浅析桥梁在常见自然灾害下的破坏机理和防治措施
桥梁常见病害的成因及加固措施

桥梁常见病害的成因及加固措施随着经济的发展和人口的增加,桥梁成为了现代交通建设中不可或缺的一个重要部分,但桥梁在使用过程中往往会受到各种各样的损坏和病害,如裂缝、腐蚀、疲劳、变形等,这些病害不仅会影响桥梁的使用寿命和安全性,也会对人们的生命和财产造成威胁。
因此,对桥梁常见病害的成因及加固措施进行了解和研究,将有助于更好地维护和管理桥梁。
一、桥梁病害的成因1. 裂缝裂缝是桥梁病害中最常见的一种,主要成因有以下几点:(1)桥梁本身结构设计缺陷。
(2)桥梁荷载超载或荷载作用下受到冻融、沉降等自然因素的破坏。
(3)施工过程中的疏漏或错误,如过早拆模、振捣不足等。
2. 腐蚀桥梁在长期使用过程中会受到外部腐蚀因素的侵蚀,导致钢筋锈蚀、混凝土表层起砂起灰、甚至混凝土质量下降等问题。
主要成因有以下几点:(1)地表水、雨水和海水等。
(2)空气中的腐蚀性气体和颗粒物等。
3. 疲劳桥梁在交通荷载、风荷载等作用下,会发生疲劳损伤,通常表现为钢筋的裂纹、变形等。
主要成因有以下几点:(1)交通荷载频繁作用。
(2)荷载循环次数达到材料的疲劳极限。
4. 变形桥梁在使用过程中由于长期荷载作用和温度变化等因素会发生不同程度的变形,主要成因有以下几点:(1)桥梁施工中的误差。
(2)桥梁设计不合理或者荷载超载。
(3)桥梁在使用过程中由于展开梁、易拆卸等工艺需要拼装等而导致变形。
二、桥梁病害的加固措施1. 裂缝(1)前置法:建立预应力钢梁拱桥和混凝土岩石墙桥等。
此种方法在解决桥梁斜拉索、混凝土桥梁大比跨度上应用较多。
(2)后置法:彻底消除桥面裂缝的方法是用锚具联接桥面两侧,实现拉升连接与弥补裂缝。
此种方法在钢、混凝土桥梁上应用较多。
2. 腐蚀(1)先进材料:应用新型材料,使桥梁表面具有自洁功能,减少表面附着物的堆积,如纳米环保涂层。
(2)修复铁筋锈蚀:打孔、嵌补、喷涂复合材料等。
3. 疲劳(1)分析疲劳裂缝,做出补救措施。
(2)加强构造完整性和疲劳寿命,通过补强、更换,甚至新建桥梁等方式实现。
桥梁工程防灾减灾措施方案

桥梁工程防灾减灾措施方案一、前言在桥梁建设和运行过程中,遭遇自然灾害的风险是不可避免的。
如地震、洪水、台风等灾害往往给桥梁带来巨大的破坏,甚至威胁到人民的生命财产安全。
为了提高桥梁的抗灾能力,减少灾害给人们带来的损失,本文将从地震、洪水和台风三个常见自然灾害的角度出发,提出桥梁工程中的防灾减灾措施方案。
二、地震防灾减灾措施方案1. 踏实可靠的桥梁设计要确保桥梁的抗震能力,必须在设计阶段充分考虑地震因素,采用可靠的抗震设计准则。
桥梁的结构、材料、连接部位等都必须经过严格的设计和计算,确保其在地震发生时不发生倒塌或破坏。
2. 强化桥梁的抗震能力在桥梁的施工过程中,必须严格按照抗震设计要求进行施工,确保桥梁的结构和连接等部位能够承受地震力的作用。
同时,在桥梁建成后,还需要定期进行抗震检测和维护,对可能出现的问题进行及时的修复和加固。
3. 搭建应急救援设施对于一些重要的桥梁,要在其附近搭建应急救援设施,包括临时医疗点、临时住所等,以便在地震发生后能够及时对桥梁周边的人员进行救援和安置,减少灾害造成的人员伤亡。
