动能定理与功能关系专题.
精品专题 专题六 动能定理与功能关系

高二智慧课堂专题六动能定理与功能关系动能定理理解:W=Ek2-Ek1合力做的功即总功=末动能-初动能说明:对任何过程的恒力、变力;匀变速、非匀变速;直线运动、曲线运动;时间长或短过程、瞬间过程都能运用。
1、合外力做正功,动能增加合外力做负功,动能减少2、动能定理中的功是合外力做的总功总功的求法:(1)先求合力,再求合力功(2)先求每个力做的功,再求代数和3、适用范围:既适用于恒力做功,也适用于变力做功;既适用于直线运动,也适用于曲线运动。
解题思路:(1)选取研究对象.一般选取某一个物体或相对静止的多个物体做研究对象.(2)确定研究过程.研究过程可以是物体运动中的某一阶段,也可以是由物体运动的多个阶段所组成的全过程.(3)在确定的研究过程内,对研究对象进行力的分析和功的分析.在进行功的分析时,不但要分析哪些力做功,还要分析其做功性质.(4)确定研究对象的初、末动能及动能的变化.这里的初和末是相对所选取的研究过程来讲的.(5)应用动能定理列出相应关系式.恒力---直线过程练习1:一质量为1kg的物体被人用手由静止向上提高1m,这时物体的速度是2m/s,下列说法正确的是: A、手对物体做功10J B、合外力对物体做功12JC、合外力对物体做功2JD、物体克服重力做功2J练习2:A、B两物体放在光滑的水平面上,分别在相同的水平恒力作用下,由静止开始通过相同的位移,若A的质量大于B的质量,则在这一过程A. A获得的动能大B. B获得的动能大C. A、B获得的动能一样大D. 无法比较谁获得的动能练习3:一辆质量为m,速度为v0的汽车在关闭发动机后于水平地面滑行了距离L后停下来,试求汽车受到的阻力.练习4:一架喷气式飞机,质量为m=5000kg,起飞过程中从静止开始滑跑的路程为l=530m 时,达到起飞速度v=60m/s。
在此过程中飞机受到的平均阻力f阻是飞机重量的0.02倍(k=0.02)。
求飞机受到的牵引力F。
功能关系动能定理经典例题.

【例1】如图5-1-1所示,小物体位于光滑的斜面上,斜面位于光滑的水平地面上,从地面上看,在小物体沿斜面下滑的过程中,斜面对小物体的作用力( )A.垂直于接触面,做功为零;B.垂直于接触面,做功不为零;C.不垂直于接触面,做功为零;D.不垂直于接触面,做功不为零.下面列举的哪几种情况下所做的功是零( )A .卫星做匀速圆周运动,地球引力对卫星做的功B .平抛运动中,重力对物体做的功C .举重运动员,扛着杠铃在头上的上方停留10s ,运动员对杠铃做的功D .木块在粗糙水平面上滑动,支持力对木块做的功例如:用铁锤把小铁钉钉入木板,设木板对钉子的阻力与钉进木板的深度成正比,已知铁锤第一次将钉子钉进d ,如果铁锤第二次敲钉子时对钉子做的功与第一次相同,那么,第二次进入木板的深度是多少?【例2】以一定的速度竖直向上抛出一小球,小球上升的最大速度为h ,空气的阻力大小恒为F ,则从抛出至落回出发点的过程中,空气阻力对小球做的功为( )A .0B .-FhC .-2FhD .-4Fh如图5-1-3在光滑的水平面上,物块在恒力F =100N的作用下从A 点运动到B 点,不计滑轮的大小,不计绳与滑轮的质量及绳、滑轮间的摩擦,H=2.4 m,α=37°,β=53°,求绳的拉力对物体所做的功.【例3】物块从光滑曲面上的P 点自由滑下,通过粗糙的静止水平传送带以后落到地面上的Q 点,若传送带的皮带轮沿逆时针方向转动起来,使传送带随之运动,如图5-1-4所示,再把物块放到P 点自由滑下则( )A.物块将仍落在Q 点B.物块将会落在Q 点的左边C.物块将会落在Q 点的右边D.物块有可能落不到地面上1.如图5-1-5所示,木块A 放在木块B 的左上端,用恒力F 将A 拉至B 的右端.