为增函数.又∵F (-x )=f (-x )g (-x )=-f (x )g (x )=-F (x ), 故F (x )为R 上的奇函数.∴F (x )在(0,+∞)上也为增函数. 由g (-3)=0,得F (-3)=F (3)=0.画出函数F (x )的大致图象如图所示, ∴F (x )<0的解集为{x |x <-3或0<x <3}.5.已知函数f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对于任意正数a ,b ,若a <b ,则必有( )A .af (a )≤f (b )B .bf (b )≤f (a )C .af (b )≤bf (a )D .bf (a )≤af (b )解析:选C ∵xf ′(x )+f (x )≤0,且x >0,f (x )≥0. ∴f ′(x )≤-f (x )x ,即f (x )在(0,+∞)上是减函数.又0<a <b ,∴af (b )<bf (a ),当f (x )=0时,符合题意,则af (b )=bf (a ),故af (b )≤bf (a ).6.设函数f (x )在R 上的导函数为f ′(x ),2f (x )+xf ′(x )>x 2,则下面的不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x解析:选A 法一:令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2], 当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0. 综上可知,f (x )>0.法二:∵2f (x )+xf ′(x )>x 2, 令x =0,则f (0)>0,故可排除B 、D.如果f (x )=x 2+0.1,已知条件2f (x )+xf ′(x )>x 2成立,但f (x )>x 不恒成立,故排除C ,选A.7.已知函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则不等式f(x)>2x+4的解集为()A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+∞)解析:选B令m(x)=f(x)-(2x+4),则m′(x)=f′(x)-2>0,∴函数m(x)在R上为单调递增函数.又∵m(-1)=f(-1)-(-2+4)=0,∴m(x)>0的解集为{x|x>-1},即f(x)>2x+4的解集为(-1,+∞).8.设函数f(x),g(x)在区间[a,b]上连续,在区间(a,b)上可导,且f′(x)<g′(x),则当x∈(a,b)时必有()A.f(x)>g(x)B.f(x)<g(x)C.f(x)+g(a)<g(x)+f(a)D.f(x)+g(b)<g(x)+f(b)解析:选C令函数h(x)=f(x)-g(x).因为f′(x)<g′(x),故h′(x)=[f(x)-g(x)]′=f′(x)-g′(x)<0,即函数h(x)在区间[a,b]上单调递减.所以x∈(a,b)时必有h(b)<h(x)<h(a),即f(b)-g(b)<f(x)-g(x)<f(a)-g(a),移项整理得,f(x)+g(a)<g(x)+f(a),f(x)+g(b)>g(x)+f(b),故选项C正确.9.函数f(x)是定义在R上的偶函数,f(-2)=0,且x>0时,f(x)+xf′(x)>0,则不等式xf(x)≥0的解集是()A.[-2,0]B.[0,2]C.[-2,2]D.[-2,0]∪[2,+∞)解析:选D因为x>0时,f(x)+xf′(x)>0,故构造函数y=xf(x),则该函数在(0,+∞)上单调递增.又因为f(x)为偶函数,故y=xf(x)为奇函数.结合f(-2)=0,画出函数y=xf(x)的大致图象如图所示.所以不等式xf(x)≥0的解集为[-2,0]∪[2,+∞).10.函数f (x )是定义在R 上的奇函数,f (3)=0,且x <0时,xf ′(x )<f (x ),则不等式f (x )≥0的解集为( )A .(-∞,0)B .[-3,0]∪[3,+∞)C .[-3,3]D .[0,3]解析:选B 令F (x )=f (x )x ,因为f (x )为定义在R 上的奇函数,所以F (x )为偶函数,当x <0时,F ′(x )=xf ′(x )-f (x )x 2<0,故f (x )在(-∞,0)上为减函数,在(0,+∞)上为增函数. 结合f (3)=0,画出函数F (x )=f (x )x 的大致图象如图所示.所以不等式f (x )≥0的解集为[-3,0]∪[3,+∞).11.函数f (x )是定义在R 上的可导函数,且f (x )>f ′(x )对任意x ∈R 都成立,则下列不等式中成立的是( )A .f (2 018)>e 2 018f (0),f (2 018)>e f (2 017)B .f (2 018)>e 2 018f (0),f (2 018)<e f (2 017)C .f (2 018)<e 2 018f (0),f (2 018)>e f (2 017)D .f (2 018)<e 2 018f (0),f (2 018)<e f (2 017) 解析:选D 令函数g (x )=f (x )e x .由f (x )>f ′(x ),得f ′(x )-f (x )<0,所以g ′(x )=e x f ′(x )-e x f (x )e 2x =f ′(x )-f (x )e x <0,即函数g (x )=f (x )e x 在R 上单调递减.所以f (2 018)e 2 018<f (2 017)e 2 017<f (0)e0,即有f (2 018)<e f (2 017),f (2 018)<e 2 018f (0).12.设定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝⎛⎭⎫1k <1kB .f ⎝⎛⎭⎫1k >1k -1 C .f ⎝⎛⎭⎫1k -1<1k -1D .f ⎝⎛⎭⎫1k -1>1k -1解析:选C 令g (x )=f (x )-kx +1, 则g (0)=f (0)+1=0,g ⎝ ⎛⎭⎪⎫1k -1=f ⎝ ⎛⎭⎪⎫1k -1-k ·1k -1+1 =f ⎝ ⎛⎭⎪⎫1k -1-1k -1. ∵g ′(x )=f ′(x )-k >0, ∴g (x )在[0,+∞)上为增函数. 