4. 建立地震监测系统在地震频发的地区,需要建立完善的地震监测系统,对地震的预警和监测进行及时的反馈和报警,以便能够提前预警并采取必要的应对措施,保障桥梁的安全。
5. 推广应急预案在桥梁周边的社区和单位,需要推广地震应急预案,加强人员的地震防灾意识和自救能力,以便在地震发生时能够快速、有效地进行应急处置和自我救援。
三、洪水防灾减灾措施方案1. 桥梁的设计高程在洪水频繁的地区,需要设计桥梁的高程要比洪水的水位高一定的安全高程,以确保桥梁在洪水期间不被淹没,避免洪水对桥梁的破坏。
2. 桥梁的抗洪性要采用适合的材料和结构设计,确保桥梁在洪水期间能够承受洪水冲击和浸泡,不发生倒塌或损坏。
需要通过工程实践和科学技术手段,在桥梁的设计和施工上加强抗洪性能的控制。
3. 洪水预警系统在洪水频发的地区,需要建立完善的洪水预警系统,包括水文监测站、气象预报站等,及时监测和预警洪水的发生,以便于采取必要的应对措施,保障桥梁的安全。
桥梁破坏形式

桥梁破坏形式桥梁作为连接城市和乡村、两岸和两地之间的重要交通设施,在现代社会扮演着至关重要的角色。
然而,由于自然灾害、交通事故、老化以及错误的设计等因素,桥梁可能会经历各种各样的破坏形式。
本文将介绍一些常见的桥梁破坏形式,以及对应的原因和可能的预防措施。
1. 桥面沉降与变形桥梁的桥面沉降与变形是指桥面的下沉或变形,通常由于桥梁基础材料的不足、地震、地面沉降、水流冲击等原因引起。
这样的破坏将导致桥梁承载能力下降和交通安全问题。
为预防这种情况,应在桥梁设计时考虑合适的基础材料,进行充分的地质勘察,并定期检查和维护桥梁。
2. 钢结构腐蚀钢结构是许多桥梁的重要组成部分,然而,由于湿度、酸雨、盐雾等环境因素的影响,钢结构可能会发生腐蚀。
腐蚀会使钢结构的强度和稳定性下降,从而引发桥梁的破坏。
为预防钢结构腐蚀,可以采用防腐剂、定期涂漆、隔离层等防护措施,并确保及时检查和修复任何腐蚀点。
3. 桥墩倒塌桥墩是桥梁的支撑结构,起到承载和分散载荷的重要作用。
然而,由于地震、车辆冲撞、水流冲击等因素的影响,桥墩可能会倒塌。
桥墩的倒塌将导致桥梁整体失去支撑,对交通和人员安全造成严重威胁。
为预防桥墩倒塌,应采取合理的桥梁设计和建造标准,并定期检查桥墩的状态和稳定性。
4. 桥面铺装开裂桥面铺装开裂是指桥面铺装材料表面出现裂纹。
这种破坏形式通常由于材料老化、温度变化、车辆过载等因素引起。
开裂的桥面铺装会导致行车不稳定、损坏车辆以及对桥梁结构的进一步破坏。
为预防桥面铺装开裂,应选用耐久性强、抗冲击和耐磨损的材料,并进行定期维护和修补。
5. 荷载不均衡荷载不均衡是指桥梁承受的重量分布不均,通常由于设计问题、不当的施工或车辆超载等原因引起。
这种情况可能导致桥梁某些部分的过度负荷,使得桥梁结构受到损坏或破坏。
为预防荷载不均衡,应进行合理的设计和施工,并加强对超载车辆的监管。
总之,桥梁破坏形式多种多样,而这些破坏形式往往会对交通和人员安全带来严重影响。
浅析建筑桥梁工程地震伤害的成因及预防对策