第一次将B 固定在地面上,F 做的功为 W 1;第二次让B 可以在光滑的地面上自由滑动,F 做的功为W 2.比较两次做功,应有( )A .21W W <B .21W W =C .21W W >D .无法比较.10.半径R =0.50m 的光滑圆环固定在竖直平面内,如图所示,轻质弹簧的一端固定在环的最高点A 处,另一端系一个质量m = 0.20kg的小球,小球套在圆环上,已知弹簧的原长L o = 0.50m ,劲度系数K =4.8N/m ,将小球从图示位置的B 点由静止释放,小球将沿圆环滑动并通过最低点C ,在C 点时弹簧的弹性势能J E PC 6.0=,g 取10m/s 2。
动能定理及功能关系

动能定理专题【知识梳理】一.动能1.动能:物体由于运动而具有的能,叫动能。
其表达式为:221mv E k =。
单位: 。
2.对动能的理解(1)动能是一个状态量,它与物体的运动状态对应.动能是标量.它只有大小,没有方向,而且物体的动能总是大于等于零,不会出现负值.(2)动能具有相对性,它与参照物的选取密切相关.研究时一般取地面为参考系。
二.动能定理:1.内容:2.表达式:动能定理反映了合外力做功与动能的关系,合外力做功的过程,是物体的动能与其他形式的能量相互转化的过程,合外力做的功是物体动能变化的量度,即12k k E E W -=合。
合W 的求解:①合W =合F S ;②合W =1W +2W +……(代数和)研究对象:单个物体或相对静止的可看作一个整体的几个物体组成的物体系3.应用动能定理的基本思路如下:(1)明确研究对象及所研究的物理过程。
(2)对研究对象进行受力分析,并确定各力所做的功,求出这些功的代数和。
(3)确定过程始、末态的动能。
(4)根据动能定理列方程求解。
注:在应用动能定理时,一定要注意所求的功是合力做的功,而不能局限于某个力做功。
例1.如图所示,将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s 2)(注:用动能定理解题时,对于过程能用整体法的就用整体法。
整体法的优点在于可以省略中间过程量的求解) 例2.一质量M =0.5kg 的物体,以v m s 04=/的初速度沿水平桌面上滑过S =0.7m 的路程后落到地面,已知桌面高h =0.8m ,着地点距桌沿的水平距离S m 112=.,求物体与桌面间的摩擦系数是多少?(g 取102m s /)例3.质量M =1kg 的物体,在水平拉力F 的作用下,沿粗糙水平面运动,经过位移4m 时,拉力F 停止作用,运动到位移是8m 时物体停止,运动过程中E k -S 的图线如图所示。
专题 动能定理与功能关系

m4
解析:由于轨道的水平宽度 x 相等,物体沿着轨道从左端运
v4
动到右端,初速度 v0 相同,虽然滑动摩擦阻力不同,但滑动摩
图4
擦阻力做的功相同,均为 W= -μmgx,重力做功为零。
根据动能定理: mgx
1 2
mv 2
1 2
mv02
解得: v v02 2 gx
可见物体到达右端时速度大小相同,与物体质量无关,与斜面的倾角无关。
变式训练:
变式 1、已知物体与轨道之间的滑动摩擦因数相同,轨道两 m1 端的宽度相等,且轨道两端位于同一水平面上。问质量不同的物
v1
体,以相同的初速度沿着如图 4 所示的不同运行轨道运动时,末 m2
速度的大小关系( )
v2
A.v1 v2 B.v1 v4
m3
v3
C.v2 v3 D. v3 v4
v0
的滑块,距挡板 P 为 l0,以初速度 v0 沿斜面上滑,滑块与斜面
m
间的动摩擦因数为 μ,滑块所受摩擦力小于滑块沿斜面方向的重
力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面 P α
上经过的总路程为多少?
