【精品】小学小学奥数全能解法几训练(定义新运算)

合集下载

小学奥数专题2 新定义运算

小学奥数专题2 新定义运算

小学奥数专题二:定义新运算
一、定义
1、定义新运算是指运用某种特殊的符号表示的一种特定运算形式。

注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新
定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。

(2)我们还要知道,这是一种人为的运算形式。

它是使用特殊的运算符
号,如:*Δ、▴、■等来表示的一种运算。

(3)新定义的算式中,有括号的,要先算括号里面的。

2、一般的解题步骤是:
一是认真审题,深刻理解新定义的内容;二是排除干扰,按新定义关系去掉新运算符号;三是化新为旧,转化成已有知识做旧运算。

二典题
例1、对于任意数a,b,定义运算“*”: a*b=a×b-a-b。

求12*4的值。

例2、假设a ★ b = ( a + b )÷ b 。

求 8 ★ 5 。

例3、如果a◎b=a×b-(a+b)。

求6◎(9◎2)。

例4、如果1Δ3=1+11+111;2Δ5=2+22+222+2222+22222;8Δ2=8+88。

求6Δ5。

例5 A,B表示两个数,定义A△B表示(A+B)÷2,
求(1)(3△17) △29; (2)[(1△9) △9] △6。

例6、规定a▲b=5a+0.5ab-3b。

求(8▲5)▲X=264中的未知数。

(小学奥数)定义新运算

(小学奥数)定义新运算

定義新運算教學目標定義新運算這類題目是在考驗我們的適應能力,我們大家都習慣四則運算,定義新運算就打破了運算規則,要求我們要嚴格按照題目的規定做題.新定義的運算符號,常見的如△、◎、※等等,這些特殊的運算符號,表示特定的意義,是人為設定的.解答這類題目的關鍵是理解新定義,嚴格按照新定義的式子代入數值,把定義的新運算轉化成我們所熟悉的四則運算。

知識點撥一定義新運算基本概念:定義一種新的運算符號,這個新的運算符號包含有多種基本(混合)運算。

基本思路:嚴格按照新定義的運算規則,把已知的數代入,轉化為加減乘除的運算,然後按照基本運算過程、規律進行運算。

關鍵問題:正確理解定義的運算符號的意義。

注意事項:①新的運算不一定符合運算規律,特別注意運算順序。

②每個新定義的運算符號只能在本題中使用。

我們學過的常用運算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,為什麼運算結果不同呢?主要是運算方式不同,實際是對應法則不同.可見一種運算實際就是兩個數與一個數的一種對應方法,對應法則不同就是不同的運算.當然,這個對應法則應該是對任意兩個數,通過這個法則都有一個唯一確定的數與它們對應.只要符合這個要求,不同的法則就是不同的運算.在這一講中,我們定義了一些新的運算形式,它們與我們常用的“+”,“-”,“×”,“÷”運算不相同.二 定義新運算分類1.直接運算型2.反解未知數型3.觀察規律型4.其他類型綜合模組一、直接運算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。

【巩固】 定義新運算為a △b =(a +1)÷b ,求的值。

6△(3△4)【巩固】 設a △2b a a b =⨯-⨯,那麼,5△6=______,(5△2) △3=_____.例題精講【巩固】 P 、Q 表示數,*P Q 表示2P Q +,求3*(6*8)【巩固】 已知a ,b 是任意自然數,我們規定: a ⊕b = a +b -1,2a b ab ⊗=-,那麼[]4(68)(35)⊗⊕⊕⊗= .【巩固】 M N *表示()2,(20082010)2009M N +÷**____=【巩固】 規定運算“☆”為:若a >b ,則a ☆b =a +b ;若a =b ,則a ☆b =a -b+1;若a <b ,則a ☆b =a ×b 。

小学奥数 定义新运算 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  定义新运算 精选练习例题 含答案解析(附知识点拨及考点)