浅析建筑桥梁工程地震伤害的成因及预防对策摘要:本文从建筑桥梁工程地震伤害的成因入手,总结并分析当前桥梁工程抗震性低下的现状,简要介绍桥梁工程地震伤害预防对策,旨在提升建筑桥梁工程抗震性,从而降低自然灾害对建筑桥梁造成的影响,保护人民群众生命财产安全。
关键词:桥梁工程;地震;预防对策近年来,我国对桥梁、道路、建筑物的抗震性越来越重视,并形成了相应的施工及设计技术标准。
建筑桥梁工程企业应重视桥梁的抗震施工及处理,提升桥梁的抗震性水平,积极借鉴日本等国家的优秀抗震技术,从而不断完善我国的桥梁抗震水平。
一、建筑桥梁工程地震伤害的成因(一)桥梁上部结构问题桥梁上部结构一般分为梁式结构和拱式结构,梁式结构方面,如果建筑桥梁的梁宽不足,在地震中,桥梁结构产生振动,各个节点之间极易出现撞击和位移,如撞击和位移的现象比较严重,就会导致桥梁损坏。
拱式结构方面,拱腹是整个桥梁的薄弱点,此处在地震时会产生一定的垂直拉力和水平拉力,从而导致拱式结构桥梁出现扭曲,一旦扭曲度过大,桥身、拱顶等诸多位置都会出现相对位移,从而产生裂缝,严重时甚至会造成整个桥体变形。
(二)桥梁支座结构问题支座结构是桥体中的重要位置,也是影响桥梁抗震性高低的关键组成部分。
一方面,如桥梁支座连接构造稳定性不足,虽然能够满足日常的使用要求,但在发生地震时,支座连接处受到地震造成的撞击,极易造成支座螺栓拔起、脱落的现象,此时桥梁的预应力发生改变,从而导致损坏。
另一方面,支座施工材料方面也是桥梁支座结构抗震力的关键因素,在施工之前,如未能充分考虑桥梁的抗震情况,没有采用抗震效果高的支座施工方式和支座材料,那么在地震中,桥梁各个部件随着振动发生撞击,进而产生微量的位移,此时支座部分受到的拉力极大,因其材料质量较差,无法承受整个桥梁上部产生的巨大拉力,极易出现支座脱落、破碎等问题。
(三)桥梁下部结构问题桥梁下部是连接支座与地基的位置,这一位置主要功能是将桥梁本身及上部来往车辆的重量传导至地基之上,因此,桥梁下部结构主要预应力为垂直预应力。
道路桥梁工程中的常见病害与防治措施

道路桥梁工程中的常见病害与防治措施道路桥梁工程是现代交通建设中不可或缺的重要组成部分。
然而,由于长期的使用以及多种因素的影响,桥梁在使用过程中也会面临各种各样的病害问题。
这些病害不仅会影响道路交通的安全性和通行效率,还会直接威胁到人民生命财产的安全。
因此,在道路桥梁的日常维护和施工中,必须加强对常见桥梁病害的防治工作,使之在使用寿命内更好地发挥应有的作用。
一、常见桥梁病害1. 桥墩沉降桥墩沉降是桥梁使用过程中最为常见的问题之一。
主要表现为桥梁的中央部位出现下沉现象,导致桥梁变形,甚至破损。
桥墩的沉降主要有以下几个原因: 自然沉降、振动沉降和基础不良等。
2. 墩柱开裂墩柱开裂指的是桥墩上出现裂缝或者开裂现象。
其主要原因是受到外部力的影响,如地震、交通振动、甚至季节变化等。
3. 桥梁钢结构腐蚀桥梁钢结构的腐蚀现象是桥梁病害中比较麻烦的问题之一,它不仅对桥梁的整体强度造成影响,而且可能导致桥梁发生变形或者坍塌。
钢结构腐蚀的原因主要有雨水和空气中的酸碱,以及氯化物等。
4. 擦挂损伤桥梁的擦挂损伤主要表现为局部刮蹭或者碰撞损伤。
其原因除了交通事故以外,还可能是由于过量的交通以及大型车辆的过载等原因导致。