图1
解析:滑块在滑动过程中,要克服摩擦力做功,其机械能不断减少;又因为滑块所受
摩擦力小于滑块沿斜面方向的重力分力,所以最终会停在斜面底端。
正确答案:C
变式 2、如图 5 所示,在竖直平面内的 AC 两点间有两点间有三条轨道。一个质量为
m 的质点从顶点 A 由静止开始先后沿三条不同的轨道下滑,三条轨道的摩擦因数都是 μ,
转折点能量损耗不计,由该物体分别沿着 AC、AEC、ADC 到达 C 点时的速度大小正确的
说法是( )
A. 物体沿 AC 轨道下滑到达 C 点速度最大 B. 物体沿 AEC 轨道下滑到达 C 点速度最大 C.物体沿 ADC 轨道下滑到达 C 点速度最大
高中物理功能关系总结

专题 功、动能和势能和动能定理功:(单位:J )力学: ①W = Fs cos θ(适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度动能: E K =m2p mv 2122=重力势能E p = mgh (凡是势能与零势能面的选择有关) ③动能定理:外力对物体所做的总功等于物体动能的变化(增量)公式: W 合= W 合=W 1+ W 2+…+W n = ∆E k = E k2一E k1 = 12122212mV mV - ⑴W 合为外力所做功的代数和.(W 可以不同的性质力做功)⑵外力既可以有几个外力同时作用,也可以是各外力先后作用或在不同过程中作用:⑶即为物体所受合外力的功。
④功是能量转化的量度(最易忽视)“功是能量转化的量度”这一基本概念含义理解。
⑴重力的功-———--量度——-—-—重力势能的变化物体重力势能的增量由重力做的功来量度:W G = —ΔE P ,这就是势能定理。
与势能相关的力做功特点:如重力,弹力,分子力,电场力它们做功与路径无关,只与始末位置有关.除重力和弹簧弹力做功外,其它力做功改变机械能,这就是机械能定理。
只有重力做功时系统的机械能守恒。
功能关系:功是能量转化的量度。
有两层含义:(1)做功的过程就是能量转化的过程, (2)做功的多少决定了能转化的数量,即:功是能量转化的量度强调:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它与一个时刻相对应。
两者的单位是相同的(都是J ),但不能说功就是能,也不能说“功变成了能".练习:一、单项选择题1.关于功和能的下列说法正确的是 ( )A .功就是能B .做功的过程就是能量转化的过程C .功有正功、负功,所以功是矢量D .功是能量的量度2.一个运动物体它的速度是v 时,其动能为E.那么当这个物体的速度增加到3v 时,其动能应该是 ( )A .EB . 3EC . 6ED . 9E3.一个质量为m的物体,分别做下列运动,其动能在运动过程中一定发生变化的是:()A.匀速直线运动B.匀变速直线运动C.平抛运动D.匀速圆周运动4.对于动能定理表达式W=E K2—E K1的理解,正确的是:( ) A.物体具有动能是由于力对物体做了功B.力对物体做功是由于该物体具有动能C.力做功是由于物体的动能发生变化D.物体的动能发生变化是由于力对物体做了功5.某物体做变速直线运动,在t1时刻速率为v,在t2时刻速率为n v,则在t2时刻的动能是t1时刻的A、n倍B、n/2倍C、n2倍D、n2/4倍6.打桩机的重锤质量是250kg,把它提升到离地面15m高处,然后让它自由下落,当重锤刚要接触地面时其动能为(取g=10m/s2):()A.1。
动能定理功能关系练习题142题含答案

动能定理练习稳固根底一、不定项选择题〔每题至少有一个选项〕1.以下关于运动物体所受合外力做功和动能变化的关系,以下说法中正确的选项是〔〕A.如果物体所受合外力为零,那么合外力对物体所的功一定为零;B.如果合外力对物体所做的功为零,那么合外力一定为零;C.物体在合外力作用下做变速运动,动能一定发生变化;D.物体的动能不变,所受合力一定为零。
2.以下说法正确的选项是〔〕A.某过程中外力的总功等于各力做功的代数之和;B.外力对物体做的总功等于物体动能的变化;C.在物体动能不变的过程中,动能定理不适用;D.动能定理只适用于物体受恒力作用而做加速运动的过程。
