概率论与数理统计第二章自测题答案与提示

合集下载

概率论与数理统计第二章习题参考答案]

概率论与数理统计第二章习题参考答案]

(1)设
X
服从二项分布,其分布律为 P{X
=
k}=
C
k n
pk (1−
)p n−k
K=0,1,2,……n,问 K 取何值时 P{X = k}最大?
(2)设 X 服从泊松分布,其分布率为 p{X = k} = λke−λ ,k=0,1,2……
k!
问 K 取何值时 P{X = k}最大?
(1)
解: M
=
N 试确定常数 a
(2)设随机变量 X 的分布律为 P{X = k} = b ⋅ ⎜⎛ 2 ⎟⎞k , k = 1,2.....
⎝3⎠
试确定常数 b
(3)设随机变量 X 的分布律为 P{X = k} = c ⋅ λk , k = 0,1,2......λ > 0 为常数,
k!
试确定常数 c
N
解:(1) ∑ P{X
6、设随机变量 X 的分布律为 P{X = k} = k , k = 1,2,3,4,5
15
其分布函数为 F (x) ,试求:
(1)
P⎨⎧ ⎩
1 2
<
X
<
5 2
⎫ ⎬ ⎭

(2) P{1 ≤ X ≤ 2},
(3) F ⎜⎛ 1 ⎟⎞ ⎝5⎠
解:(1)
P⎨⎧ ⎩
1 2
<
X
<
5⎫
2
⎬ ⎭
=
P{X
= 1}+
0
2
1
x
xdx+
0
1
(2−
x)dx=
2x

x2
/
2−1
0< x ≤1 1< x≤2

概率论与数理统计第二章测验题答案

概率论与数理统计第二章测验题答案

第二章测验题答案一. 填空(共28分,每题4分)1. 投掷一枚均匀对称的硬币,以X 表示正面出现的次数,则随机变量在区间 (0.5, 1.5)取值的概率为0.5 . 解:随机变量X 的分布律为所以{0.5}{1}0.551.P X P X <===≤2. 设随机变量~(1,6)U ξ, 则方程210x x ξ++=, 有实根的概率为 4/5 . 解:方程210x x ξ++=有实根,则判别式240ξ∆=-≥, 则2ξ≥或者2ξ≤-,所以()2{}{40}{2}{2}P P P ξξξ=∆=-≥=≥⋃≤-方程有实根{2}{2}P P ξξ=≥+≤-又因为随机变量ξ服从参数为(1,6)的均匀分布,所以其概率密度函数为11,16,16()6150,0,x x f x ⎧⎧<<<<⎪⎪==-⎨⎨⎪⎪⎩⎩其它其它所以6222214{2}(),55{2}()00.P f t dt dt P f t dt dt ξξ+∞---∞-∞≥===≤-===⎰⎰⎰⎰故{}P 方程有实根{2}{2}P P ξξ=≥+≤-45=. 3. 设(2,),(3,)X b p Y b p , 若519{}P X ≥=, 则{1}P Y ≥=19/27.解:由题意知随机变量X 和Y 分别服从参数为2和p 、3和p 的二项分布.5{1}1{0}9P X P X =≥=-=, 得到4{0}9P X ==, 即00222(1)(1)C p p p -=-49=,所以2(1)3p -=, 从而33333219{1}1{0}1(1)1(1)1.327P Y P Y C p p p ⎛⎫≥=-==--=--=-= ⎪⎝⎭4. 设X 的概率密度函数为1,[0,1]32(),[3,6]90,x f x x ⎧∈⎪⎪⎪=∈⎨⎪⎪⎪⎩其它,若k 使得2{}3P X k ≥=, 则k 的取值范围是13k ≤≤.解:此题用画图的方法来解:下图中红线即为()f x 的图像.其中S1表示由红线1()3f x =与x 轴所夹部分的面积,即{01}P X ≤≤13=;S2表示红线2()9f x =与x 轴所夹部分面积,即{36}P X ≤≤22393=⨯=.而{}P X k ≥即表示()f x 图像与x 轴所夹图形在直线x k =右侧的面积(绿色虚线所示范围). 因为2{}3P X k ≥={36}P X =≤≤,所以k 的取值范围只能在1和3之间, 即13k ≤≤.5. 设随机变量(1,4)X N , 则{12}P X <≤= 0.1915 .(已知(0.5)0.6915Φ=.) 解:由(1,4)X N 可知,1,2μσ==. 首先进行正态分布的标准化,在查表计算11211{12}{0}222X X P X P P μμσσ----⎧⎫<≤=<≤=<≤⎨⎬⎩⎭1()(0)2=Φ-Φ0.69150.5=-=0.19156. 设硕士研究生入学数学考试及格率为0.55,则15名考生中数学考试及格人数X 的概率分布是二项分布,参数为15和0.55, 解:15名考生参加考试,可以视为15次伯努利实验。