二、防治措施1. 桥墩沉降的防治桥墩沉降的防治措施分为预防和治理两个方面。
预防方面,可以通过增加桥墩数量、加强桥墩和土质的接触以及选择合适的桥墩建设材料等方式来减少桥墩沉降的出现。
治理方面,可以通过加固桥墩基础,提高桥墩的承载能力,亦或者实施加固措施对其进行维修。
2. 墩柱开裂的防治墩柱开裂需要为桥梁的加固治理提供有效的技术方案,包括先进的加固技术、新材料的应用,如钢筋混凝土等。
通过增强墩柱的内部结构和外部的保护性措施,能够大大减少墩柱开裂的发生。
3. 桥梁钢结构腐蚀的防治钢结构腐蚀主要可以通过给予钢材镀锌和喷涂等防腐措施来降低其对环境的腐蚀程度。
同时,也可以制定严格的桥梁管护制度,定时对桥梁进行涂装、防腐和漆面处置等维护措施。
分析桥梁工程的常见病害及施工处理技术

分析桥梁工程的常见病害及施工处理技术桥梁工程是交通工程中非常重要的一部分,它承载着行车和行人的重量,因此在使用过程中会出现一些病害。
下面将对桥梁工程的常见病害及施工处理技术进行分析。
1. 沉降:桥梁长期使用后,由于地基不稳定、沉降等因素,桥梁会出现沉降现象。
处理技术主要有两种,一是对桥梁进行加固,例如增加支座、加固梁段等;二是对地基进行加固,例如进行注浆、加固土体等。
2. 裂缝:桥梁在施工过程中或长期使用后,由于温差、荷载等因素,会产生裂缝。
处理技术包括注浆、局部修补、扩大裂缝并填充等。
3. 锈蚀:桥梁钢结构长期受到环境氧化、湿度等因素的作用,会出现锈蚀现象。
处理技术主要是进行钢结构的除锈和防护涂层的涂装。
4. 鼓包:桥面铺装材料与桥面混凝土层之间存在空隙,长期受到荷载和气候变化的影响,会导致桥面松动、鼓包等现象。
处理技术包括重新铺装、桥面结构加固等。
5. 螺栓断裂:桥梁中的螺栓连接紧固件,由于材质、施工质量等因素,会发生螺栓断裂。
处理技术包括更换断裂的螺栓、加固相邻的螺栓等。
7. 混凝土剥落:桥梁混凝土表面受到风化、水蚀等因素的作用,会发生剥落现象。
处理技术包括修补剥落部位、加固桥体等。
8. 桥墩倾斜:桥墩由于地基不稳定等原因,会发生倾斜现象。
处理技术主要包括对地基进行加固、设置支撑等。
桥梁工程的常见病害主要有沉降、裂缝、锈蚀、鼓包、螺栓断裂、氧化、混凝土剥落、桥墩倾斜等。
针对不同病害,需要采取相应的处理技术,包括加固、注浆、填充、涂装等。
通过及时的维护和修复,可以延长桥梁的使用寿命,保障交通安全。
公路桥梁常见震害及抗震措施

公路桥梁常见震害及抗震措施
公路桥梁常见震害:
1. 桥墩和桥台的破坏:地震会对桥墩和桥台造成破坏,导致桥梁失稳或坍塌。
2. 桥面的破坏:地震会对桥面造成破坏,导致车辆无法通行。
3. 桥梁结构的变形:地震会对桥梁结构造成变形,导致桥梁失去承载能力。
4. 桥梁支座的破坏:地震会对桥梁支座造成破坏,导致桥梁失去稳定性。
抗震措施:
1. 设计抗震:在设计公路桥梁时,应考虑地震因素,采用抗震设计方法,确保桥梁在地震中具有足够的抗震能力。
2. 加固改造:对于已经建成的公路桥梁,可以通过加固改造来提高其抗震能力,如加装钢筋混凝土包裹、加装支撑等。
3. 定期检查维护:定期对公路桥梁进行检查和维护,及时发现和处理存在的问题,确保桥梁的安全性。