3.在光滑的地板上,用水平拉力分别使两个物体由静止获得一样的动能,那么可以肯定〔〕A.水平拉力相等 B.两物块质量相等C.两物块速度变化相等 D.水平拉力对两物块做功相等4.质点在恒力作用下从静止开场做直线运动,那么此质点任一时刻的动能〔〕A.与它通过的位移s成正比B.与它通过的位移s的平方成正比C.与它运动的时间t成正比D.与它运动的时间的平方成正比5.一子弹以水平速度v射入一树干中,射入深度为s,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v/2的速度射入此树干中,射入深度为〔〕A.s B.s/2 C.2/s D.s/4 6.两个物体A、B的质量之比m A∶m B=2∶1,二者动能一样,它们和水平桌面的动摩擦因数一样,那么二者在桌面上滑行到停顿所经过的距离之比为〔〕A.s A∶s B=2∶1 B.s A∶s B=1∶2 C.s A∶s B=4∶1 D.s A∶s B=1∶47.质量为m的金属块,当初速度为v0时,在水平桌面上滑行的最大距离为L,如果将金属块的质量增加到2m,初速度增大到2v0,在同一水平面上该金属块最多能滑行的距离为〔〕A.L B.2L C.4L D.8.一个人站在阳台上,从阳台边缘以一样的速率v0,分别把三个质量一样的球竖直上抛、竖直下抛、水平抛出,不计空气阻力,那么比拟三球落地时的动能〔〕A.上抛球最大 B.下抛球最大 C.平抛球最大 D.三球一样大9.在离地面高为h处竖直上抛一质量为m的物块,抛出时的速度为v0,当它落到地面时速度为v,用g表示重力加速度,那么此过程中物块克制空气阻力所做的功等于〔 〕A .2022121mv mv mgh --B .mgh mv mv --2022121 C .2202121mv mv mgh -+ D .2022121mv mv mgh -- 10.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,那么物体刚被抛出时,其重力势能与动能之比为〔 〕A .sin 2θB .cos 2θC .tan 2θD .cot 2θ11.将质量为1kg 的物体以20m/s 的速度竖直向上抛出。
功能关系专题复习

功能关系专题复习一.功和能的关系做功的过程就是 的过程,功是能量转化的 。
二.几种常见的功能关系1.合力做功等于物体动能的改变,即W 合=E k2-E k1=ΔE k .(动能定理)2.重力做功等于物体重力势能的改变,即W G =E p1-E p2=-ΔE p .3.弹簧弹力做功等于弹性势能的改变,即W 弹=E p1-E p2=-ΔE p .4.除了重力和弹簧弹力之外的其他力所做的总功,等于物体机械能的改变.即W 其他力=E 2-E 1=ΔE .(功能原理)5.一对滑动摩擦力对系统所做的负功等于系统内能的增加即 Q =∆E 减=fs 相例1 下列关于功和机械能的说法,正确的是( )A .在有阻力作用的情况下,物体重力势能的减少不等于重力对物体所做的功B .合力对物体所做的功等于物体动能的改变量C .物体的重力势能是物体与地球之间的相互作用能,其大小与势能零点的选取有关D .运动物体动能的减少量一定等于其重力势能的增加量例2 如图所示,质量为m 的物体(可视为质点)以某一速度从A 点冲上倾角为30°的固定斜面,其运动的加速度为34g ,此物体在斜面上上升的最大高度为h ,则在这个过程中物体( ) A .重力势能增加了34mgh B .重力势能增加了mghC .动能损失了mghD .机械能损失了12mgh 例3 如图所示,在光滑的水平面上,有一足够长的质量M=1.5kg 的木板,今在木板的左端有一质量m=0.5kg 的木块,以v 0=2m/s 初速度滑上木板。
已知二者间的动摩擦因素为μ=0.2,求:(1)二者达到共速所需要的时间t 及共同速度v 共(2)木块相对于木板的滑行距离S 。