又∵k >1,∴1k -1>0,∴g ⎝ ⎛⎭⎪⎫1k -1>g (0)=0, ∴f ⎝ ⎛⎭⎪⎫1k -1-1k -1>0, 即f ⎝ ⎛⎭⎪⎫1k -1>1k -1.二、填空题13.设f (x )是定义在R 上的可导函数,且满足f (x )+xf ′(x )>0,则不等式f (x +1)>x -1f (x 2-1)的解集为________.解析:令g (x )=xf (x ),则g ′(x )=f (x )+xf ′(x )>0,∴g (x )是R 上的增函数.又f (x +1)>x -1f (x 2-1)可等价转化为x +1f (x +1)>x 2-1f (x 2-1),即g (x +1)>g (x 2-1),所以⎩⎪⎨⎪⎧x +1>x 2-1,x -1≥0,解得1≤x <2,∴原不等式的解集为{x |1≤x <2}.答案:[1,2)14.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2 018)2·f (x +2 018)-4f (-2)>0的解集为________.解析:令g (x )=x 2f (x ),则g ′(x )=2xf (x )+x 2f ′(x ). 结合条件2f (x )+xf ′(x )>x 2,将条件两边同时乘以x , 得2xf (x )+x 2f ′(x )<x 3<0,即g ′(x )<0, ∴g (x )在(-∞,0)上是减函数, 又g (-2)=4f (-2),∴由(x +2 018)2f (x +2 018)-4f (-2)>0, 即g (x +2 018)>g (-2),得x +2 018<-2,解得x <-2 020, ∴原不等式的解集为(-∞,-2 020). 答案:(-∞,-2 020)15.已知定义在R 上的可导函数y =f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且y =f (x +1)为偶函数.f (2)=1,则不等式f (x )<e x 的解集为________.解析:令h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x <0,∴h (x )在R 上是减函数,又y =f (x +1)是偶函数, ∴y =f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=1.由f (x )<e x ,得f (x )e x <1,又h (0)=f (0)e 0=1,∴h (x )<h (0),∴x >0,故原不等式的解集为{x |x >0}. 答案:(0,+∞)16.设f (x )是R 上的奇函数,且f (-1)=0,当x >0时,(x 2+1)f ′(x )-2xf (x )<0,则不等式f (x )>0的解集为______.解析:令g (x )=f (x )x 2+1,则g ′(x )=(x 2+1)f ′(x )-2xf (x )(x 2+1)2.因为当x >0时,(x 2+1)f ′(x )-2xf (x )<0,所以g ′(x )<0,所以g (x )在[0,+∞)上单调递减. 又f (x )=g (x )(x 2+1),所以f(x)在[0,+∞)上单调递减.又f(x)是R上的奇函数,f(-1)=0,所以f(1)=0.当x>0时,f(x)>0=f(1)⇒0<x<1;当x<0时,f(x)>0=f(-1)⇒x<-1.综上,可得不等式f(x)>0的解集为(-∞,-1)∪(0,1).答案:(-∞,-1)∪(0,1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学压轴题:导数与不等式恒成立不等式恒成立问题一直是高考命题的热点,把函数问题、导数问题和不等式恒成立问题交汇命制压轴题成为一个新的热点命题方向.由不等式恒成立确定参数范围问题,常见处理方法有:① 分离参数()a f x ≥恒成立(()max a f x ≥可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x =图象在()y g x = 上方即可);③ 最值法:讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数.在诸多方法中,构造函数并利用导数研究函数的单调性、最值等,是必须要考虑的解题门径.本专题举例说明《用好导数,“三招”破解不等式恒成立问题》. 类型一 构造函数求最值【例1】已知函数()ln xf x ae x x =-,其中a R ∈,e 是自然对数的底数.(1)若()f x 是()0,∞+上的增函数,求实数a 的取值范围; (2)若22a e >,证明:()0f x >. 【分析】(1)由()f x 是()0,∞+上的增函数等价于()0f x '≥恒成立,得1ln xxa e +≥,求()()1ln 0xxg x x e+=>的最大值,即可得到本题答案; (2)由()e 0ln 0x a f x x x >⇔->,证明当22a e ≥时,()()e ln 0xa F x x x x=->的最小值大于0,即可得到本题答案.【解析】(1)()()1ln x f x ae x '=-+,()f x 是()0,∞+上的增函数等价于()0f x '≥恒成立.令()0f x '≥,得1ln x x a e +≥,令()()1ln 0xxg x x e+=>.以下只需求()g x 的最大值. 求导得()11ln xg x ex x -⎛⎫'=-- ⎪⎝⎭,令()11ln h x x x =--,()2110h x x x '=--<, ()h x 是()0,∞+上的减函数,又()10h =,故1是()h x 的唯一零点,当()0,1x ∈,()0h x >,()0g x '>,()g x 递增; 当()1,x ∈+∞,()0h x <,()0g x '<,()g x 递减;故当1x =时,()g x 取得极大值且为最大值()11g e=,所以1a e ≥.