4. 建立应急预案:建立公路桥梁地震应急预案,明确各种应急措施和应急救援机制,确保在地震发生时能够及时有效地进行应对。
谈公路桥梁震害分析及抗震加固措施

谈公路桥梁震害分析及抗震加固措施摘要:目前我国高速公路还处于建设的高峰期,重视高烈度地震区桥梁工程的抗震设计是必要的。
公路交通是国民经济发展的命脉,因此,对这些承担着发展地区经济使命的桥梁工程进行抗震设防是非常必要的。
关键词:公路桥梁;震害分析;抗震加固地震具有突发性与毁灭性,一次地震,持续时间往往只有几十秒,却会造成巨大的生命财产损失,这是其它自然灾害无法相比的。
历来是严重危害人类的大自然灾害。
尤其是最近20年全球发生的许多次大地震,其中,多次破坏性地震都集中在城市,造成了非常惨重的生命财产损失。
一、桥梁的基本加固原理(1)混凝土桥梁有两个基本加固原理第一个原理就是强迫塑性铰出现在柱上,并使上部结构保持弹性,因为柱比上部结构容易检查、加固和修复,应优先考虑第一原理。
第二个原理是倘若延性水准相对较低,且塑性铰在保持竖向抗剪承载力时,允许在上部结构发生塑性铰。
如果防止上部结构的塑性铰费用很高或根本不可能,那么第二个原理是最理想的。
换言之,若上部结构中的塑性铰不会引起倒塌,则允许此加固方案。
为保守起见,如果允许塑性铰发生在上部结构,那么,可以忽略混凝土的贡献,且要求箍筋足以承受1。
5倍恒载所引起的剪力。
(2)钢梁桥有两个基本加固原理第一个原理就是,让支座破坏,采取加固措施确保各跨不致于从支座落梁而倒塌。
这个方案中,支座在较小地震力作用下发生破坏,从而起到“保险丝”的作用,这就使下部结构免受任何可能的较大地震力。
如果“保险丝”的“熔断力”很低,以致于下部结构稍经加固或勿需加固仍能继续使用,那么,这可能是一个优选方案。
第二个原理就是保证支座不破坏。
它意味着,支座把全部地震力传给下部结构,这就可能需要加固下部结构。
下部结构的加固包括墩帽、柱或墩墙及基础的加固。
在两个原理中,一般都要求加固上部结构,尽管固定支座方案工程量大。
二、桥梁震害分析调查与分析桥梁的震害及其产生的原因是建立正确的抗震设计方法,采取有效抗震措施的科学依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅析桥梁在常见自然灾害下的破坏机理和防治措施摘要:我国道路交通事业的迅猛发展,在道路交通事业的发展过程中,桥梁作为重要的交通设施,其安全的结构设计显得十分重要。
在传统的桥梁结构设计时,为了保证桥梁安全运营、延长其使用寿命以及提高桥梁的安全性和耐久性,并且使桥梁能够更好的应对各种自然灾害,在公路桥梁结构设计中对桥梁结构可靠性研究及可靠性的应用愈为重要。
桥梁设计应该重视结构的耐久性问题和疲劳损伤的问题,还要对近年来较为突出的桥梁超载问题进行研究、分析,使得桥梁安全和耐久。
目前的桥梁设计中,考虑强度多而考虑耐久性少,重视强度极限状态而不重视使用极限状态,而结构在整个生命周期中最重要的却恰恰是使用时的性能表现,故在自然灾害多发的地区,桥梁结构设计不能单一考虑结构的用途,要进行多方面的综合比选,应该以结构可靠度为控制参数,既要能处理桥梁结构中的随机不确定性,又要能使安全与经济之间、近期投资与长远效益之间的矛盾得到最佳的协调,以使桥梁设计达到最优化,即安全、经济、实用。