例4 电机带动水平传送带以速度v 匀速转动,一质量为m 的小木块由静止轻放在传送带上(传送带足够长),若小木块与传送带之间的动摩擦因数为μ,如图所示,当小木块与传送带相对静止时,求:(1)小木块的位移;(2)传送带转过的路程;(3)小木块获得的动能;(4)摩擦过程产生的摩擦热.课后练习:1.对于功和能的关系,下列说法中正确的是( )A .功就是能,能就是功B .功可以变为能,能可以变为功C .做功的过程就是能量转化的过程D .功是物体能量的量度2.自然现象中蕴藏着许多物理知识,如图所示为一个盛水袋,某人从侧面缓慢推袋壁使它变形,则水的势能( )A .增大B .变小C .不变D .不能确定3.从地面竖直上抛一个质量为m 的小球,小球上升的最大高度为h.设上升和下降过程中空气阻力大小恒定为f.下列说法正确的是( )A .小球上升的过程中动能减少了mghB .小球上升和下降的整个过程中机械能减少了fhC .小球上升的过程中重力势能增加了mghD .小球上升和下降的整个过程中动能减少了fh4.水平传送带由电动机带动,并始终保持以速度v 匀速运动,现将质量为m 的某物块由静止释放在传送带的左端,过一会儿物块能保持与传送带相对静止,设物块与传送带间动摩擦因素为u ,对这一过程分析( )A.电动机多做的功为21mv 2B.摩擦力对物体做的功为mv 2C.传送带克服摩擦力做的功为21mv 2D.电动机增加的功率为umgv5.如图所示,一根轻弹簧下端固定,竖立在水平面上.其正上方A 位置有一只小球.小球从静止开始下落,在B 位置接触弹簧的上端,在C 位置小球所受弹力大小等于重力,在D 位置小球速度减小到零.小球下降阶段下列说法中正确的是( )A.在B位置小球动能最大B.在C位置小球动能最大C.从A→C位置小球重力势能的减少大于小球动能的增加D.从A→D位置小球重力势能的减少等于弹簧弹性势能的增加6.一子弹以某一水平速度击中了静止在光滑水平面上的木块,并从中穿出,对于这一过程,下列说法正确的是( ) A.子弹减少的机械能等于木块增加的机械能B.子弹减少的机械能等于系统内能的增加量C.子弹减少的机械能等于木块增加的动能和内能之和D.子弹减少的动能等于木块增加的动能与子弹和木块系统增加的内能之和7.如图,一轻绳的一端系在固定粗糙斜面上的O点,另一端系一小球.给小球一足够大的初速度,使小球在斜面上做圆周运动,在此过程中( )A.小球的机械能守恒B.重力对小球不做功C.绳的张力对小球不做功D.在任何一段时间内,小球克服摩擦力所做的功总是等于小球动能的减少8.一块质量为m的木块放在地面上,用一根弹簧连着木块,如图所示,用恒力F拉弹簧,使木块离开地面,如果力F的作用点向上移动的距离为h,则( )A.木块的重力势能增加了mghB.木块的机械能增加了FhC.拉力所做的功为FhD.木块的动能增加了Fh9.如图所示,将倾角为30°的斜面体置于水平地面上,一根不可伸长的轻绳两端分别系着小球A和物块B,跨过固定于斜面体顶端的光滑支点O.已知A的质量为m,B的质量为4m.现用手托住A,使OA段绳恰处于水平伸直状态(绳中无拉力),OB绳平行于斜面,此时物块B恰好静止不动.将A由静止释放,在其下摆过程中,斜面体与物块B始终保持静止,下列判断中正确的是( )A.物块B受到的摩擦力先减小后增大B.物块B受到的摩擦力方向不变C.小球A与地球组成的系统机械能守恒D.小球A与地球组成的系统机械能不守恒10.如图所示,粗细均匀的U形管内装有总长为4L的水。
高中物理必修二 专题四 动能定理 功能关系

动能定理与功能关系一、动能定理1.变力做功过程中的能量分析;2.多过程运动中动能定理的应用;3.复合场中带电粒子的运动的能量分析。
二、功能关系:做功的过程是能量转化的过程,功是能的转化的量度。
不能说功就是能,也不能说“功变成了能”。
1.物体动能的增量等于合外力做的总功:W 合=ΔE k ,这就是动能定理。
2.物体重力势能的增量等于重力做的功:W G = -ΔE P3.弹力做的功等于弹性势能的变化量:W=ΔE P4.物体机械能的增量等于除重力以外的其他力做的功:W 非重=ΔE 机,(W 非重表示除重力以外的其它力做的功)5.一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的 机械能,也就是系统增加的内能。