(2)()e 0ln 0x a f x x x >⇔->,令()()e ln 0xa F x x x x=->,以下证明当22a e ≥时,()F x 的最小值大于0. 求导得()()()221e 111e x xa x F x a x x x x x -'⎡⎤=-=--⎣⎦. ①当01x <≤时,()0F x '<,()()10F x F ae ≥=>; ②当1x >时,()()()211x a x x F x e x a x ⎡⎤-'=-⎢⎥-⎣⎦,令()()1xx G x e a x =--. 则()()2101x G x e a x '=+>-,又()222220ae G e a a-=-=≥,取()1,2m ∈且使()21m e a m >-,即2211ae m ae <<-,则()()2201m mG m e e e a m =-<-=-,因为()()20G m G <,故()G x 存在唯一零点()01,2x ∈,即()F x 有唯一的极值点且为极小值点()01,2x ∈,又()0000ln x ae F x x x =-,且()()000001x x G x e a x =-=-,即()0001x x e a x =-,故()0001ln 1F x x x =--,因为()()0201101F x x x '=--<-,故()0F x 是()1,2上的减函数.所以()()021ln 20F x F >=->,所以()0F x >. 综上,当22a e ≥时,总有()0f x >.1.首先要明确导函数对原函数的作用:即导函数的符号决定原函数的单调性.如果所构造的函数,其导数结构比较复杂不易分析出单调性,则可把需要判断符号的式子拿出来构造一个新函数,再想办法解决其符号.2.在考虑函数最值时,除了依靠单调性,也可根据最值点的出处,即“只有边界点与极值点才是最值点的候选点”,所以有的讨论点就集中在“极值点”是否落在定义域内.例题:已知定义在()0,∞+上的函数()()2ln 11ax f x x x x=--++.(1)讨论()f x 的单调区间(2)当223ln ,ln 443e e a ⎛⎫∈ ⎪⎝⎭时,存在0M >,使得对任意()0,x M ∈均有()0f x <,求实数M 的最大值.【解析】(1)()()()()21211a x a x f x x ---⎡⎤⎣⎦'=+, ①12a ≤时,()0f x '>,()f x 在()0,∞+上单调递增; ②112a <<时,令()0f x '>得211a x a ->-,故增区间为21,1a a -⎛⎫+∞⎪-⎝⎭, 令()0f x '>得2101a x a -<<-,故减区间为210,1a a -⎛⎫⎪-⎝⎭;③1a ≥时,()0f x '<,则()f x 在()0,∞+上单调递减.(2)易知2231ln ,ln ,14432e e ⎛⎫⎛⎫⊂ ⎪ ⎪⎝⎭⎝⎭,由(1)知:()f x 在210,1a a -⎛⎫ ⎪-⎝⎭上单调递减,在21,1a a -⎛⎫+∞ ⎪-⎝⎭上单调递增,则()21001a f f a -⎛⎫<= ⎪-⎝⎭, 又()244322ln 32ln ln 303343e f a =-->-⨯-=,故存在021,21a x a -⎛⎫∈⎪-⎝⎭,使得()00f x =,且当()00,x x ∈时()0f x <恒成立, 故0M x ≤. 由()00f x =可得()00020011ln 1x x a x x x ++=-+, 设()()211ln 1x x g x x x x++=-+(0x >), 则()()()32ln 12x x x g x x ++-'=,令()()()2ln 12h x x x x =++-(0x >), 则()()2ln 121x h x x x +'=++-+, ()()201xh x x ''=>+,则()h x '在()0,∞+上单调递增,故()()00h x h ''>=, 则()h x 在()0,∞+上单调递增,故()()00h x h >=, 则()0g x '>,()g x 在()0,∞+上单调递增, 又()0a g x =,()21ln 4e g =,()332ln 43e g =,故()()()012g g x g <<,则012x <<,又0M x ≤,故1M ≤,即M 的最大值为1. 类型二 参变分离求最值【例2】已知函数2()1xf x be x =--的图象在点0x =处的切线为y x a =+.(1)求+a b 的值;(2)若()0f x kx ->对任意的0x >恒成立,求实数k 的取值范围.【分析】(1)先求导函数,再结合函数()f x 的图象在点0x =处的切线为y x a =+,则0e 01k b =-=,再求解即可;(2)原不等式可转化为2e 1x x k x --<(0x >)恒成立,再设2e 1()x x g x x--=(0x >),然后利用导数求函数()g x 的最小值即可. 【解析】(1)由已知可得()e 2xf x b x '=-.函数2()1xf x be x =--的图象在点0x =处的切线的斜率0e 01k b =-=, 所以1b =.所以切点坐标为(0,0),代入切线方程y x a =+,可得0a =. 所以1a b +=.(2)由(1)知2()1x f x e x =--.所以()0f x kx ->对任意的0x >恒成立,即210x e x kx --->(0x >)恒成立,即2e 1x x k x--<(0x >)恒成立.令2e 1()x x g x x--=(0x >),所以min ()k g x <即可.222e e 1e (1)(1)(1)()x x x x x x x x g x x x --+---+'==()2(1)e 1xx x x---=. 设()e 1xh x x =--(0x >), 则()e 10xh x '=->,所以()h x '在(0,)+∞上单调递增. 所以当0x >时,()h x 单调递增, 所以0()(0)e 010h x h >=--=.所以在(0,1)上()0g x '<,在(1,)+∞上()0g x '>. 所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增. 