本文就自然灾害影响较大的地区的桥梁设计进行简单论述,主要介绍关于火灾、台风、泥石流、地震等灾害的地区的桥梁的破坏机理和防治措施,为桥梁的结构安全设计提供参考。
关键字:自然灾害桥梁结构安全设计破坏机理防治措施1.火灾对桥梁的危害及其加固[1-5]1.1概述公路桥梁发生火灾的概率不大.但是每年还是有不少桥梁碰到意外火灾。
桥梁在遭受火灾后,建筑材料的物理化学性质在高温下将会发生很大变化,严重影响到结构承载能力,可能带来灾难性的后果。
因此,了解火灾对桥梁损伤机理,结合现行检测手段对火灾后桥梁损伤程度进行评估,可为桥梁加固提供技术参考。
1.2结构受火后的损伤特点在钢筋混凝土桥梁中,混凝土受热温度低于300℃时.强度有所增加或变化不大。
受热温度高于300℃,混凝土开始发生龟裂,强度开始下降,随着温度的升高.混凝土体积急剧膨胀。
混凝土裂缝扩展较快,使强度急剧下降。
当温度在600—800℃时,强度损失的混凝上表面会产生爆裂、剥落、裂缝,钢筋裸露等现象。
当用水扑灭大火时,热的混凝土表面遇水急速冷却,造成混凝土构件内外应力差,会引起混凝土裂缝,削弱截面刚度。
加重混凝上强度损失。
火灾时,由于普通钢筋属于低碳钢,其力学性能在200℃以上温度时开始受影响。
钢筋极限强度、屈服强度和弹性模量等会随着受火温度的升高而降低,而钢筋膨胀系数会增大.温度600℃时强度下降明显,1400℃时,钢筋进入液态,失去了抵抗荷载的能力.受火后的钢筋在做拉伸试验时往往呈脆性破坏。
混凝土温度超过300℃时钢筋与混凝土间的粘结强度随温度升高呈下降趋势,影响构件承载能力,预应力钢绞线含碳量较高.受火影响比普通钢筋大,温度400℃时强度下降就较明显,其粘结力比普通钢筋降低更多.此外,高温松弛会引起很大的预应力损失。
表1 凝土表面颜色、囊损剥落、锤击反应与温度关系[1]1.3损伤评估和后期处理[5]对受火灾的桥梁结构,一般要进行表观损伤检查、混凝土强度检测、支座烧损状况检查、主要结构构件预应力损失检查等,尤其是对于悬索桥、斜拉桥进行必要地拉索预应力损失检查。
火灾后结构构件的初步评估评级,应根据构件烧灼损伤、变形、开裂(或断裂)程度按《火灾后建筑结构评估标准(报批稿)》标准评定等级进行评估(见表2),根据《公路旧桥承载能力评估办法(试行)》规定还需通过静载实验测试孔选择存在严重烧伤且结构受力不利的孔,动载实验测试跑车荷载作用下结构的自振频率测试、阻尼比和冲击系数。
表2 火灾后结构构件的初步评级标准火灾后钢筋混凝土构件力学性能的降低包括强度降低和刚度减小两个方面。
强度降低将降低构件的承载能力,而刚度变化则会引起结构各部分的内力重分布,并可能导致较大的构件变形。
在工程应用上,一般采用修正传统法进行建立力学模型进行结构分析,利用所测定的混凝土与钢筋的实际物理力学性能指标进行结构极限承载能力验算和正常使用状态验算,并据此提出加固处理方案。
常见的加固方法有增大截面法、锚喷混凝土加固法、粘贴钢板(筋)法、改变结构受力体系法以及粘贴碳纤维布等,火灾后桥梁结构有其特殊性,在进行维修加固时要求满足一些基本原则:(1)加固以不增加结构自重为前提;(2)要彻底凿除烧疏的混凝土,烧损的混凝土疏松,凿除不干净会影响修补物与旧混凝土的黏结,影响加固效果;(3)考虑结构的耐久性。