f ΔS=Q (ΔS 为这两个物体间相对移动的路程)。
专项练习1.一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,下列说法不正确的是( )A 、手对物体做功10JB 、合外力对物体做功12JC 、合外力对物体做功2JD 、物体克服重力做功2J2.a 、b 、c 三个物体质量分别为m 、2m 、3m ,它们在水平路面上某时刻运动的动能相等。
当每个物体受到大小相同的制动力时,它们的制动距离之比是( )A .1∶2∶3B .12∶22∶32C .1∶1∶1D .3∶2∶13.质量为m的物体在距地面高h处以g/3的加速度由静止竖直下落到地面,下列说法不正确的( )A.物体重力势能减少mgh/3 B.物体的机械能减少2mgh/3 C.物体的动能增加mgh/3 D .重力做功mgh4.如图所示,质量为m 的小球用长L 的细线悬挂而静止在竖直位置,用水平拉力F 缓慢将小球拉到细线与竖直方向成θ角的位置。
在此过程中,拉力F 做的功是( )A.θcos FLB.θsin FLC.()θcos 1-FLD.()θcos 1-mgL 5. 如图所示,小球以大小为v 0的初速度由A 端向右运动,到B 端时的速度减小为v B ;若以同样大小的初速度由B 端向左运动,到A 端时的速度减小为v A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动能定理与功能关系专题复习目标:1.多过程运动中动能定理的应用; 2.变力做功过程中的能量分析;3.复合场中带电粒子的运动的能量分析。
专题训练:1.滑块以速率1v 靠惯性沿固定斜面由底端向上运动,当它回到出发点时速度变为2v ,且12v v <,若滑块向上运动的位移中点为A ,取斜面底端重力势能为零,则 ( ) (A ) 上升时机械能减小,下降时机械能增大。
(B ) 上升时机械能减小,下降时机械能减小。
(C ) 上升过程中动能和势能相等的位置在A 点上方 (D ) 上升过程中动能和势能相等的位置在A 点下方2.半圆形光滑轨道固定在水平地面上,并使其轨道平面与地面垂直,物体m 1,m 2同时由轨道左右两端最高点释放,二者碰后粘在一起运动,最高能上升至轨道的M 点,如图所示,已知OM 与竖直方向夹角为060,则物体的质量21m m =( ) A . (2+ 1 ) ∶(2— 1) C .2 ∶1 B .(2— 1) ∶ (2+ 1 ) D .1 ∶23.如图所示,DO 是水平面,初速为v 0的物体从D 点出发沿DBA 滑动到顶点A 时速度刚好为零。
如果斜面改为AC ,让该物体从D 点出发沿DCA 滑动到A 点且速度刚好为零,则物体具有的初速度( )(已知物体与路面之间的动摩擦因数处处相同且为零。
) A .大于 v 0 B .等于v 0 C .小于v 0 D .取决于斜面的倾角4.光滑水平面上有一边长为l 的正方形区域处在场强为E 的匀强电场中,电场方向与正方形一边平行。
一质量为m 、带电量为q 的小球由某一边的中点,以垂直于该边的水平初速0v 进入该正方形区域。
当小球再次运动到该正方形区域的边缘时,具有的动能可能为:( )(A )0 (B )qEl mv 212120+ (C )2021mv (D )qEl mv 322120+5.在光滑绝缘平面上有A .B 两带同种电荷、大小可忽略的小球。
开始时它们相距很远,A 的质量为4m ,处于静止状态,B 的质量为m ,以速度v 正对着A 运动,若开始时系统具有的电势能为零,则:当B 的速度减小为零时,系统的电势能为 ,系统可能具有的最大电势能为 。
6.如图所示,质量为m ,带电量为q 的离子以v 0速度,沿与电场垂直的方向从A 点飞进匀强电场,并且从另一端B 点沿与场强方向成1500角飞出,A 、B 两点间的电势差为 ,且ΦA ΦB (填大于或小于)。