所以当1x =时,()g x 取得最小值(1)e 2g =-, 所以2k e <-.所以实数k 的取值范围为(,2)e -∞-.1、参变分离:顾名思义,就是在不等式中含有两个字母时(一个视为变量,另一个视为参数),可利用不等式的等价变形让两个字母分居不等号的两侧,即不等号的每一侧都是只含有一个字母的表达式.然后可利用其中一个变量的范围求出另一变量的范围,转化为求函数的最值问题.2、如何确定变量与参数:一般情况下,那个字母的范围已知,就将其视为变量,构造关于它的函数,另一个字母(一般为所求)视为参数.3、参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行.但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法.例如:()21log a x x -<,111axx e x-+>-等 (2)要看参变分离后,已知变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用参变分离法解决问题.例题:已知函数()ln f x mx nx x =+,()f x '是()f x 的导函数,且()12f '=,10f e ⎛⎫= ⎪⎝⎭. (1)求()f x 的解析式,并判断()f x 零点的个数;(2)若*k N ∈,且()()2f x k x >-对任意的2x >恒成立,求k 的最大值.(参考数据:ln 20.69≈,ln3 1.10≈)【解析】(1)因为()ln f x mx nx x =+, 所以()()ln 1f x m n x '=++. 因为()12f '=,10f e ⎛⎫= ⎪⎝⎭,所以()12f m n '=+=,10m n f e e e⎛⎫=-= ⎪⎝⎭. 解得1m n ==,故()f x x Inx =+()2f x Inx '=+,令()0f x '=,解得2x e -=故当()20,x e -∈函数单调递减;当()2,x e-∈+∞函数单调递增;又()20f e-<,()10f >,故函数在()2,e-+∞存在一个零点;当2x e -<时,2Inx <-,故220x Inx e -+<-<, 故函数在区间()20,e-上不存在零点;综上所述:函数只有1个零点.(2)因为2x >,所以()()2f x k x >-等价于()ln 22f x x x xk x x +<=--. 设()ln 2x x xg x x +=-,则()()22ln 42x x g x x --'=-.令()2ln 4h x x x =--, 则()221x h x x x-'=-=,故()h x 在()2,+∞上单调递增. 因为()842ln846ln 20h =-=-<,()954ln30h =->, 所以存在()08,9x ∈,使得()00h x =, 即0042ln x x =-,则()g x 在()02,x 上单调递减,在()0,x +∞上单调递增,故()()00000000004ln 2222x x x x x x x g x g x x x -+⋅+≥===--. 因为()()2f x k x >-对任意的2x >恒成立,所以02x k <. 因为()08,9x ∈,且*k N ∈, 所以k 的最大值是4.类型三 讨论参数定范围【例3】已知函数()22ln f x a x x ax =-+.(1)若1a =-时,求()f x 的极值; (2)若()0f x <,求a 的取值范围.【分析】(1)将1a =-代入函数()y f x =的解析式,利用导数可求出函数()y f x =的极值;(2)由题意可得出()max 0f x <,分0a >、0a =、0a <三种情况讨论,利用导数分析函数()y f x =在定义域上的单调性,求出函数()y f x =的最大值,然后解不等式()max 0f x <,综合可得出实数a 的取值范围.【解析】(1)当1a =-时,()2ln f x x x x =--,则()212121x x f x x x x--+=-='-.令()0f x '=,即2210x x x--+=,得2210x x +-=,解得12x =.当102x <<时,()0f x '>,当12x >时,()0f x '<. 所以,函数()y f x =有极大值113ln 224f ⎛⎫=-⎪⎝⎭,无极小值; (2)因为()0f x <恒成立,所以()max 0f x <,()()()222222x a x a a x ax a f x x a x x x+-+-++='=-+=. ①当0a >时,令()0f x '=,则x a =,当0x a <<时,()0f x '>,此时,函数()y f x =单调递增;当x a >时,()0f x '<,此时,函数()y f x =单调递减.()()2222max ln ln 0f x f a a a a a a a ∴==-+=<,01a ∴<<;②当0a =时,()20f x x =-<,成立;③当0a <时,令()0f x '=,则2a x =-, 当02ax <<-时,()0f x '>,此时,函数()y f x =单调递增; 当2ax >-时,()0f x '<,此时,函数()y f x =单调递减. ()22222max3ln ln 0224224a a a a a f x f a a a ⎛⎫⎛⎫⎛⎫∴=-=---=--< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即3ln 24a ⎛⎫-< ⎪⎝⎭,得3402ae <-<,解得3420e a -<<.综上所述,实数a 的取值范围为342,1e ⎛⎫- ⎪⎝⎭.本题(2)只要通过分类讨论研究清楚函数的单调性,即可求出)(x f 的最大值,让最大值小于0即可求出a 的范围例题:已知函数21()12xf x e ax x =---,a 为实数. (1)当1a =时,讨论()f x 的零点个数;(2)若0x ≥,都有()0f x ≥,求实数a 的取值范围.