桥梁结构长期暴露在外界环境中,火灾后混凝土碳化速度将大大加快,有些地方混凝土保护层损伤严重.特别是有些部位虽无混凝土脱落,露筋现象,但是过火已经导致混凝土内部微裂缝发展,致使混凝土空隙率加大。
这些原因都有可能加快有害物质侵入结构内部,腐蚀钢筋等。
因此,在火温影响范围内结构表面都要涂刷阻锈剂等以恢复结构的耐久性。
2.泥石流对桥梁的危害及其防治[7-10]2.1概述一般来讲,泥石流的形成主要是与地形、水文、地质和人类活动有很大的关系,主要可以概括为三个方面,第一是流域内岩石破碎,山体稳定性较差;第二是地形较为陡峭并且坡度较大;第三是流域中上游大量的降雨和水库的溃决等不确定因素致灾。
2.2泥石流对于桥梁工程的危害方式和防治措施灾害性泥石流具有暴发突然、来势凶猛、冲击强烈、冲淤变幅大、沟道摆动速度快幅度大的特点。
泥石流对桥梁工程的主要作用有:一是冲刷作用,在沟道的上游段以下切侵蚀作用为主,在中游段以冲刷旁蚀为主,下游段堆积过程中,时有局部冲刷造成危害:二是冲击作用,包括它的动压力、大石块的撞击力以及泥石流冲击所引起的冲起高、爬高和弯道超高等能力;三是堆积作用,主要出现于下游沟道,尤其在堆积扇沟段。
但在某些条件下,中、上游沟道亦可发生局部(或临时性)堆积作用。
若泥石流堆积扇的强烈堆积和堆积区的迅速扩大,还可堵塞它所汇入的主河,在主河段上游堵塞,造成次生灾害;四是其他次生作用,如气振、埋淤等。
在泥石流防治工程设计中,泥石流的冲击力是一个非常重要的参数,是桥墩、桥面为抵抗冲击而进行的结构设计的重要依据。
泥石流冲击力分为流体整体冲压力和个别石块的冲击力两种。
在泥石流灾害频发地区进行桥梁设计而考虑桥下净空时,还必须要考虑发生最大泥石流灾害时其冲起爬高的高度值,如若此高度值估计不足,则会出现携带大量石块和泥沙的泥石流冲上桥面,破坏桥面。
另外,如若桥梁选址在没有任何可选择的条件下而其位置又恰好在泥石流沟的拐弯处,则必须考虑泥石流的弯道超高。
由于泥石流流速快,惯性大,故在弯道凹岸处有比水流更加显著的弯道超高现象。
此值未考虑或估算不足时,则会出现泥石流排泄不及时而迅速冲向桥面或路面,进而破坏桥梁或路面。
针对上述泥石流对桥梁工程的作用机理,对泥石流可采用以下防治措施:1)生物防治即是恢复植被和合理耕牧,但持续时间长,一般需要3—5 年或者更长的时间才可以发挥明显的作用;2)工程防治①泥石流的排导沟设计,即压缩排导沟的宽度,加大其深度,提高其单宽流量的输沙能力,由于泥石流的直进性,使它在弯道处产生很强的破坏力及其较大的爬高,所以排导沟主要是以顺直较好,且排导沟的出口应该选择在较大堆积场所的地方;②桥梁孔垮的设计,即是在泥石流流通区,孔垮的设计不宜压缩沟床,严禁在沟中设墩,最好用单孔,大跨跨过主沟,以不改变泥石流的运动规律为原则,避免泥石流中的强大冲击危害,而在泥石流堆积扇区,孔垮的设计要分清流量、流势、流向与桥孔的主次,按泥石流的常年洪水宽度确定桥长;③桥下净空的设计,即是泥石流地区桥梁设计的主要控制条件,应根据泥石流实地调查资料与计算及有关设计规