7.如图所示,竖直向下的匀强电场场强为E ,垂直纸面向里的匀强磁场磁感强度为B ,电量为q ,质量为m 的带正电粒子,以初速率为v 0沿水平方向进入两场,离开时侧向移动了d ,这时粒子的速率v 为 (不计重力)。
AB C DE8.1914年,弗兰克和赫兹在实验中用电子碰撞静止的原子的方法,使原子从基态跃迁到激发态,证明了玻意尔提出的原子能级存在的假设,设电子的质量为m ,原子的质量为M ,基态和激发态的能量差为ΔE ,试求入射电子的最小初动能。
9.如图所示,斜面倾角为θ,质量为m 的滑块距挡板P 为s 0,以初速度v 0。
沿斜面上滑。
滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面的下滑力。
若滑块每次与挡板相碰均无机械能损失。
问滑块经过的路程有多大?10.图中,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平直导轨上,弹簧处在原长状态。
另一质量与B 相同的滑块A ,从导轨上的P 点以某一初速度向B 滑行。
当A 滑过距离1l 时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连。
已知最后A 恰好返回到出发点P 并停止。
滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为2l ,重力加速度为g 。
求A 从P 点出发时的初速度0v 。
11.图示装置中,质量为m 的小球的直径与玻璃管内径接近,封闭玻璃管内装满了液体,液体的密度是小球的2倍,玻璃管两端在同一水平线上,顶端弯成一小段圆弧。
玻璃管的高度为H ,球与玻璃管的动摩擦因素为μ(μ<t g 370=43,小球由左管底端由静止释放,试求:(1)小球第一次到达右管多高处速度为零? (2)小球经历多长路程才能处于平衡状态?12.在水平向右的匀强电场中,有一质量为m .带正电的小球,用长为l 的绝缘细线悬挂于O 点,当小球静止时细线与竖直方向夹角为θ,现给小球一个垂直悬线的初速度,使小球恰 能在竖直平面内做圆周运动。
试问(1)小球在做圆周运动的过程中,在那一个位置的速度最小?速度最小值是多少?(2)小球在B 点的初速度是多大?13.如图,长木板ab 的b 端固定一挡板,木板连同挡板的质量为M =4.0kg ,a 、b 间距离s =2.0m 。
木板位于光滑水平面上。
在木板a 端有一小物块,其质量m =1.0kg ,小物块与木板间的动摩擦因数 =0.10,它们都处于静止状态。
现令小物块以初速0v =4.0m/s2 沿木板向前滑动,直到和挡板相碰。
碰撞后,小物块恰好回到a 端而不脱离木板。
求碰撞过程中损失的机械能。
14.如图所示,一块质量为M 长为L 的均质板放在很长的光滑水平桌面上,板的左端有一质量为m 的物块,物块上连接一根很长的细绳,细绳跨过位于桌面的定滑轮,某人以恒定的速率v 向下拉绳,物块最多只能到达板的中央,而此时的右端尚未到桌边定滑轮,试求(1)物块与板的动摩擦因数及物体刚到达板的中点时板的位移(2)若板与桌面之间有摩擦,为使物体能达到板的右端,板与桌面间的动摩擦因数范围 (3)若板与桌面之间的动摩擦因数取( 2 )问中的最小值,在物体从板的左端运动到 板的右端的过程中,人拉绳的力所做的功(其它阻力不计)15.滑雪者从A 点由静止沿斜面滑下,经一平台后水平飞离B 点,地面上紧靠平台有一个水平台阶,空间几何尺度如图所示。
斜面、平台与滑雪板之间的动摩擦因数为 。
假设滑雪者由斜面底端进入平台后立即沿水平方向运动,且速度大小不变。
求: (1)滑雪者离开B(2)滑雪者从B16.如图所示,一质量为M ,长为l 的长方形木板B 放在光滑的水平面上,其右端放一质量为m 的小物体A (m <M )。
现以地面为参照系,给A 和B 以大小相等,方向相反的初速度使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板。