【解析】(1)()xf x e a x '=--,当1a =时,()1xf x e x '=--,令xy e =,则e xy '=,所以函数xy e =在()0,1处的切线方程为1(0)y x -=-,即1y x =+,所以1x e x ≥+,即()0f x '≥,故()f x 在R 上单调递增,即()f x 有一个零点; (2)()1xf x e ''=-,当0x ≥时,()0f x ''≥,即()f x '在[)0,+∞上是增函数,()()01f x f a ''≥=-,当1a ≤时,()0f x '≥,()f x 在[)0,+∞上是增函数, 故有()()0f x f ≥,即()0f x ≥;当1a >时,0(0,)x ∃∈+∞,使得()00f x '=,当()00,x x ∈时,()0f x '<,()f x 在()00,x 上是减函数; 当()0,x x ∈+∞时,()0f x '>,()f x 在()0,x +∞上是增函数, 故有()0(0)0f x f <=与()0f x ≥相矛盾, 综上,1a ≤. 练习1.已知函数()()2ln f x ax x x x a R =+-∈.(1)若0a =,讨论函数的单调性;(2)若函数()f x 满足()12f =,且在定义域内()22f x bx x ≥+恒成立,求实数b 的取值范围.【解析】(1)0a =,()ln f x x x x =-,()'ln f x x =-,()'0f x =,1x =,()0,1x ∈,()'0f x >,()f x 在0,1上是增函数, ()1,x ∈+∞,()'0f x <,()f x 在1,上是减函数.(2) 由题意()12f =,1a =,∴()2ln f x x x x x =+-, 则()22f x bx x ≥+,即1ln 1xb x x --≥,令()1ln 1x g x x x=--, ()2ln 'xg x x =,故()g x 在(]0,1上递减,在1,上递增,∴()()min 10g x g ==,即0b ≤.2.已知函数()21ln 2f x a x x ⎛⎫=-+ ⎪⎝⎭,()()()2g x f x ax a R =-∈ (1)当0a =时,求()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)若对()1,x ∀∈+∞,()0g x <恒成立,求a 的取值范围.【解析】(1)函数()21ln 2f x a x x ⎛⎫=-+ ⎪⎝⎭的定义域为()0,∞+,当0a =时,()21ln 2f x x x =-+,求导()()()2'1111x x x f x x x x x-+--+=-+==(x >0),令()'f x =0,得x =1,(负值舍去) ∴x >0,x 、()'fx ,f (x )的变化如下:∴()f x 在区间1,1e ⎡⎤⎢⎥⎣⎦上是增函数,在[]1,e 上为减函数,f (x )最大值为()112f =-.又21112f e e ⎛⎫=-- ⎪⎝⎭,()212ef e =-,∵422121()02e f e e e e f --⎛⎫-=> ⎪⎝⎭,∴f (x )最小值为()212e f e =-.∴()()2min 12e f x f e ==-,()()max 112f x f ==-.(2)函数()()2122ln 2g x f x ax a x ax x ⎛⎫=-=--+ ⎪⎝⎭,则()g x 的定义域为()0+∞,,()()()()()2121121211212x a x a x ax g x a x a x x x⎡⎤-----+⎣⎦=--+=='.①若12a >,令()0g x '=,得极值点11x =,2121x a =- 当211x x >=,即112a <<时,在()21,x 上有()0g x '<,在()2,x +∞上有()0g x '>,此时()g x 在区间()2,x +∞上是增函数,并且在该区间上有()()()2,g x g x ∈+∞,不合题意;当211x x ≤=,即1a ≥时,在()1,+∞上有()0g x '>,此时()g x 在区间()1,+∞上递增,有()()()1,g x g ∈+∞,也不合题意;②若12a ≤,则有210a -≤,此时在区间()1,+∞上恒有()0g x '<,从而()g x 在区间()1,+∞上是减函数;要使()0g x <在()1,+∞上恒成立,只须满足()111022g a a =--≤⇒≥-,由此求得a 的范围是11,22⎡⎤-⎢⎥⎣⎦. 综合①②可知,当11,22a ⎡⎤∈-⎢⎥⎣⎦时,对()()1,,0x g x ∀∈+∞<恒成立. 3.已知函数1()ln ,(,0),()(0)f x a x x a a g x x x x ⎛⎫=-∈≠=-+> ⎪⎝⎭R .(1)若函数()f x 与()g x 有相同的极值点(极值点是指函数取极值时对应的自变量的值),求a 的值;(2)记()()()F x f x g x =-.①若在区间(0,]e (e 为自然对数底数)上至少存在一点0x ,使得0()0F x <成立,求a 的取值范围;【解析】(1)因为1()g x x x ⎛⎫=-+ ⎪⎝⎭,所以221(1)(1)()1x x g x x x '-+-=-=. 令()0g x '=,解得121,1x x ==-(舍去).所以1x =为函数()g x 的极大值点.因为()ln f x a x x =-,所以()1a a x f x x x'-=-=. 令()0f x '=,解得x a =.所以x a =为函数()f x 的极大值点.因为函数()f x 与()g x 有相同的极值点,所以1a =. (2)①1()()()ln F x f x g x a x x=-=+. 先求()0F x 在(0,]e 上恒成立,即有ln 10ax x +. 令()ln 1,(0,]G x ax x x e =+∈,则()ln G x a x a '=+,令()0'=G x ,得1x e=. 若0a >,则当10x e<<时,()0,()g x g x '<单调递减; 当1x e e<<时,()0,()g x g x '>单调递减,所以min 1()()10ag x g e e ==-,得0a e <.若0a <时,同理得min ()()10g x g e ae ==+,得10a e-<. 