范用式计算确定,以宁高勿低为原则;④桥梁墩台的防护设计,即有直接防护和间接防护两种,直接防护多种多样,因地制宜,形式很多,常见的有片石块石防护、桥墩抛石防护、板桩墩头防、护冻拔防护、三级消力坎防护等,间接防护则是通过在桥梁上游设置调治或防护构造物,如丁坝、导流堤、桩排或在桥孔下游设置急流槽和消力池等,固定桥孔下游冲刷基准面(也称海漫式防护),来调整桥下水流或泥石流的流速、流向及泥沙的运动状态,引导洪水或泥石流平顺通过桥孔,避免墩台过度冲刷。
3.风荷对大跨径桥梁的危害及研究[11-14]3.1 概述1940年的美国华盛顿州新建成的Tacoma Narrows悬索桥,在不到20 m/s的风速作用下发生了强烈的振动并导致破坏,震惊了桥梁工程界,成为现代桥梁抗风研究的起点。
随着桥梁跨度的增加,其对风荷载的敏感程度也越来越明显,在对桥梁结构设计时,保证桥梁结构在风荷载下安全运营是桥梁抗风设计的重要内容。
3.2风荷载下大跨径桥梁的破坏机理与抗风模拟[11]风对大跨径桥梁的作用跟风速周期有关,一般由两部分组成,一部分的长周期远离一般结构物的自振周期,其作用属于静力性质,另一部分则与结构物的自振周期比较接近,对其作用属于动力性质。
当气流绕过非流线型截面的桥梁结构时,会产生流动和涡旋的分离,形成复杂的空气作用力。
当桥梁结构的刚度较大时,结构会保持静止不动,这种空气力作用只相当于静力作用,而当桥梁结构的刚度较小时,结构的振动会得到激发,这时的空气作用力不仅具有静力作用,而且具有动力作用。
在工程实际应用中,通常将风荷载分为静力风与脉动风两部分的叠加,分别考虑它们对桥梁结构的作用,而忽略平均风和脉动风所引起的风致振动之间的相互作用。
桥梁的竖向位移主要由施加的竖向车辆荷载引起,风荷载对其影响很小,桥梁受到静风荷载作用后横向位移急剧增加,而且偏向风荷载的方向,再施加脉动风荷载后,横向位移再次加剧,且呈现波动趋势,相对于竖向位移,桥梁的横向位移更容易受到风荷载的影响。
目前,国内外普遍采用的模拟风速时程的方法主要有线性滤波器法和谐波叠加法两大类。
这些主要是针对脉动风的。
其中,线性滤波器法中的自回归滑动平均模型(ARMA 模型)和自回归模型(AR模型)被广泛用于描述平稳随机过程,取得了较好的效果。
对风荷载比较敏感的桥梁结构,一般跨度为几百米甚至上千米,对桥梁结构上的风荷载进行模拟是个巨大的工程,如果是斜拉桥或者悬索桥,则除模拟结构主粱上的风荷载外,还需对缆索结构上的风荷载进行计算,因此,需要统筹规划,尽量选取间距相等的桥梁节点进行模拟。
研究方向也分为“桥梁抗风”和“车桥耦合振动”两个相对独立的研究领域。
前者以桥梁为主体,不考虑汽车作用或将汽车仅作为移动常活载研究桥梁的风致振动,后者则不考虑风荷载的影响,仅研究汽车和桥梁之间的动力相互作用。
现在也有建立脉动风作用下列车与大跨度悬索桥系统的动力相互作用分析模型,将上述两个领域的研究结合起来动力响应及行车安全性分析,即是风-汽车-桥梁系统空间耦合振动。
4.地震对桥梁的危害及其加固[14-19]4.1概述由于地震发生的时间、空间和强度特征不仅随时间变化,而且具有明显的随机性,合理的确定地震动输入方式是对结构进行地震反应分析的基本问题。