定义新运算教学目标定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。

知识点拨一定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。

【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。

由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。

【小学四年级奥数讲义】定义新运算

【小学四年级奥数讲义】定义新运算

【小学四年级奥数讲义】定义新运算一、知识重点:运算方式不一样,本质上是对应法例不一样。

一种运算本质就是两个数与一个数的一种对应方法。

经过这个法例都有一个独一确立的数与它们对应。

这一讲,我们将定义一些新的运算形式,它们与我们常用的加、减、乘、除运算是不同样的。

二、精讲精练例 1:设 a、b 都表示数,规定: a△b 表示 a 的 3 倍减去 b 的 2 倍,即: a△b = a×3-b×2。

试计算:(1)5△6;(2)6△5。

练习一1、设 a、b 都表示数,规定: a○b=6×a-2×b。

试计算 3○4。

2、设 a、b 都表示数,规定: a*b=3×a+2×b。

试计算:(1)( 5*6)*7(2)5*(6*7)例 2:关于两个数 a 与 b,规定 a⊕b=a×b+a+b,试计算 6⊕2。

练习二1、关于两个数 a 与 b,规定: a⊕b=a×b-( a+b)。

计算 3⊕5。

2、关于两个数 A 与 B,规定: A☆B=A×B÷2。

试算 6☆4。

例 3:假如 2△3=2+3+4,5△4=5+6+7+8,按此规律计算3△5。

练习三1、假如 5▽2=5×6,2▽3=2×3×4,计算: 3▽6。

2、假如 2▽4=24÷( 2+4),3▽6=36÷( 3+6),算 8▽4。

例 4:于两个数 a 与 b,定 a□b=a+ (a+1)+(a+2)+ ⋯(a+b -1) 。

已知 x□6=27,求 x。

四1、假如 2□3=2+3+4=9,6□5=6+7+8+9+10=40。

已知 x□3=5973,求 x。

2、于两个数 a 与 b,定 a□b=a+(a+1)+(a+2)+ ⋯+(a+b-1) ,已知 95□x=585,求 x。

三、后作1、有两个整数是A、B,A▽B 表示 A 与 B 的均匀数。

小学数学奥数测试题定义新运算_人教版

小学数学奥数测试题定义新运算_人教版

第 1 页2019年小学奥数计算专题——定义新运算1.若*A B 表示()()3A B A B +⨯+,求5*7的值。

2.定义新运算为a △b =(a +1)÷b,求值:6△(3△4).3.设a △2b a a b =⨯-⨯,那么,5△6=______,(5△2) △3=_____.4.P 、Q 表示数,*P Q 表示2P Q +,求3*(6*8) . 5.已知a,b 是任意自然数,我们规定: a ⊕b= a+b-1,2a b ab ⊗=-,那么[]4(68)(35)⊗⊕⊕⊗= .6.M N *表示()2,(20082010)2009M N +÷**____=.7.“△”是一种新运算,规定:a △b =a×c+b×d(其中c ,d 为常数),如5△7=5×c +7×d。

如果1△2=5,2△3=8,那么6△1OOO 的计算结果是________。

8.对于非零自然数a 和b ,规定符号⊗的含义是:a ⊗b =2m a b a b⨯+⨯⨯(m 是一个确定的整数)。

如果1⊗4=2⊗3,那么3⊗4等于________。

9.对于任意的整数x 与y 定义新运算“△”:6=2x y x y x y⨯⨯∆+,求2△9。

10. “*”表示一种运算符号,它的含义是:()()111x y xy x y A *=+++ ,已知 ()()11221212113A *=+=⨯++,求19981999*。

11.[A]表示自然数A 的约数的个数.例如4有1,2,4三个约数,可以表示成[4]=3.计算:12.x 为正数,<x>表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是 .13.定义运算“△”如下:对于两个自然数a 和b,它们的最大公约数与最小公倍数的和记为a △b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= .14.我们规定:符号Θ表示选择两数中较大数的运算,例如:5Θ3=3Θ5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:1523(0.6)(0.625)23353411(0.3)( 2.25)996••Θ+∆∆+Θ的结果是多少?15.规定:符号“&”为选择两数中较大数的运算,“◎”为选择两数中较小数的运算。

小学小学奥数全能解法及训练(加法乘法原理和几何计数)

小学小学奥数全能解法及训练(加法乘法原理和几何计数)

A村
C村
B村
3 × 4 = 12 (种)
答:共有12种不同的走法。
精பைடு நூலகம்3
总数
1+2+3+ …+(点 数一1)
数线 段规律
几何计数
个数
1+2+3+ …+(射线 数一1)
数角 规律
个数
长的线段 数×宽的 线段数
数长方 形规律
例1
典例精析
有5顶不同的帽子,2件不同的上衣,3条不同的裤子。从中
取出1顶帽子、1件上衣、1条裤子配成一套装束。有多
3+ 2 + 1 = 6(种) 答:她有 6 种选择。
精讲2
乘法原理
如果完成一件任务需要分成n个步 骤进行,做第1步有m1种方法,第2步 有m2种方法……第n步有mn种方 法,那么完成这件任务共有: m1×m2....... ×mn种不同的方法。
例如
由 A 村去 B 村的道路有3条,由B村去 C村的道路有4条。从A村经B村去C 村,共有多少种不同的走法?
加法 原理
乘法 原理
几何 计数
规律 总结
练习1
参考答案
第一步:写百位,有5种选法 第二步:写十位,有6种选法 第三步:写个位,有6种选法 可以组成三位数的个数:
5×6×6=180(个)
练习2
下图中一共有几条线段?