综上,a 的取值范围为{1|a a e<-或}a e >; ②设切点0002011(,ln ),0,()ax x a x x F x x x'-+>=, 则切线方程为()00020011ln ax y x x a x x x -=-++,又切线过原点,则()000200110ln ax x a x x x -=-++,整理得02ln 0a x a x +-= 设2()ln ,0g x a x a x x=+->,题意即为,函数()g x 在(0,)+∞上有两个零点. 由于2222()a ax g x x x x '-=-=.(i )当0a =时,2()0,()g x g x x=>无零点;(ii )当0a <时,()0,()g x g x '<在(0,)+∞上递减,此时()g x 不可能存在两个零点,故不满足条件;(iii )当0a >时,令2()0,g x x'==, 所以极小值()lng a a a=. 要使函数()g x 在(0,)+∞上有两个零点,则必须满足2()0g a<,所以2a >. 因为22(e)0,e ,()e g g x a =>>在2,a ⎛⎫+∞ ⎪⎝⎭连续且为增函数,所以()g x 在2,a ⎛⎫+∞ ⎪⎝⎭唯一零点. 因为222120,()2()()0aa a a a a g e a ee e a a a a ae e ---=-<=-+-=-+->,而()g x 在20,a ⎛⎫ ⎪⎝⎭连续且为减函数,故()g x 在20,a ⎛⎫ ⎪⎝⎭有唯一零点. 所以当2a >时,()g x 在(0,)+∞有两个零点,满足条件. 故所求a 的取值集合为{}|2a a >.4.已知函数()()434316x f x e x a =--+,1a <.(1)若函数()y f x =的图象在1x =处的切线与x 轴平行,求a 的值;(2)当0x ≥时,()0f x ≥恒成立,求a 的最小值.【解析】(1)()()3312x f x e x a ⎡⎤'=--⎣⎦依题意()()3311210f e a ⎡⎤'=--=⎣⎦故1a e =-; (2)解法一: ()()()()2212xx x f x e x a e e x a x a ⎡⎤'=-++-+-⎣⎦()22131224xx x e x a e x a e ⎡⎤⎛⎫=-++-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,显然2213024x x e x a e ⎛⎫+-+> ⎪⎝⎭,令()x g x e x a =-+,则()10x g x e '=-≥,所以()xg x e x a =-+在[)0,+∞单调递增,且()()01g x g a ≥=+,当10a +≥即11a -≤<时,()0f x '≥,()f x 在[)0,+∞单调递增,故()0f x ≥等价于()402030f a =-≥,此式已成立,从而11a -≤<满足条件,当10+<a 即1a <-时,由()xg x e x a =-+在[)0,+∞单调递增,()010g a =+<,()()()2220a g a e a e a a a e --=+≥-+=->,故()00,x a ∃∈-使得()0000xg x e x a =-+=,即00x ex a =-,令()0f x '≥,即()0g x ≥,得0x x ≥,又令()0f x '≤,即()0g x ≤,得00x x ≤≤,因此()f x 在0x x =处取得最小值,()()043004316x f x e x a =--+,又00ee x a =-,故()003404316x xf x e e =-+,设0x e t =,1t >,且()344316h t t t =-+,法一:()2312120h t t t '=-<,故()h t 在()1,+∞单调递减,由()()02h t h ≥=知2t ≤, 即00ln 2x <≤,00xa x e =-而()x P x x e =-在(]0,ln 2单调递减,所以00ln 221x x e-≤-<-,即ln 221a -≤<-;法二:()()()3223248h t t t t t =-----,由()00f x ≥知()0h t ≥,即12t <≤下同法一;综上可知ln 221a -≤<,因此a 的最小值为ln 22-;解法二:当0x ≥时,()0f x ≥恒成立,因求a 的最小值,不妨设0a <,则只研究1344163xea x ⎛⎫+≥- ⎪⎝⎭,设()()13441603xe M x x x ⎛⎫+=-≥ ⎪⎝⎭,下求()max M x ;()334341613xx e M x e -⎛⎫+'=- ⎪⎝⎭,由()0M x '≥,并记3x t e =,1t ≥, 即4322764768307240960t t t t ----≤,亦即()()328271524485120t t t t --++≤,故8t ≤,因此()M x 在[]0,ln 2单调递增,在[)ln 2,+∞单调递减,所以()()max ln 2ln 22M x M ==-,即ln 22a ≥-,因此a 的最小值为ln 22-. 5.已知函数()1ln f x x a x =-- . (1)若()0f x ≥ ,求a 的值;(2)设m 为整数,且对于任意正整数n 2111111222n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值. 【解析】6. 已知函数2()ln 3f x x ax x=++-. (1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.【解析】(1)由题意,222122()(0)ax x f x a x x x x+-'=+-=>, 令2(2)ax h x x =+-,()0,x ∈+∞,①当0a ≠,且180a ∆=+≤,即18a ≤-时,()0≤h x ,所以()0f x '≤在(0,)+∞恒成立,故()f x 在(0,)+∞上单调递减;②当108a -<<时,>0∆,由()0h x =得12x a-±=当112x a ⎛⎛⎫--∈+∞⎪⎝⎭⎝⎭时,()0h x <,()0f x '<;当x ∈⎝⎭时,()0h x >,()0f x '>.