《概率论与数理统计》习题及答案 第二章

《概率论与数理统计》习题及答案  第二章

《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。

概率论与数理统计2.第二章练习题(答案)

概率论与数理统计2.第二章练习题(答案)

概率论与数理统计2.第⼆章练习题(答案)第⼆章练习题(答案)⼀、单项选择题1. 已知连续型随机变量X 的分布函数为3.若函数f(x)是某随机变量X 的概率密度函数,则⼀定成⽴的是(C ) A. f(x)的定义域是[0, 1] B. f(x)的值域为[0,1]4.设X - N(l,l),密度函数为f(x),则有(C )5.设随机变量X ~ N (/M6), Y ?N 仏25),记 P1 = P (X “ + 5), 则正确的是(A)对任意“,均有Pi = p 2 (B)对任意“,均有Pi v p?(c)对任意〃,均有Pl > Pi (D )只对“的个别值有P1 = P26.设随机变量x ?N(10^s 2) 9 则随着s 的增加 P{|X- 10|< s} ( C )F(x) =o,kx+b 、 x<0 0 < x< x>则常数&和〃分别为 (A) k = —b = 0龙, (B) k = 0,b 丄 (C) k = —,b = 0 (D) k = 0,b= 1 n In In2.下列函数哪个是某随机变量的分布函数(A ) z 7fl -cosx ; 2 0, f sinx,A. f(x)』沁,xnO C. f (x)= a (a>0);B. f (x)1, x < 0[cosx, — - < X < - 1 2 2 D. f (x) 其他 0, 0 < X < 7T 其他 —-< x < - 2 2 其他 C- f(x)⾮负D. f (x)在(-叫+00)内连续A. P {X O }B. f(x)= f(-x)C. p{xl} D ? F(x) = l-F(-x)A.递增B.递减C.不变D.不能确定7.设⽚3与E(⼒分别为随机变量X、兀的分布函数,为使F(沪aF?—胡(⼒是某⼀随机变量的分布函数,在下列给定的多组数值中应取(A )&设⼼与⼈是任意两个相互独⽴的连续型随机变量,它们的概率密度函数分别为ft (⼒和f2(⼒,分布函数分别为川⼒和E (⼒,则(A)亡(⼒+負(⼒必为某个随机变量的概率密度;(B) f⼼)临(⼒必为某个随机变量的概率密度;(C)川⼒+£(⼒必为某个随机变量的分布函数;(D)FAx)吠(⼒必为某个随机变量的分布函数。

概率论与数理统计第二章答案

概率论与数理统计第二章答案

第二章 随机变量及其分布1、解:设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为投保一年内因其他原因死亡:5万,概率为投保一年内没有死亡:0X0 P2、一袋中有55,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5P :106,103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。

解:任取三只,其中新含次品个数X 可能为0,1,2个。

3522)0(315313===C C X P3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表 X : 0, 1, 2P : 351,3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1) (1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。