参考答案


从一个点出发,按
(7-1)+5+4+3+2+1=21

照一定的规律数线
段,做到不重复,不
遗漏。
加法乘法原理和几何计数

小学数学《定义新运算》练习题(含答案)

小学数学《定义新运算》练习题(含答案)

小学数学《定义新运算》练习题(含答案)(一) 直接运算型【例1】 (★★)定义运算“⊕”如下:()2a b a b ⊕=+÷(1) 计算2007⊕2009,2006⊕2008(2) 计算1⊕5⊕9,1⊕(5⊕9),分析:(1)2007⊕2009=(2007+2009)÷2=2008;2006⊕2008=(2006+2008)÷2=2007(2)1⊕5⊕9=(1+5)÷2⊕9=3⊕9=(3+9)÷2=61⊕(5⊕9)=1⊕(5+9)÷2=1⊕7=(1+7)÷2=4;【例2】 (★★★)n*b 表示n 的3倍减去b 的2倍,例如3*2=3×3-2×2=5.根据以上的规定,10*6应等于_____.分析:根据新运算“*”的规定:10*6=10×3-6×2=18.[巩固] 设a △b =a ×a -2×b ,那么,5△6=______,5△2=_____.分析:(1)5△6=5×5-2×6=13(2)5△2=5×5-2×2=21【例3】 (★★★)我们规定:a c b d =ad -bc ,例如:23 14=2×4-1×3=8-3=5. 求45 610的值.分析:45 610=4×10-5×6=40-30=10[前铺]如果用|A,B|表示A 与B 中较大数与较小数之差,求:(1)|2+3,2×3|;(2)||3,5|,3|分析:(1)|2+3,2×3|=|5,6|=6-5=1(2)||3,5|,3|=|5-3,3|=|2,3|=3-2=1【例4】 (★★★南京市第二届“兴趣杯”少年数学邀请赛决赛)设m 、n 是两个数,规定:m*n =4×n-(m +n)÷2,这里“×,+,一,÷”是通常的四则运算符号,括号的作用也是通常的含义,“*”是新的运算符号. 计算:3*(4*6)= _____.分析:4*6=4×6-(4+6)÷2=19,3*19=4×19-(3+19)÷2=65.[巩固] 规定:a ▽b =(a +b )÷2+2×a ,则3▽(6▽8)是多少?.分析:6▽8=(6+8)÷2+2×6=19,3▽19=(3+19)÷2+2×3=17,所以3▽(6▽8)=17.【例5】 (★★★★奥数网题库)定义“☆”的运算如下:对任何自然数a 、b ,如果a +b 是偶数,则a ☆b =(a+b)÷2,如果a +b 是奇数,则a ☆b =(a+b-1)÷2.求:(1)(1 999☆2 000)☆(2 001☆2 002);(2)1 998☆(2 000☆2 002)☆2 004.分析:(1)因为1999+2000=3999是奇数,所以1999☆2000=19992000119992+-=,2001+2002=4003是奇数,所以2001☆2002=20012002120012+-=,1999+2001=4000是偶数, 所以1999☆2001=1999200120002+=,所以(1 999☆2 000)☆(2 001☆2 002)=2000 (3) 因为2000+2002=4002是偶数,2000☆2002=2000200220012+=,1998+2001=3999是奇数,所以 1 998☆2001=19982001119992+-=,1999+2004=4003是奇数,所以1999☆2 004=19992004120012+-=,所以1 998☆(2 000☆2 002)☆2 004=2001[巩固] 定义“*”的运算如下:对任何自然数a 、b ,如果a +b 是3的倍数,则a*b =(a+b)÷3,如果a +b 除以3余数为1,则a*b =(a+b-1)÷3,如果a +b 除以3余数为2,则a*b =(a+b-2)÷3.求:(2005*2006)*(2007*2008)分析:因为2005+2006=4011是3的倍数,所以2005*2006=4011÷3=1337,因为2007+2008=4013,4013÷3=1337…2,所以2007*2008=(4011-2)÷3=1337,因为1337+1337=2674,2674÷3=891…1,所以1337*1337=(1337+1337-1)÷3=891,所以(2005*2006)*(2007*2008)=891【例6】 (★★★北京市第十一届“迎春杯”赛)如果 3*2=3+33=362*3=2+22+222=2461*4=1+11+111+1111=1234那么4*5=( ).分析:4*5=4+44+444+4444+44444=49380[巩固]规定: 6*2=6+66=72,2*3=2+22+222=246,1*4=1+11+111+1111=1234.求7*5.分析:7*5=7+77+777+7777+77777=86415【例7】 (★★★★奥数网题库)定义新运算“!”如下:对于认识自然数n ,n !=n ×(n -1)×(n -2)×……×3×2×1.(1) 求3!,4!,5!;(2) 证明:3×(6!)+24×(5!)=7!分析:(1)3!=3×2×1=6;4!=4×3×2×1=24;5!=5×4×3×2×1=120;(2)证明:3×(6!)+24×(5!)=3×(6!)+4×6×(5!)=3×(6!)+4×(6!)