故()f x 在⎛ ⎝⎭和⎫+∞⎪⎝⎭单调递减,在1122a a ⎛⎫-+-- ⎪⎝⎭单调递增;③当0a =时,由()0f x '=得2x =,当(0,2)x ∈时,()0f x '<;当(2,)x ∈+∞时,()0f x '>. 故()f x 在(0,2)单调递减,在(2,)+∞单调递增;④当0a >时,>0∆,由()0h x =得x =舍去).当x ⎛∈ ⎝⎭时,()0h x <,()0f x '<;当x ⎫∈+∞⎪⎝⎭时,()0h x >,()0f x '>.故()f x在10,2a ⎛⎫-+ ⎪⎝⎭单调递减,在12a ⎛⎫-++∞ ⎪⎝⎭单调递增.(2)因为(1)230f a =+-≥,所以1a ≥. 由(1)得min1()2f x f a ⎛⎫-+= ⎪ ⎪⎝⎭,故只需102f a ⎛-≥ ⎝⎭,即可满足()0f x ≥.令012x a -=,则021ax =-整理得20020ax x +-=,即0021ax x =-, 所以()00000024ln 3ln 40f x x ax x x x =++-=+-≥, 设4()ln 4g x x x =+-,所以22144()x g x x x x-'=-=, 当(0,4)x ∈时,()0g x '<;当(4,)x ∈+∞时,()0g x '>. 故()g x 在(0,4)单调递减,在(4,)+∞单调递增.又(1)0g =,所以当(0,1)x ∈时,()0>g x ;当(1,4)x ∈时,()0<g x ,又0x =,因为1a ≥3,10-≠,所以(]0410,1x -+==,所以0()0g x ≥,即()00f x ≥,故()0f x ≥,又20021a x x =- 所以a 的取值范围是[)1,+∞.7. 已知函数()21sin f x x a x =+-,[]0,x π∈,a R ∈,()'f x 是函数()f x 的导函数.(1)当1a =时,证明:函数()f x 在区间[]0,π没有零点;(2)若()'sin 0f x a x a ++≤在[]0,x π∈上恒成立,求a 的取值范围.【解析】(1)证明:若1a =,则()21sin f x x x =+-,[]0,x π∈,又211x +≥,0sin 1x ≤≤,故0sin 1x ≥-≥-,所以21sin 0x x +-≥,又()01f=,224f ππ⎛⎫=⎪⎝⎭,()21f ππ=+, 当0,,22x πππ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭时,1sin 0x -<-<,所以21sin 0x x +->恒成立,所以当1a =时,函数()f x 在区间[]0,π没有零点. (2)解:()'2cos f x x a x =-,[]0,x π∈,故2cos sin 0x a x a x a -++≤在[]0,x π∈上恒成立, 设()2cos sin x a x a g a x x =-++,[]0,x π∈, 所以()000g =≤,()220g a ππ=+≤,即a π≤-,因为()2sin cos 24'g a x x a x x π⎛⎫=++=++ ⎪⎝⎭,由a π≤-,得0a <,所以在区间0,4π⎛⎫ ⎪⎝⎭上()'g x 单调递减,所以()()2'0''24a g g x g π⎛⎫+=≥≥=+ ⎪⎝⎭;在区间,4ππ⎛⎫⎪⎝⎭上()'g x 单调递增()()2'''24g g x g a ππ⎛⎫+=≤≤=- ⎪⎝⎭,又a π≤-,所以()'020g a =+<,'204g π⎛⎫=+< ⎪⎝⎭,()'20g a π=->,故()'g x 在区间,4ππ⎛⎫⎪⎝⎭上存在唯一零点区间0x ,由()'g x 的单调性可知,在区间[]00,x 上()'0g x ≤,()g x 单调递减; 在区间(]0,x π上()'0g x ≥,()g x 单调递增,()()()()00g x g g x g π⎧≤=⎪⎨≤≤⎪⎩,故a π≤-. 8. 已知函数()11f x a x=+-(a ∈R ). (1)若2a =,证明:当1x >时,()2ln x f x >;(2)若对于任意的0x >且1x ≠,都有()()2ln 1a f x x -⋅>,求a 的取值集合.【解析】(1)当2a =时,()121f x x=+-, 要证当1x >时,()2ln x f x >, 即证当1x >时,12ln 21x x +>- 令()12ln 1g x x x =+-, ()()()()()()222221221252111x x x x g x x x x x x x ---+'=-==--- 当12x <<时,()0g x '<,()g x 在()1,2内单调递减 当2x >时,()0g x '>,()g x 在()2,+∞内单调递增, 故()()min 22ln 21ln 41ln 12g x g e ==+=+>+=.证毕. (2)先分析端值,当0x +→时,ln x →-∞,111a a x +→-+-, 要使1ln 11a x x ⎛⎫+>⎪-⎝⎭,需有10a -+≤,即1a ≤; 当x →+∞时,ln x →+∞,11a a x +→-, 要使1ln 11a x x ⎛⎫+>⎪-⎝⎭,需有0a ≥; 故必须有01a ≤≤. 由()11111a x a x x -++=--知其分子恒正, 令()()1ln 11x x x a x ϕ-=--+,于是问题等价于当1x >时,()0x ϕ>; 当01x <<时,()0x ϕ<. 注意到()10ϕ=.