(1)若已知A 和B 的初速度大小为v 0,求它们最后的速度大小和方向;(2)若初速度的大小未知,求小木块A 向左运动到达最远处(从地面上看)离出发点的距离。
17.如图所示,摆球质量为m ,摆线长为l ,若将小球拉至摆线与水平方向夹300角的P 点处,然后自由释放,试计算摆球到达最低点时的速度和摆线中的张力大小。
专项预测:18.如图所示,AB 是一段位于竖直平面内的光滑轨道,高度为h ,末端B 处的切线方向水平。
一个质量为m 的小物体P 从轨道顶端A 处由静止释放,滑到B 端后飞出,落到地面上的C 点,轨迹如图中虚线BC 所示,已知它落地时相对于B 点的水平位移OC = l 。
现在轨道下方紧贴B 点安装一水平传送带,传送带的右端与B 的距离为l /2。
当传送带静止时,让 P 再次从A 点由静止释放,它离开轨道并在传送带上滑行后从右端水平飞出,仍然落在地面的C 点,当驱动轮转动带动传送带以速度v 匀速向右运动时(其他条件不变),P 的落地点为 D 。
不计空气阻力。
a )求P 滑到B 点时的速度大小b )求P 与传送带之间的摩擦因数c )求出O .D 间的距离s 随速度v 变化的函数关系式。
19. 如图所示,A 、B 是静止在水平地面上完全相同的两块长木板。
A 的左端和B 的右端相接触。
两板的质量皆为M =2.0kg ,长度l =1.0m 。
C 是一质量为m =1.0kg 的小物块。
现给它一初速度0v =2.0m/s ,使它从B 板的左端开始向右滑动。
已知地面是光滑的,而C 与A 、B 之间的动摩擦因数皆为μ=0.10。
求最后A 、B 、C 各以多大的速度做匀速运动(重力加速度g 取102/s m )参考答案:1.BC 2.B 3.B4.ABC 5.2252,83mv mv 6.,2320qmv 小于 7.m qEd v 220-8.E M mM ∆+ 9.θμθμtg s g v +cos 220 10.)1610(21L L g +μ11.(1)H 348+μμ,(2)μ45H 12.(1)A 点是速度最小θcos min glv =13.2.4J 14.(1)2l ,m gl Mv 2 (2)glm M Mv )(22+≥μ (3)22Mv15.(1))(2L h H g μ-- (2))(2,21L h H h S h L H μμ--=<-;)(2,22L h H h S h L H μμ--=>-16.(1)gh 2,(2)l h 23(3)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥+〈〈+≤=)27)(71(2)2722)(221(2)22()(ghv l gh v gh gh v lghl l v S17.A 球从P 点做自由落体运动至B 点,速度为gl v B 2=,方向竖直向下在B 点,由于绳绷紧,小球速度为'B v ,方向垂直于OB ,则B B B v v v 2330cos 0'== 小球从B 点沿圆弧运动至最低点C ,则2'202121)60cos 1(B C mv mv mgl -=- gl gl gl gl v v BC 25212243)60cos 1(202'2=⨯+⨯=-+= 则gl v C 5.2= 在C 点mg lglmmg T lmv mg T 5.35.22=+==-18.(1)0v mM mM +- 方向向右(2)在(1)中:A 与B 相对静止,A .B 的对地位移大小分别为S A ,S B ,则S A +S B =l则20220221212121Mv Mv mgS mv mv mgS B A -=--=-μμ 得220)(21)(21v m M v m M mgl +-+=μ设A 向左运动最大位移为S A ‘,则20'210mv mgS A -=-μ M mM mM m M mM mv v v m M m l S A 4)(11222020'+=+--⋅+=-⋅+=∴ 所以l MmM S A 4'+=19. s m v A /563.0= , s m v B /155.0= , s m v c /563.0=。