=7×(6!)=7![拓展] 对自然数m ,n (n ≥m ),规定m n P =n ×(n -1)×(n -2)×…×(n -m +1).例如:24P =4×3=12.34P =4×3×2=24.求:(1)345555P P P ,,;(2)34566666P P P P ,,,.分析:(1)35P =5×4×3=60,45P =5×4×3×2=120,55P =5×4×3×2×1=120.(2)36P =6×5×4=120,46P =6×5×4×3=360,56P =6×5×4×3×2=720,66P =6×5×4×3×2×1=720.[总结] 这类题型就是直接按照题目的要求进行运算,在运算的过程中特别要注意每个位置上对应的数字.(二)反求未知数【例8】 (★★★★奥数网题库)假设A*B 表示A 的3倍减去B 的2倍,即A*B =3A -2B.已知w*(4*1)=7,求w*4的值.分析:4*1=3×4-2×1=10,所以w*(4*1)=w*10=3×w -10×2=7,所以w =9.那么w*4= 9*4=3×9-4×2=19.[前铺]对于数 a , b , c , d ,规定〈a , b , c ,d 〉=2ab-c +d.已知〈1,3,5,x 〉=7,求x 的值.分析:<1,3, 5,x >=2×1×3-5+x =1+x=7,x=6【例9】(★★★★奥数网题库)对于两个数a、b,a△b表示a+b-1.计算:(1)(7△8)△6(2)(6△A)△A=84,求A.分析:(1)7△8=7+8-1=14,14△6=14+6-1=19;(2)6△A=6+A-1=5+A,(5+A)△A=5+A+A-1=2×A+4=84,所以A=40.[拓展]如果a△b表示(a-2)×b,例如3△4=(3-2)×4=4,那么当( a△2)△3=12时, a等于几?分析:(a△2)△3=[(a-2)×2]△3=(2a-4)△3=(2a-4-2)×3=6a-18,由6a-18=12,解得a=5【例10】(★★★★第八届“祖冲之杯”数学邀请赛)对整数A、B、C,规定符号等于A×B+B×C-C÷A,例如:=3×5+5×6-6÷3=15+30-2=43,已知:=28,那么A=_______.分析:2A+4A-4÷2=28,即 6A=30,A=5[总结] 这类题型给出的运算式中含有一个或多个未知数,我们不能直接根据运算式计算,首先,我们应该根据给出的运算等式将未知数求出来,再进行运算.(三)其他常见类型【例11】(★★★★★南京市首届“兴趣杯”少年数学邀请赛)小明来到红毛族探险,看到下面几个红毛族的算式:8×8=8,9×9×9=5,9×3=3, (93+8)×7=837.老师告诉他,红毛族算术中所用的符号“+、一、×、÷、( )、=”与我们算术中的意义相同,进位也是十进制,只是每个数字虽然与我们写法相同,但代表的数却不同. 请你按红毛族的算术规则,完成下面算式:89×57=______ .分析: 由红毛族算式“8×8=8 ”知“8”是1,“9×9×9=5”可知“9”是2,“5”是8.由“9×3=3”知“3”是0.“7”是5.于是可知“89×57”是12×85=1020即“8393”.[前铺]a、b、c代表一位数,规定a×a=a,b×b×b=c,b×d=d,问a+b+c+d=?分析:由a×a=a可知a=1,由b×b×b=c,可知b=2,c=8,由b×d=d可知,d=0,所以a+b+c+d=1+2+8+0=11【例12】(★★★第九届“祖冲之杯”数学邀请赛)下图是一个运算器的示意图,A、B是输入的两上数据,C是输出的结果,右下表是输入A、B数据后,运算器输出C的对应值,请你据此判断,当输入A 值是2008,输入B值是4时,运算器输出的C值是_____.分析:通过观察,A×B=C ,所以当输入A值是2008,输入B值是4时,C=A×B=2008×4=8032[拓展]如果运算器输出的是下面的规律,“?”应填什么呢?分析:通过观察,15÷3=5=4+1,28÷7=4=3+1,60÷15=4=3+1,所以,第四列的?处应填(7+1)×8=64,第五列的?处应填:52÷13-1=4-1=31.(例1)a、b是自然数,规定:a△b=a×5+b÷3,求8△9的值.分析:8△9=8×5+9÷3=432.a*b表示a的3倍减去b的一半,例如,1*2=1×3-2÷2=2,根据这个规定,计算:(1)10*6 (2)7*(2*4).分析:10*6=10×3-6÷2=27,7*(2*4)=7*(2×3-4÷2)=7*4=7×3-4÷2=193.(例5)定:A※B=B×B+A,计算(2※3)※(4※1)的值.分析:2※3=3×3+2=11,4※1=1×1+4=5,11※5=5×5+11=36,所以最后结果(2※3)※(4※1)=36.4.(例4)如果a◇b=a×b-(a+b),已知(3◇4)◇x=19,求x的值.分析:3◇4=3×4-(3+4)=5,5◇x=19,5×x-(5+x)=19,4x-5=19,4x=24,x=6.5.(例12)右下图是一个运算器的示意图,A、B是输入的两上数据,C是输出的结果,右下表是输入A、B数据后,运算器输出C的对应值,请你据此判断,当输入A值是2008,输入B值是4时,运算器输出的C值是_____.分析:通过观察,A÷B×2=C ,所以当输入A值是2008,输入B值是4时,C=A÷B=2008÷4×2=1004。