()()()()22211'1a x a x x x ax a ϕ⎡⎤---⎣⎦=--⎡⎤⎣⎦①当0a =时()1'x x xϕ-=-, 此时当1x >时,()'0x ϕ<,()x ϕ在()1,+∞单调递减,于是()()10x ϕϕ<=,这不符合题意;②当0a ≠时,()'0x ϕ=,得2111x a ⎛⎫=- ⎪⎝⎭,21x =. (i )当12a =时,12x x =,()'0x ϕ≥,()x ϕ在()0,∞+单调递增, 结合()10ϕ=可知符合题意;(ii )当102a <<时,12x x >,此时当211,1x a ⎛⎫⎛⎫∈- ⎪ ⎪ ⎪⎝⎭⎝⎭时()'0x ϕ<, 于是在()x ϕ在211,1a ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭单调递减, 故在211,1a ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭内()()10x ϕϕ<=,这不符合题意; (iii )当12a >时,12x x <,此时当211,1x a ⎛⎫⎛⎫∈- ⎪ ⎪ ⎪⎝⎭⎝⎭时()'0x ϕ<, 于是在()x ϕ在211,1a ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭单调递减, 故在211,1a ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭内()()10x ϕϕ>=,这不符合题意; 综上:符合题意的a 取值集合为12⎧⎫⎨⎬⎩⎭.9.已知()11x f x ae -=. (1)1a =时,求()f x 的单调区间和最值;(2)①若对于任意的()0,x ∈+∞,不等式()()212x f x -≥恒成立,求a 的取值范围;②求证:13ln 02x e x --+≥【解析】(1)当1a =时,()11x f x e -=-,则()1x f x e-='-, 易知()y f x ='单调递增,又()10f '=,当01x <<时,()0f x '<,当1x >时,()0f x '>. 所以,函数()y f x =的减区间为()0,1,增区间为()1,+∞,函数()y f x =的最小值为()10f =,无最大值;(2)①必要性:若0a <,则当x →+∞时,()f x →-∞,不合乎题意,所以,必有0a >.又()2221010a a f a a a+-≥⇒-+=≥,则[)1,a ∈+∞;充分性:易知()11x f x e -≥-.故只要证明()21112x x e ---≥在()0,x ∈+∞恒成立即可,即()211102x x e e --⎛⎫- ⎪+-≥ ⎪⎝⎭,令()()21112x x g x e e --⎛⎫- ⎪=+- ⎪⎝⎭,则())322132x g x x x x -⎛⎫=+-+ ⎪⎝⎭')))21112x -⎡=+⎢⎣, 则()y g x =在()0,1单调递减,在()1,+∞单调递增,则()()10g x g ≥=.故[)1,a ∈+∞,因此,实数a 的取值范围是[)1,+∞;②由①可知,要证13ln 02x e x --+≥,只需证()211ln 022x x --+≥, 先证明不等式1ln x x -≥,构造函数()1ln h x x x =--,0x >,()111x h x x x'-=-=,令()0h x '=,可得1x =. 当01x <<时,()0h x '<;当1x >时,()0h x '>.所以,函数()y h x =的减区间为()0,1,增区间为()1,+∞,()()10h x h ∴≥=, 所以,对任意的0x >,1ln x x -≥.()()()()22221121144ln 10222222x x x x x x x ----+∴-+≥--+==≥,故13ln 02x e x --+≥成立. 10.已知函数2()()2x a f x e x a R =-∈. (1)若函数()f x 有两个极值点1,x 2x ,求实数a 的取值范围;(2)若3()12a f x x ≥-+对任意[0,1]x ∈都恒成立,求证:a 的最大值大于8. 【解析】(1)由2()2x a f x e x =-可得()x f x e ax '=-, 函数()f x 有两个极值点等价于()0f x '=有两个不同的实数根, 也等价于xe a x= 有两个不同的实数根(0x =显然不是根) 令()x e F x x =,则2(1)()xx e F x x-'=, ()F x ∴在(,0)-∞单减,(0,1)上单减,(1,)+∞上单增;且0x <时,()0F x <,0x >时,()0F x >,()F x a ∴=有两解,需(1)a F e >=,即a e >,下证a e >是()F x a =有两解的必要条件:当a e >时,11a F ae a a ⎛⎫=> ⎪⎝⎭,(1)F a <,101a <<, ()F x a ∴=在(0,1)上有且只有一个解, 又因为222()[(1)]aa e e F a a a F a e a a a ⎛⎫==⋅≥⋅=⋅> ⎪⎝⎭,(1)F a <. ()F x a ∴=在(1,)+∞上有且只有一个解,∴综上所述:a e >;(2)因为3()12a f x x ≥-+等价于: 23122x a a e x x -≥-+ 等价于()2312x a e x x -≥-对[0,1]x ∀∈恒成立, ①当0x =或1时,a R ∈满足;②当()0,1x ∈时,()2321x x x x -=-显然大于0, 故()2312x a e x x -≥-恒成立, 等价于()2321x e a x x -≥-恒成立,等价于()2321x min e a x x ⎛⎫- ⎪≥ ⎪-⎝⎭恒成立. 而欲证8max a > 即证()23218x min e x x ⎛⎫- ⎪> ⎪-⎝⎭即可.就是证:()2314x min e x x ⎛⎫- ⎪> ⎪-⎝⎭也就是证明: 23441x e x x >-+,对任意的()0,1x ∈恒成立. 先证:1x e x >+,(0,1)x ∈.令()1xv x e x =--,(0,1)x ∈.因为()10x v x e '=->,所以()v x 在(0,1)上单调递增,则有()(0)0v x v >=,1x e x ⇒>+,(0,1)x ∈.所以,要证23441x e x x >-+,(0,1)x ∈, 需证231441x x x +≥-+,(0,1)x ∈, 即证()32440,0,1x x x x -+≥∈恒成立 也就是证:()24410,0,1x x x -+≥∈恒成立 而()22441210x x x -+=-≥显然成立, 故()24410,0,1x x x -+≥∈恒成立 即()32440,0,1x x x x -+≥∈恒成立 23441x e x x >-+,对任意的()0,1x ∈恒成立. ()23218x min e x x ⎛⎫- ⎪> ⎪-⎝⎭成立故8max a >成立,即证.。