(此时称X 服从以p 为参数的几何分布。

)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。

(此时称Y 服从以r, p 为参数的巴斯卡分布。

) x1 2 O P(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。

解:(1)P (X=k )=q k -1p k=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C rk r r k (3)P (X=k ) = k - k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 5、 一房间有3扇同样大小的窗子,其中只有一扇是打开的。

《概率论与数理统计》第二章习题解答

《概率论与数理统计》第二章习题解答

第二章 随机变量及其分布1、解:设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为 投保一年内因其他原因死亡:5万,概率为投保一年内没有死亡:0,概率为所以2、一袋中有5只乒乓球,编号为1、2X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为 也可列为下表 X : 3, 4,5P :106,103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。

解:任取三只,其中新含次品个数X 可能为0,1,2个。

3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表X : 0, 1, 2 P :351,3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1)(1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。

(此时称X 服从以p 为参数的几何分布。

)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。

(此时称Y 服从以r, p 为参数的巴斯卡分布。

)(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。

解:(1)P (X=k )=q k -1p k=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111Λ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p , 或记r+n=k ,则 P {Y=k }=Λ,1,,)1(11+=----r r k p p C rk r r k(3)P (X=k ) = k -k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 5、 一房间有3扇同样大小的窗子,其中只有一扇是打开的。

概率论与数理统计第二章习题解答

概率论与数理统计第二章习题解答

第二章 随机变量及其分布1、解:设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为 投保一年内因其他原因死亡:5万,概率为投保一年内没有死亡:02、一袋中有55,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5P :106,103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。

解:任取三只,其中新含次品个数X 可能为0,1,2个。

3522)0(315313===C C X P3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表 X : 0, 1, 2P : 351,3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1) (1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。

(此时称X 服从以p 为参数的几何分布。

)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。

(此时称Y 服从以r, p 为参数的巴斯卡分布。

)(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。

解:(1)P (X=k )=q k -1p k=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功} ,,2,1,0,)(111Λ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,或记r+n=k ,则 P {Y=k }=Λ,1,,)1(11+=----r r k p p C rk r r k (3)P (X=k ) = k - k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 5、 一房间有3扇同样大小的窗子,其中只有一扇是打开的。

概率论第二章自测题答案与提示

概率论第二章自测题答案与提示

03
重点与难点解析
重点概念解析
概率
描述随机事件发生的可能性大小,取值 范围在0到1之间,其中0表示不可能事
件,1表示必然事件。
期望值
描述随机变量取值的平均水平,计算 公式为E(X)=x1p1+x2p2+…+xnpn