小学奥数:定义新运算.专项练习及答案解析

小学奥数:定义新运算.专项练习及答案解析

定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。

一 定义新运算 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同. 二 定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。

【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。

例题精讲知识点拨教学目标定义新运算由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答:13*(5*4)的值 是26。
例2 定义一种运算[ ] 。 [ m,n,p ]=m×n-p。求 [ 8, [ 7,4,5], [4,5,6] ]的值。
运算符号 [ ] 运算法则
例2 定义一种运算[ ] 。 [ m,n,p ]=m×n-p。求 [ 8, [ 7,4,5], [4,5,6] ]的值。 [ 7,4,5 ]=7×4-5=23 [ 4,5,6 ]=4×5-6=14
[ 8,23,14 ]=8×23-14=184-14=170
例3 对于任意的两个整a、b,定义两种运算“ a b= a+b-2,a b= a×b-2,求4 的值。
、。 (6 8)
运算符号 运算法则
例3 对于任意的两个整a、b,定义两种运算“ a b= a+b-2,a b= a×b-2,求4 的值。
小学奥数全能解法及训练
定义新运算
精讲1
解法精讲
已经学过+、-、×、÷运算
新运算的运算 法则是解决问
题的关键
22=2×2 53=5×5×5 74=7×7×7×7
an=a×a×a×a×···×a
n个a连乘
精讲2 对于任意数,定义新运算“*”,a*b=a×b-a-b。
运算符号 运算法则
* 弄清基本概念
精讲3 对于任意数,定义新运算“*”,a*b=a×b-a-b。
12*4= 12×4-12-4 =32
b=4
a=12
典例精析
例1 对于两个数a与b,规定:a*b= (a+b)+(a-b)。 求13*(5*4)的值 。
运算符号 *
运算法则
例1 对于两个数a与b,规定:a*b= (a+b)+(a-b)。 求13*(5*4)的值 。规律Fra bibliotek结a※b
b个a
=a+aa+···+a ··· a
练习2 有一个数学运算符号∏,使下列算式成立,2 ∏4
=8,5 ∏3=13,3 ∏5=11,9 ∏7=25,求7
参考 ∏3的值。 答案
7 ∏3
运算符号∏,运算法则
=2×7+3
a∏b=2a+b
=17
答:7 ∏3的值是17。
、。 (6 8)
6 8=6+8-2=12
4 12=4×12-2=46
答:4 (6 8)的值是46。
举一反三
练习1 如果1※2=1+11,2※3=2+22+222,3※4=
参考 3+33+333+3333。求(5※3)×5的值。
答案 (5※3)×5
运算符号※,运算法则
=(5+55+555)×5
=3075
相关文档
最新文档