独立性
若两随机事件之间没有相互影响,则 称它们是独立的。
方差
描述随机变量取值分散程度,计算公 式为D(X)=E(X^2)-[E(X)]^2。
难点问题解析
如何判断随机事件的独立性
通过计算事件之间的联合概率来判断,如果联合概率等于各事件概率的乘积,则两事件独立。
如何计算随机变量的期望值和方差
期望值通过将每个可能取值的概率乘以该取值得到,方差则通过计算每个取值的平方与相应概率的乘积后求和, 再减去期望值的平方得到。
易错点解析
混淆概率与频率
件,事件A包含1个基本事件,因此$P(A) = frac{1}{3}$。
03
填空题3
答案为$2$。此题考查数学期望的计算公式,$E(X) = sum x_i p_i$,
其中$x_i$是随机变量X的可能取值,$p_i$是对案为$frac{1}{4}$。此题考查概率的加法公式,$P(A cup B) = P(A) + P(B) - P(A cap B)$。
选择题3
正确答案为D。此题考查独立性的定义,若事件 A和B独立,则$P(AB) = P(A)P(B)$。
填空题解析与提示
01
填空题1
答案为$frac{1}{2}$。此题考查概率的基本性质,事件A和B是对立事件,
因此$P(A) = 1 - P(B)$。
02
填空题2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.一 射 手 对 同 一 目 标地 独进 立行 四 次 设 计 ,少 若命 至中 一 次 的
2 4 . 若随机变量 X 在 ( 1 , 6 ) 上服从均匀分布,则 程 x Xx 1 0
有实根的概率是 ______ .
概率作业第二章自测题
1 1 x 6 答案 0 .8 : 提 示f : (x) 5 。设事 A 件 “方程有实根 其它 0 2 2 而 方x 程 Xx 10 有 实 根 的 充 要 条 X 件 是 40 即 A{X2 40 }{X2 4 }{X 2 }{X 2 }
密度函数。 1 a xb 解:设 X“ : 球的直径” X。 ~ U[a, b], f ( x) b a 其它 0 1 1 6v 6v 3 3 3 3 V X , F(v) P(V X v) P( X ) P( X ) 6 6
0 1 1 2
2 x ( 2 ) 0 x 1 时, F ( x ) f ( t ) dt ( 1 t ) dt x . 0 2 x x 2 x 1 x 2 时, F ( x ) f ( t ) dt ( 1 t ) dt ( t 1 ) dt x 1 0 1 2 x 1 x
ln 10 2 . 3025 n n 1 0 . 5 0 . 9 0 . 5 0 . 1 , n 3 . 322 ln 2 0 . 6931 n 4
5.(柯西分布)设连续随机变量X 的分布函数为: F ( x ) A B arctan x , x
概率作业第二章自测题
一、填空题 1k 1 . 设离散型随机变量 X 的分布律为 P (X k ) 5 A ( )( k 1 , 2 , ) 2 则 A _______ . 1 答案与提示: 。 5
ax b 0x 1 2 . 已知随机 X 的 变 密 量 度 f( 为 x ) : 其它 0 1 5 且 P (X ) ,则 a_____, b______ . 2 8 1 1 1 5 答案与提 a 示 1 ,b : . 提示 ( ax : b ) dx 1 , ax b ) dx 1( 0 2 8 2

a
f (t)dt f (t)dt F(a)

a
1 a (其中 t x).F(a) f ( x)dx. 2 0
概率作业第二章自测题
2 . 下列函数中,可作为某 一随机变量的分布函数 是 _______ . 1 (A )F (x )1 2 ; x 1 ( 1ex) (C )F (x )2 0 1 1 (B )F (x ) arctan x ; 2
求(1)系数 A及B;(2)X 落在区间(-1,1)内的概率;
(3) X 的密度函数。
概率作业第二章自测题
lim F ( x ) 0 , lim F ( x ) 1 解 (1) x x
lim ( A B arctan x ) A B 0 , x 2
0 a
( C ) F (a )F ( a );
1 a (B ) F ( a ) f(x ) dx ; 0 2 (D )F ( a )2 F (a ) 1 .
概率作业第二章自测题
答案: B. 提示: f ( x) f (x); f ( x)dx 2
0

P
a

1 a f(x ) dx 1 a ;P e 0 故 与 无关且递增 a e
概率作业第二章自测题 三、解答题
1 . 从一批有 10 个合格品与 3 个次品的产品中一件一 件地抽取产 品为止,求抽取次数的 分布律。( 1 )放回;( 2 )不放回。

x

f( t ) dt 1 t ) dt , 两边求导, f( x )f( x ) f(

x
概率作业第二章自测题
x Ae x 4 . 已知随机变量 X 的密度函数 f(x ) (0 ,A 为常数 x 0 则概率 P ( xa )( a0 ) 的值 _______ .

1 ( x ) F ( x ) , x (3) f 2 1 x


概率作业第二章自测题
6 x ( 1 x ) 0 x 1 6 . 随机变量 X 的概率密度为 f ( x ) ,求随 其它 0 变量 Y 2 X 1 的概率密度。
解: F ( x) 6t (1 t )dt (3t 2t ) 3 x 2 2 x 3
2 3 0 0 x x
1 F ( y) P(Y 2 X 1 y) P( X ( y 1)) 2 1 1 ( y 1) 1 2 3 2 ( y 1) 2 6t (1 t )dt (3t 2t ) ( y 1)2 (4 y) 0 0 4 3 ( y 1)(3 y) 1 y 3 f ( y) F ( y) 4 0 其它
f ( x)dx 1


0
f ( x)dx f ( x)dx
0
a

a
1 f ( x)dx , 2

a

a
1 a f ( x)dx f ( x)dx,由 f ( x) f (x), 0 2
a

f ( x)dx
f (x)dx
有相同的分布函数,则 下列各式中正确的是 _______ . ( A ) F ( x ) F ( x ); ( B ) F ( x ) F ( x ); ( C )f( x )f( x ); ( D )f( x ) f( x ) 答案: C . 提示:由 P ( X x ) P ( X x ) 易得 F ( x ) 1 F ( x ) 即
概率作业第二章自测题
k , k 6 6 1 2 6 xy dy 2 x 0 x 1 ( 2 ) 由 公f 式 ( x ) : f ( x , y ) dy 0 X 0 其它 1 2 2 6 xy dx 3 y 0 y 1 f ( x ) f ( x , y ) dx 0 Y 其它 0
2 kxy 0 x 1 , 7 . 二维随机变量 ( X , Y ) 的概率密度为 f( x ,y ) 0 y 1 0 其它 求( 1 )常数 k ( ;2 ) X 、 Y 的边缘密度;( 3 )问 X 、 Y 是否独立
2 解1 ) : 1 ( f ( x , y ) dxdy dx kxy dy k xdx y dy 2 0 0 0 0 1 1 1 1
概率作业第二章自测题
x2 0 x1 x 2 2 x F ( x) x 1 1 x 2 2 x2 1
3 31 3 5 2 3 ( 3 ) P ( X ) F () () () 1 2 22 2 2 8
概率作业第二章自测题
3
3.对 球 的 直 径 作 测 量其 ,值 设均 匀 地 分 布 [a, 在 b] 内,求体积的
6v


f ( x)dx
3
6v

a
1 1 3 6v dx [ a] ba ba
(其 中 a
3
6v

b)
f ( v ) F ( v )
3 3 1 6 a b 3 v 2 f( v ) 3 ( b a ) v 6 6 0 其它
各种产品被抽到的可能 性相同,求在两种情况 下,直到取出
解X : “k 第 次取到合 k 格 1 , 2 , 品 3 ”则 10 3 10 3 3 10 ( 1 ) P ( X 1 ) ,P ( X 2 ) 2 ,P ( X 3 ) , , 3 13 13 13 k 1 3 10 P ( X k ) . k 13 10 (2 )X “第 k 次取到合格 k 品 1 ,2 ,3 ” ,4 .P 则 (X1 ) , 13 3 10 6 3 2 10 5 P (X2 ) ,P (X3 ) , 13 12 25 13 12 11 143 3 2 1 10 1 P (X4 ) . 13 12 11 10 286
2 1 4 P (A )P {X 2 }P {X 2 } dx 0 dx 0 .8 25 5 二、选择题 1 .设 X 的密度函 f(x 数 ), 分 为 布函 F 数 (x ), 为 且 f(x ) f( x ). 那么 6
对任意给 a 都 定 有 _______ 的 . (A )f( a )1 f(x ) dx ;

lim ( A B arctan x ) A B 1 , x 2 11 1 1 F ( x ) arctan x , x A , B , 2 2
1 1 1 1 0 .5 1 X 1 F 1 F 1 (2) P 2 4 2 4 一次的概率不小于 0 . 9
0 0 n 解: P ( 至少 A 发生一次 ) 1 P ( A 发生 0 次 ) 1 C ( 0 . 5 ) ( 1 0 . 5 ) n
4 . 设在独立重复的试验中 ,每次试验成功的概 为 0 . 5 ,问需要
x xo ; (D )F (x ) f(x )dx ,其中 f(x)dx1 其它
1 答案: B . 提示: (A )F ( )1 ,(C )F ( ) ,(D )f(t)0 ? 2 3 . 假设随机变量 X 的分布函数为 F ( x ), 密度函数为 f( x ), 若 X 与 X
相关文档
最新文档